In assembly we use the org instruction to set the location counter to a specific location in the memory. This is particularly helpful in making Operating Systems. Here's an example boot loader (From wikibooks):
org 7C00h
jmp short Start ;Jump over the data (the 'short' keyword makes the jmp instruction smaller)
Msg: db "Hello World! "
EndMsg:
Start: mov bx, 000Fh ;Page 0, colour attribute 15 (white) for the int 10 calls below
mov cx, 1 ;We will want to write 1 character
xor dx, dx ;Start at top left corner
mov ds, dx ;Ensure ds = 0 (to let us load the message)
cld ;Ensure direction flag is cleared (for LODSB)
Print: mov si, Msg ;Loads the address of the first byte of the message, 7C02h in this case
;PC BIOS Interrupt 10 Subfunction 2 - Set cursor position
;AH = 2
Char: mov ah, 2 ;BH = page, DH = row, DL = column
int 10h
lodsb ;Load a byte of the message into AL.
;Remember that DS is 0 and SI holds the
;offset of one of the bytes of the message.
;PC BIOS Interrupt 10 Subfunction 9 - Write character and colour
;AH = 9
mov ah, 9 ;BH = page, AL = character, BL = attribute, CX = character count
int 10h
inc dl ;Advance cursor
cmp dl, 80 ;Wrap around edge of screen if necessary
jne Skip
xor dl, dl
inc dh
cmp dh, 25 ;Wrap around bottom of screen if necessary
jne Skip
xor dh, dh
Skip: cmp si, EndMsg ;If we're not at end of message,
jne Char ;continue loading characters
jmp Print ;otherwise restart from the beginning of the message
times 0200h - 2 - ($ - $$) db 0 ;Zerofill up to 510 bytes
dw 0AA55h ;Boot Sector signature
;OPTIONAL:
;To zerofill up to the size of a standard 1.44MB, 3.5" floppy disk
;times 1474560 - ($ - $$) db 0
Is it possible accomplish the task with C++? Is there any command, function etc. like org where i can change the location of the program?
No it's not possible to do in any C compiler that I know of. You can however create your own linker script that places the code/data/bss segments at specific addresses.
Just for clarity, the org directive does not load the code at the specified address, it merely informs the assembler that the code will be loaded at that address. The code shown appears to be for Nasm (or similar) - in AT&T syntax, the .org directive does something different: it pads the code to that address - similar to the times line in the Nasm code.. Nasm can do this because in -f bin mode, it "acts as it's own linker".
The important thing for the code to know is the address where Msg can be found. The jmps and jnes (and call and ret which your example doesn't have, but a compiler may generate) are relative addressing mode. We code jmp target but the bytes that are actually emitted say jmp distance_to_target (plus or minus) so the address doesn't matter.
Gas doesn't do this, it emits a linkable object file. To use ld without a linker script the command line looks something like:
ld -o boot.bin boot.o -oformat binary -T text=0x7C00
(don't quote me on that exact syntax but "something like that") If you can get a linkable object file from your (16-bit capable!) C++ compiler, you might be able to do the same.
In the case of a bootsector, the code is loaded by the BIOS (or fake BIOS) at 0x7C00 - one of the few things we can assume about the bootsector. The sane thing for a bootsector to do is not fiddle-faddle around printing a message, but to load something else. You'll need to know how to find the something else on the disk and where you want to load it to (perhaps where your C++ compiler wants to put it by default) - and jmp there. This jmp will want to be a far jmp, which does need to know the address.
I'm guessing it's going to be some butt-ugly C++!
Related
I am trying to make a operating system. I just finished the bootloader, however I am having a problem loading my kernel.
Boot.asm:
section .boot
bits 16
global boot
boot:
mov ax, 0x2401
int 0x15
mov ax, 0x3
int 0x10
mov [disk],dl
mov ah, 0x2 ;read sectors
mov al, 6 ;sectors to read
mov ch, 0 ;cylinder idx
mov dh, 0 ;head idx
mov cl, 2 ;sector idx
mov dl, [disk] ;disk idx
mov bx, copy_target;target pointer
int 0x13
cli
lgdt [gdt_pointer]
mov eax, cr0
or eax,0x1
mov cr0, eax
mov ax, DATA_SEG
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
jmp CODE_SEG:boot2
gdt_start:
dq 0x0
gdt_code:
dw 0xFFFF
dw 0x0
db 0x0
db 10011010b
db 11001111b
db 0x0
gdt_data:
dw 0xFFFF
dw 0x0
db 0x0
db 10010010b
db 11001111b
db 0x0
gdt_end:
gdt_pointer:
dw gdt_end - gdt_start
dd gdt_start
disk:
db 0x0
CODE_SEG equ gdt_code - gdt_start
DATA_SEG equ gdt_data - gdt_start
times 510 - ($-$$) db 0
dw 0xaa55
copy_target:
bits 32
hello: db "Hello more than 512 bytes world!!",0
boot2:
mov esi,hello
mov ebx,0xb8000
.loop:
lodsb
or al,al
jz halt
or eax,0x0F00
mov word [ebx], ax
add ebx,2
jmp .loop
halt:
mov esp,kernel_stack_top
extern kzos
call kzos
cli
hlt
section .bss
align 4
kernel_stack_bottom: equ $
resb 16384 ; 16 KB
kernel_stack_top:
kzos.cpp
extern "C" void kzos()
{
const short color = 0x0F00;
const char* hello = "Kernel test!";
short* vga = (short*)0xb8000;
for (int i = 0; i<16;++i)
vga[i+80] = color | hello[i];
}
The error I am getting is with " extern kzos" the error reads "boot.asm:77: error: binary output format does not support external references"
I tried adding " extern kzos.cpp " but then I get "boot.asm:77: error: symbol `kmain' undefined"
if I add ".cpp" to the call function I get "boot4.asm:77: error: binary output format does not support external references"
I am using Nasm to compile to bin and qemu to run it.
