GLSL Shader Ported From HLSL Is Not Working - opengl

I have this HLSL Shader for blur:
struct VS_INPUT
{
float4 Position : POSITION0;
float2 TexCoord : TEXCOORD0;
float4 Color : TEXCOORD1;
};
struct VS_OUTPUT
{
float4 Position : POSITION0;
float4 Color : COLOR0;
float2 TexCoord : TEXCOORD0;
};
float4x4 al_projview_matrix;
VS_OUTPUT vs_main(VS_INPUT Input)
{
VS_OUTPUT Output;
Output.Position = mul(Input.Position, al_projview_matrix);
Output.Color = Input.Color;
Output.TexCoord = Input.TexCoord;
return Output;
}
Frag
texture al_tex;
sampler2D s = sampler_state {
texture = <al_tex>;
};
int tWidth;
int tHeight;
float blurSize = 5.0;
float4 ps_main(VS_OUTPUT Input) : COLOR0
{
float2 pxSz = float2(1.0 / tWidth,1.0 / tHeight);
float4 outC = 0;
float outA = 0;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,-4.0 * pxSz.y * blurSize)).a * 0.05;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,-3.0 * pxSz.y * blurSize)).a * 0.09;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,-2.0 * pxSz.y * blurSize)).a * 0.12;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,-pxSz.y * blurSize)).a * 0.15;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,0)).a * 0.16;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,pxSz.y * blurSize)).a * 0.15;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,2.0 * pxSz.y * blurSize)).a * 0.12;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,3.0 * pxSz.y * blurSize)).a * 0.09;
outA += Input.Color.a * tex2D(s, Input.TexCoord.xy + float2(0,4.0 * pxSz.y * blurSize)).a * 0.05;
outC.a = outA;
return outC;
}
There is a similar one for horizontal...
The idea is, I provide tWidth, tHeight for the texture with and height, and use that to get the 'size' of a pixel relative to UV coords.
I then use this to do normal blur by taking a weighted average of neighbors.
I ported this to GLSL:
attribute vec4 al_pos;
attribute vec4 al_color;
attribute vec2 al_texcoord;
uniform mat4 al_projview_matrix;
varying vec4 varying_color;
varying vec2 varying_texcoord;
void main()
{
varying_color = al_color;
varying_texcoord = al_texcoord;
gl_Position = al_projview_matrix * al_pos;
}
Frag
uniform sampler2D al_tex;
varying float blurSize;
varying float tWidth;
varying float tHeight;
varying vec2 varying_texcoord;
varying vec4 varying_color;
void main()
{
vec4 sum = vec4(0.0);
vec2 pxSz = vec2(1.0 / tWidth,1.0 / tHeight);
// blur in x
// take nine samples, with the distance blurSize between them
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,-4.0 * pxSz.y * blurSize))* 0.05;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,-3.0 * pxSz.y * blurSize))* 0.09;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,-2.0 * pxSz.y * blurSize))* 0.12;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,-pxSz.y * blurSize))* 0.15;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,0))* 0.16;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,pxSz.y * blurSize))* 0.15;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,2.0 * pxSz.y * blurSize))* 0.12;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,3.0 * pxSz.y * blurSize))* 0.09;
sum += texture2D(al_tex, varying_texcoord.xy + vec2(0,4.0 * pxSz.y * blurSize))* 0.05;
gl_FragColor = varying_color * sum;
}
This is a little different, but it's the same logic. I convert pixel coords to UV coords, and multiply by the blur factor, same as the hlsl factor. Yet, the glsl one gives me an unblurred, slightly more transparent version of the original.
What could cause this?

In your fragment shader, you have:
varying vec4 varying_color;
[...]
gl_FragColor = varying_color;
so all the texture fetches and calculations you do don't have any effect on the final shader output (and are likely to be completely removed by the compiler). You probably want to output sum or to modify it, e.g. with gl_FragColor = varying_color * sum; or whatever effect you want to achieve.
Another thing: in the frag shader, you define varyings for the texture size, but you don't pass them from the vertex shader. Those should be uniforms (or, in modern GLSL, there is also the textureSize() GLSL function which allows you to directly sccess that values without explicitely passing them).

Related

Compute Normals After Vertex Deformation?

I am coding a vertex and a fragment shader trying to distort the surface of some water and then computing blinn-phong lighting on the surface. I am able to successfully compute the deformed matrices with a simple noise function, but how can I find the distorted normals? Since it isn't a linear transformation I am stuck, could anyone help?
Here are the relevant files:
vertex shader:
#version 150
uniform mat4 u_Model;
uniform mat4 u_ModelInvTr;
uniform mat4 u_ViewProj;
uniform vec4 u_Color;
uniform int u_Time;
in vec4 vs_Pos; // The array of vertex positions passed to the shader
in vec4 vs_Nor; // The array of vertex normals passed to the shader
in vec4 vs_Col; // The array of vertex colors passed to the shader.
in vec2 vs_UV; // UV coords for texture to pass thru to fragment shader
in float vs_Anim; // 0.f or 1.f To pass thru to fragment shader
in float vs_T2O;
out vec4 fs_Pos;
out vec4 fs_Nor;
out vec4 fs_LightVec;
out vec4 fs_Col;
out vec2 fs_UVs;
out float fs_Anim;
out float fs_dimVal;
out float fs_T2O;
uniform vec4 u_CamPos;
out vec4 fs_CamPos;
const vec4 lightDir = normalize(vec4(0.0, 1.f, 0.0, 0));
mat4 rotationMatrix(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);
}
vec4 rotateLightVec(float deg, vec4 LV) {
mat4 R = rotationMatrix(vec3(0,0,1), deg);
return R * LV;
}
float random1(vec3 p) {
return fract(sin(dot(p, vec3(127.1, 311.7, 191.999)))*43758.5453);
}
vec3 random2( vec3 p ) {
return fract( sin( vec3(dot(p, vec3(127.1, 311.7, 58.24)), dot(p, vec3(269.5, 183.3, 657.3)), dot(p, vec3(420.69, 69.420, 469.20))) ) * 43758.5453);
}
void main()
{
fs_Col = vs_Col;
fs_UVs = vs_UV;
fs_Anim = vs_Anim;
fs_T2O = vs_T2O;
mat3 invTranspose = mat3(u_ModelInvTr);
fs_Nor = vec4(invTranspose * vec3(vs_Nor), 0);
vec4 modelposition = u_Model * vs_Pos;
if (vs_Anim != 0) { // if we want to animate this surface
// check region in texture to decide which animatable type is drawn
bool lava = fs_UVs.x >= 13.f/16.f && fs_UVs.y < 2.f/16.f;
bool water = !lava && fs_UVs.x >= 13.f/16.f && fs_UVs.y <= 4.f/16.f;
if (water) {
// define an oscillating time so that model can transition back and forth
float t = (cos(u_Time * 0.05) + 1)/2; // u_Time increments by 1 every frame. Domain [0,1]
vec3 temp = random2(vec3(modelposition.x, modelposition.y, modelposition.z)); // range [0, 1]
temp = (temp - 0.5)/25; // [0, 1/scalar]
modelposition.x = mix(modelposition.x - temp.x, modelposition.x + temp.x, t);
modelposition.y = mix(modelposition.y - temp.y, modelposition.y + 3*temp.y, t);
modelposition.z = mix(modelposition.z - temp.z, modelposition.z + temp.z, t);
} else if (lava) {
// define an oscillating time so that model can transition back and forth
float t = (cos(u_Time * 0.01) + 1)/2; // u_Time increments by 1 every frame. Domain [0,1]
vec3 temp = random2(vec3(modelposition.x, modelposition.y, modelposition.z)); // range [0, 1]
temp = (temp - 0.5)/25; // [0, 1/scalar]
modelposition.x = mix(modelposition.x - temp.x, modelposition.x + temp.x, t);
modelposition.y = mix(modelposition.y - temp.y, modelposition.y + 3*temp.y, t);
modelposition.z = mix(modelposition.z - temp.z, modelposition.z + temp.z, t);
}
}
fs_dimVal = random1(modelposition.xyz/100.f);
fs_LightVec = rotateLightVec(0.001 * u_Time, lightDir); // Compute the direction in which the light source lies
fs_CamPos = u_CamPos; // uniform handle for the camera position instead of the inverse
fs_Pos = modelposition;
gl_Position = u_ViewProj * modelposition;// gl_Position is a built-in variable of OpenGL which is
// used to render the final positions of the geometry's vertices
}
fragment shader:
#version 330
uniform vec4 u_Color; // The color with which to render this instance of geometry.
uniform sampler2D textureSampler;
uniform int u_Time;
uniform mat4 u_ViewProj;
uniform mat4 u_Model;
in vec4 fs_Pos;
in vec4 fs_Nor;
in vec4 fs_LightVec;
in vec4 fs_Col;
in vec2 fs_UVs;
in float fs_Anim;
in float fs_T2O;
in float fs_dimVal;
out vec4 out_Col;
in vec4 fs_CamPos;
float random1(vec3 p) {
return fract(sin(dot(p,vec3(127.1, 311.7, 191.999)))
*43758.5453);
}
float random1b(vec3 p) {
return fract(sin(dot(p,vec3(169.1, 355.7, 195.999)))
*95751.5453);
}
float mySmoothStep(float a, float b, float t) {
t = smoothstep(0, 1, t);
return mix(a, b, t);
}
float cubicTriMix(vec3 p) {
vec3 pFract = fract(p);
float llb = random1(floor(p) + vec3(0,0,0));
float lrb = random1(floor(p) + vec3(1,0,0));
float ulb = random1(floor(p) + vec3(0,1,0));
float urb = random1(floor(p) + vec3(1,1,0));
float llf = random1(floor(p) + vec3(0,0,1));
float lrf = random1(floor(p) + vec3(1,0,1));
float ulf = random1(floor(p) + vec3(0,1,1));
float urf = random1(floor(p) + vec3(1,1,1));
float mixLoBack = mySmoothStep(llb, lrb, pFract.x);
float mixHiBack = mySmoothStep(ulb, urb, pFract.x);
float mixLoFront = mySmoothStep(llf, lrf, pFract.x);
float mixHiFront = mySmoothStep(ulf, urf, pFract.x);
float mixLo = mySmoothStep(mixLoBack, mixLoFront, pFract.z);
float mixHi = mySmoothStep(mixHiBack, mixHiFront, pFract.z);
return mySmoothStep(mixLo, mixHi, pFract.y);
}
float fbm(vec3 p) {
float amp = 0.5;
float freq = 4.0;
float sum = 0.0;
for(int i = 0; i < 8; i++) {
sum += cubicTriMix(p * freq) * amp;
amp *= 0.5;
freq *= 2.0;
}
return sum;
}
void main()
{
vec4 diffuseColor = texture(textureSampler, fs_UVs);
bool apply_lambert = true;
float specularIntensity = 0;
if (fs_Anim != 0) {
// check region in texture to decide which animatable type is drawn
bool lava = fs_UVs.x >= 13.f/16.f && fs_UVs.y < 2.f/16.f;
bool water = !lava && fs_UVs.x >= 13.f/16.f && fs_UVs.y < 4.f/16.f;
if (lava) {
// slowly gyrate texture and lighten and darken with random dimVal from vert shader
vec2 movingUVs = vec2(fs_UVs.x + fs_Anim * 0.065/16 * sin(0.01*u_Time),
fs_UVs.y - fs_Anim * 0.065/16 * sin(0.01*u_Time + 3.14159/2));
diffuseColor = texture(textureSampler, movingUVs);
vec4 warmerColor = diffuseColor + vec4(0.3, 0.3, 0, 0);
vec4 coolerColor = diffuseColor - vec4(0.1, 0.1, 0, 0);
diffuseColor = mix(warmerColor, coolerColor, 0.5 + fs_dimVal * 0.65*sin(0.02*u_Time));
apply_lambert = false;
} else if (water) {
// blend between 3 different points in texture to create a wavy subtle change over time
vec2 offsetUVs = vec2(fs_UVs.x - 0.5f/16.f, fs_UVs.y - 0.5f/16.f);
diffuseColor = texture(textureSampler, fs_UVs);
vec4 altColor = texture(textureSampler, offsetUVs);
altColor.x += fs_dimVal * pow(altColor.x+.15, 5);
altColor.y += fs_dimVal * pow(altColor.y+.15, 5);
altColor.z += 0.5 * fs_dimVal * pow(altColor.z+.15, 5);
diffuseColor = mix(diffuseColor, altColor, 0.5 + 0.35*sin(0.05*u_Time));
offsetUVs -= 0.25f/16.f;
vec4 newColor = texture(textureSampler, offsetUVs);
diffuseColor = mix(diffuseColor, newColor, 0.5 + 0.5*sin(0.025*u_Time)) + fs_dimVal * vec4(0.025);
diffuseColor.a = 0.7;
// ----------------------------------------------------
// Blinn-Phong Shading
// ----------------------------------------------------
vec4 lightDir = normalize(fs_LightVec - fs_Pos);
vec4 viewDir = normalize(fs_CamPos - fs_Pos);
vec4 halfVec = normalize(lightDir + viewDir);
float shininess = 400.f;
float specularIntensity = max(pow(dot(halfVec, normalize(fs_Nor)), shininess), 0);
}
}
// Calculate the diffuse term for Lambert shading
float diffuseTerm = dot(normalize(fs_Nor), normalize(fs_LightVec));
// Avoid negative lighting values
diffuseTerm = clamp(diffuseTerm, 0, 1);
float ambientTerm = 0.3;
float lightIntensity = diffuseTerm + ambientTerm; //Add a small float value to the color multiplier
//to simulate ambient lighting. This ensures that faces that are not
//lit by our point light are not completely black.
vec3 col = diffuseColor.rgb;
// Compute final shaded color
if (apply_lambert) {
col = col * lightIntensity + col * specularIntensity;
}
// & Check the rare, special case where we draw face between two diff transparent blocks as opaque
if (fs_T2O != 0) {
out_Col = vec4(col, 1.f);
} else {
out_Col = vec4(col, diffuseColor.a);
}
// distance fog!
vec4 fogColor = vec4(0.6, 0.75, 0.9, 1.0);
float FC = gl_FragCoord.z / gl_FragCoord.w / 124.f;
float falloff = clamp(1.05 - exp(-1.05f * (FC - 0.9f)), 0.f, 1.f);
out_Col = mix(out_Col, fogColor, falloff);
}
I tried implementing blinn-phong in the fragment shader, but I think it is wrong simple from the wrong normals. I think this can be done with some sort of tangent and cross product solution, but how can I know the tangent of the surface given we only know the vertex position?
I am not using unity, just bare c++ and most of the answers I am finding online are for java or unity which I do not understand.`

OpenGL Triangle pipe around line segment

I would like to ask how can I render in geometry shader a triangle pipe from a line segment?
I first compute perpendicular vector "perp" to the line vector "axis".
Then I rotate the "perp" vector few times by "rotate" function.
Since mesh is composed from 8 vertices I am trying to use "triangle_strip".
My current code :
#version 330 core
layout (lines) in;
layout(triangle_strip, max_vertices = 8) out;//triangle_strip
uniform float u_thickness ;
uniform vec2 u_viewportSize ;
uniform bool u_scale_width_by_zoom ;
in gl_PerVertex
{
vec4 gl_Position;
//float gl_PointSize;
//float gl_ClipDistance[];
} gl_in[];
vec4 rotate(vec4 p, float x, float y, float z,float angle )
{
vec3 q;
q[0] = p[0] * (x*x * (1.0 - cos(angle)) + cos(angle))
+ p[1] * (x*y * (1.0 - cos(angle)) + z * sin(angle))
+ p[2] * (x*z * (1.0 - cos(angle)) - y * sin(angle));
q[1] = p[0] * (y*x * (1.0 - cos(angle)) - z * sin(angle))
+ p[1]* (y*y * (1.0 - cos(angle)) + cos(angle))
+ p[2] * (y*z * (1.0 - cos(angle)) + x * sin(angle));
q[2] = p[0] * (z*x * (1.0 - cos(angle)) + y * sin(angle))
+ p[1] * (z*y * (1.0 - cos(angle)) - x * sin(angle))
+ p[2] * (z*z * (1.0 - cos(angle)) + cos(angle));
return vec4(q, 0.0);
}
void main() {
//https://stackoverflow.com/questions/54686818/glsl-geometry-shader-to-replace-gllinewidth
vec4 p1 = gl_in[0].gl_Position;
vec4 p2 = gl_in[1].gl_Position;
//tube
// Specify the axis to rotate about:
vec4 axis = p2-p1;
float x = axis[0];
float y = axis[1];
float z = axis[2];
axis = normalize(axis);
//float length = hypotf(axis[0], hypotf(axis[1], axis[2]));
float length = sqrt((axis[0]*axis[0]) + sqrt(axis[1]*axis[1]+ axis[2]*axis[2]));
float dir_scalar = (axis[0] > 0.0) ? length : -length;
float xt = axis[0] + dir_scalar;
float dot = -axis[1] / (dir_scalar * xt);
vec3 perp_0 = vec3(dot * xt, 1.0f + dot * axis.y, dot * axis.z);
perp_0 = normalize(perp_0);
vec4 perp = vec4(perp_0,0)*u_thickness*0.001;
//side0
vec4 p1_1 = p1+perp;
vec4 p1_2 = p2+perp;
vec4 perp_rot_2=rotate(perp,x,y,z,60.0 * 3.14 / 180.0);
vec4 p2_1 = p1+perp_rot_2;
vec4 p2_2 = p2+perp_rot_2;
vec4 perp_rot_3=rotate(perp,x,y,z, 120.0 * 3.14 / 180.0);
vec4 p3_1 = p1+perp_rot_3;
vec4 p3_2 = p2+perp_rot_3;
gl_Position = p1_1;
EmitVertex();
gl_Position = p1_2;
EmitVertex();
gl_Position = p2_1;
EmitVertex();
gl_Position = p2_2;
EmitVertex();
gl_Position = p3_1;
EmitVertex();
gl_Position = p3_2;
EmitVertex();
gl_Position = p1_1;
EmitVertex();
gl_Position = p1_2;
EmitVertex();
EndPrimitive();
}
It produces wrong results:

Why shadows are not rendered when PBR directional light is applied?

I've got a problem with rendering hard shadows in a PBR pipeline.
I believe there is something wrong with PBR calculations because with a Blinn-Phong lighting model everything looks fine.
These are lightning calculations - basic PBR
struct DirectionalLight
{
vec3 direction;
};
layout(std140, binding = 2) uniform Scene
{
DirectionalLight directionalLight;
vec3 viewPosition;
} u_scene;
layout(std140, binding = 4) uniform Material
{
vec4 baseColor;
float roughness;
float metalness;
} u_material;
const float PI = 3.14159265359;
const float epsilon = 0.00001;
int lightCount = 1;
vec3 CalculateDirectionalLight(vec3 N, vec3 V, float NdotV, vec3 F0)
{
vec3 result;
for(int i = 0; i < lightCount; ++i) {
vec3 L = normalize(-u_scene.directionalLight.direction);
float NdotL = max(0.0f, dot(N, L));
vec3 H = normalize(V + L);
float NdotH = max(0.0f, dot(N, H));
vec3 F = FresnelSchlickRoughness(max(0.0f, dot(H, V)), F0, u_material.roughness);
float D = NDFGGX(NdotH, u_material.roughness);
float G = GeometrySmith(NdotL, NdotV, u_material.roughness);
vec3 kd = (1.0f - F) * (1.0f - u_material.metalness);
vec3 diffuse = kd * u_material.baseColor.rgb;
vec3 nominator = F * G * D;
float denominator = max(epsilon, 4.0f * NdotV * NdotL);
vec3 specular = nominator / denominator;
specular = clamp(specular, vec3(0.0f), vec3(10.0f));
result += (diffuse + specular) /* u_material.radiance */ * NdotL;
}
return result;
}
float NDFGGX(float NdotH, float roughness)
{
float alpha = roughness * roughness;
float alphaSq = alpha * alpha;
float denom = (NdotH * NdotH) * (alphaSq - 1.0) + 1.0;
return alphaSq / (PI * denom * denom);
}
float GeometrySchlickGGX(float Ndot, float k)
{
float nom = Ndot;
float denom = Ndot * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(float NdotL, float NdotV, float roughness)
{
float r = (roughness + 1.0f);
float k = (r * r) / 8.0f;
float ggx2 = GeometrySchlickGGX(NdotV, k);
float ggx1 = GeometrySchlickGGX(NdotL, k);
return ggx1 * ggx2;
}
vec3 FresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
vec3 FresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
shadow functions
layout(binding = 2) uniform sampler2D u_shadowMap;
float ShadowFade = 1.0;
float GetShadowBias()
{
const float MINIMUM_SHADOW_BIAS = 0.002;
float bias = max(MINIMUM_SHADOW_BIAS * (1.0 - dot(normalize(v_normal), -normalize(u_scene.directionalLight.direction))), MINIMUM_SHADOW_BIAS);
return bias;
}
float HardShadows_DirectionalLight(vec4 fragPosLightSpace)
{
vec3 shadowCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
float bias = GetShadowBias();
float shadowMapDepth = texture(u_shadowMap, vec2(shadowCoords.xy * 0.5 + 0.5)).r;
return step(shadowCoords.z, shadowMapDepth + bias) * ShadowFade;
}
and the main function
void main()
{
vec3 F0 = vec3(0.04f);
F0 = mix(F0, u_material.baseColor.rgb, u_material.metalness);
vec3 N = normalize(v_normal);
vec3 V = normalize(u_scene.viewPosition - v_position);
float NdotV = max(0.0f, dot(N, V));
//v_positionFromLight is calculated in a vertex shader like this:
//v_positionFromLight = u_lightViewProjection * vec4(v_position, 1.0f);
//where v_position is modelMatrix * a_position;
//where a_position is a input position of a vertex
float shadow = HardShadows_DirectionalLight(v_positionFromLight);
vec3 ambient = u_material.baseColor.rgb * 0.3f;
vec3 lightContribution = ambient + CalculateDirectionalLight(N, V, NdotV, F0) * shadow;
f_color = vec4(lightContribution, 1.0);
}
and this is how the scene looks like - there should be visible shadows, but there aren't:
I've tested 2 things.
First - Blinn-Phong lighting model - shadows render just fine.
Second - output shadow calculations without PBR lightning
like this:
void main()
{
float shadow = HardShadows_DirectionalLight(v_positionFromLight);
vec3 ambient = u_material.baseColor.rgb * 0.3f;
f_color = vec4(ambient * shadow, 1.0f);
}
and it also works (besides that they're not placed in a good spot, but that is another topic):
Why this PBR model does not work with shadows?
How can I fix it?

OpenGL shader: a spotlight and a directional light

I want to have two light sources: a directional one and a spotlight. I cannot seem to get what I am doing wrong -- probably not understanding how shaders work! I get the first light fine but no sign of the effects of the second one (aka spotlight). Here is the fragement shader that I came up with:
varying vec4 diffuse,ambientGlobal, ambient;
varying vec3 normal,lightDir,halfVector;
varying float dist;
void main()
{
vec3 n, halfV, viewV, ldir;
float NdotL, NdotHV;
vec4 color = ambientGlobal;
float att, spotEffect;
n = normalize(normal);
NdotL = max(dot(n,normalize(lightDir)),0.0);
if (NdotL > 0.0) {
att = 1.0 / (gl_LightSource[0].constantAttenuation +
gl_LightSource[0].linearAttenuation * dist +
gl_LightSource[0].quadraticAttenuation * dist * dist);
color += att * (diffuse * NdotL + ambient);
halfV = normalize(halfVector);
NdotHV = max(dot(n,halfV),0.0);
color += att * gl_FrontMaterial.specular * gl_LightSource[0].specular * pow(NdotHV,gl_FrontMaterial.shininess);
spotEffect = dot(normalize(gl_LightSource[1].spotDirection), normalize(-lightDir));
if (spotEffect > gl_LightSource[1].spotCosCutoff) {
spotEffect = pow(spotEffect, gl_LightSource[1].spotExponent);
att = spotEffect / (gl_LightSource[1].constantAttenuation +
gl_LightSource[1].linearAttenuation * dist +
gl_LightSource[1].quadraticAttenuation * dist * dist);
color += att * (diffuse * NdotL + ambient);
halfV = normalize(halfVector);
NdotHV = max(dot(n,halfV),0.0);
color += att * gl_FrontMaterial.specular * gl_LightSource[1].specular * pow(NdotHV,gl_FrontMaterial.shininess);
}
}
gl_FragColor = color;
}
PS: Surely this is a problem that has been solved.... Anyone?
Here is what I came up with:
The vertex shader:
varying vec3 N;
varying vec3 v;
void main(void)
{
v = vec3(gl_ModelViewMatrix * gl_Vertex);
N = normalize(gl_NormalMatrix * gl_Normal);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
And the fragment shader:
varying vec3 N;
varying vec3 v;
#define MAX_LIGHTS 2
void main (void)
{
vec4 finalColour;
for (int i=0; i<MAX_LIGHTS; i++)
{
vec3 L = normalize(gl_LightSource[i].position.xyz - v);
vec3 E = normalize(-v);
vec3 R = normalize(-reflect(L,N));
vec4 Iamb = gl_FrontLightProduct[i].ambient;
vec4 Idiff = gl_FrontLightProduct[i].diffuse * max(dot(N,L), 0.0);
Idiff = clamp(Idiff, 0.0, 1.0);
vec4 Ispec = gl_FrontLightProduct[i].specular
* pow(max(dot(R,E),0.0),0.3*gl_FrontMaterial.shininess);
Ispec = clamp(Ispec, 0.0, 1.0);
finalColour += Iamb + Idiff + Ispec;
}
gl_FragColor = gl_FrontLightModelProduct.sceneColor + finalColour;
}
Which give this image:

OpenGL FXAA issues

I am a Computer Science Student and I am currently doing a 2d Game for my Coursework.
I know that it's kind of unnecessary, but I tried to implement the FXAA algorithm for the AA of the game. The shader I am using is this one, because I thought using just a simple frag shader would be alright. I can also be found on Github.
#version 120
#define FXAA_REDUCE_MIN (1.0/128.0)
#define FXAA_REDUCE_MUL (1.0/8.0)
#define FXAA_SPAN_MAX 8.0
uniform sampler2D sampler0;
uniform vec2 resolution;
void main(){
vec2 inverse_resolution=vec2(1.0/resolution.x,1.0/resolution.y);
vec3 rgbNW = texture2D(sampler0, (gl_FragCoord.xy + vec2(-1.0,-1.0)) * inverse_resolution).xyz;
vec3 rgbNE = texture2D(sampler0, (gl_FragCoord.xy + vec2(1.0,-1.0)) * inverse_resolution).xyz;
vec3 rgbSW = texture2D(sampler0, (gl_FragCoord.xy + vec2(-1.0,1.0)) * inverse_resolution).xyz;
vec3 rgbSE = texture2D(sampler0, (gl_FragCoord.xy + vec2(1.0,1.0)) * inverse_resolution).xyz;
vec3 rgbM = texture2D(sampler0, gl_FragCoord.xy * inverse_resolution).xyz;
vec3 luma = vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL),FXAA_REDUCE_MIN);
float rcpDirMin = 1.0/(min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2( FXAA_SPAN_MAX, FXAA_SPAN_MAX),max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),dir * rcpDirMin)) * inverse_resolution;
vec3 rgbA = 0.5 * (texture2D(sampler0, gl_FragCoord.xy * inverse_resolution + dir * (1.0/3.0 - 0.5)).xyz + texture2D(sampler0, gl_FragCoord.xy * inverse_resolution + dir * (2.0/3.0 - 0.5)).xyz);
vec3 rgbB = rgbA * 0.5 + 0.25 * (texture2D(sampler0, gl_FragCoord.xy * inverse_resolution + dir * - 0.5).xyz + texture2D(sampler0, gl_FragCoord.xy * inverse_resolution + dir * 0.5).xyz);
float lumaB = dot(rgbB, luma);
if((lumaB < lumaMin) || (lumaB > lumaMax)) {
gl_FragColor = vec4(rgbA,1.0);
} else {
gl_FragColor = vec4(rgbB,1.0);
}
}
The problem I ran into is, that whenever I turn the shader on my screen is flipped upside down... How do I solve this? It's probably because of the Orthographic Projection, but I am just a student, so I can't come up with a solution.
It seems to be a texture coordinate problem. Use 1-V instead of V to flip your mirrored image.
vec2 correctedFragCoord;
correctedFragCoord.x = gl_FragCoord.x;
correctedFragCoord.y = resolution.y - gl_FragCoord.y;
Then replace gl_FragCoord by correctedFragCoord in the shader.