I just finished the bootloader, ...
No you didn't. At least half of a boot loader's code exists to handle errors that "shouldn't" happen (things like checking if the BIOS failed to enable A20, or if the BIOS says there was a problem reading data from disk) and handling those cases somehow - at a minimum, by providing the user information that can help them fix the problem (and determine if it's faulty hardware or a problem with the way the OS was installed or ...), so the user isn't stuck wondering why their entire computer is unusable (and so that you're not stuck with a bug report saying "doesn't boot" with no useful information either).
how do I load my kernel from my bootloader?
Your choices for finding where the kernel is (its location on the disk and its size) are:
a) Put the kernel in some kind of normal file system, and have the boot loader support that file system (e.g. find the right directory entry and get location of file's data from the file's directory entry). Note that this is complicated (e.g. you'll have a lot of error handling, in case the file system's structures are corrupted, etc)
b) Put the kernel in some kind of purpose designed file system or in some kind of purpose designed "special/reserved area" of a normal file system. This could be as simple as a table of "offset and length" structures stored in the first sector, where kernel's file is always the first entry in that table.
c) Include the kernel's binary directly into the boot loader using something like the incbin directive in NASM. In this case you can use labels to determine the size of the kernel's file, like:
kernel_start:
incbin 'kernel.bin'
kernel_end:
In this case you can determine where the kernel is on disk from where the boot loader was on disk, and calculate how many sectors it is (e.g. (kernel_end - kernel_start + SECTOR_SIZE-1)/SECTOR_SIZE). Of course this is horribly inflexible (e.g. you can't easily update the kernel without assembling and then reinstalling the boot loader).
Once you've determined the location and size of the kernel on disk; you need to load it into memory somewhere. Note that this can depend on what kind of executable file format you chose to use for the kernel; and could involve loading the executable file's headers and parsing them to figure out which parts of the file should go where in memory (and setting up things like ".bss" that aren't in the file).
the output format is bin, flat format, that is
it does not support rellocations
thus call kzos's location/address is lost once the code is rendered
any linking utility will fail locating call kzos' in order
to link it to the new address of extern "C" void kzos() from kzos.cpp
I am trying to calculate the relative address offset from one instruction to another.
I understand the basic calculation, and why I have to -5 (to cater for size of jmp and instruction size) (Calculating JMP instruction's address)
The question is, what if I want to jump not to start of a code but some specific instructions after it?
For example:
original function
I want to JMP to the highlighted instruction OPENGL32.dll+48195, while I only have the start address of OPENGL32.wglSwapBu.
From my code, I understand I can do
uintptr_t gatewayRelativeAddr = src - gateway - 5;
where src is the address of OPENGL32.wglSwapBu and gateway is the start address of my code.
// len is 5
BYTE* gateway = (BYTE*)VirtualAlloc(NULL, len+5, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
memcpy_s(gateway, len, src, len);
// Jump back to original function, but at the highlighted instruction
uintptr_t gatewayRelativeAddr = src - gateway - 5;
// add the jmp opcode to end of gateway
*(gateway + len) = 0xE9;
*(uintptr_t*)(gateway + len + 1) = gatewayRelativeAddr;
I understand thus far what the code does:
calculate the relative address/bytes from the start address of gateway to start address of src(original function). I also -5 to cater for the size of the jump.
However, when I viewed it in memory, it ended up at where I want. But no where in the code I specified it to jmp to the highlighted instruction.
This works because len equals exactly the number of bytes of instructions (5) that precede the desired one, which I presume was the whole point (you want to copy the instructions that will be jumped over, and maybe modify them later on?).
The jump instruction starts at gateway+len, and so EIP at the jump will be gateway+len+5. On the other hand, the address you want to jump to is src+len. So the relative address is (src+len)-(gateway+len+5), and len cancels out, so your formula is correct.
If you want to jump to an instruction that's not the next one after the ones you copied, you'll need to work out its offset from src by disassembly (call it ofs), and then set gatewayRelativeAddr to (src+ofs)-(gateway+len+5).
tl;dr
I'm trying to understand the difference of running a program directly via double clicking the executable vs running it through a terminal or programatically via CreateProcess in windows 10.
long version
Because this is my problem, executing an old game (circa 2003 using D3D8) through double clicking in windows 10 works okay. Executing the game through an seconday executable (also circa 2003) using CreateProcess seems to sometimes work okay.
But executing it through my new golang executable never works. I get a very tiny screen instead. So I want to understand what's the technical difference.
For reference, my golang code goes like: (tiny screen)
cmd := exec.Command(filepath.Join(".", "Game.exe"))
err := cmd.Start()
Disassembling the secondary executable gives me this: (normal screen)
CPU Disasm
Address Hex dump Command Comments
004043AF |. 51 PUSH ECX ; /pProcessInformation = 59C7F521 -> {hProcess=???,hThread=???,ProcessID=???,ThreadID=???}
004043B0 |. 52 PUSH EDX ; |pStartupInfo => OFFSET LOCAL.16
004043B1 |. 68 28E54000 PUSH OFFSET 0040E528 ; |CurrentDirectory = "."
004043B6 |. 50 PUSH EAX ; |pEnvironment => NULL
004043B7 |. 50 PUSH EAX ; |CreationFlags => 0
004043B8 |. 6A 01 PUSH 1 ; |InheritHandles = TRUE
004043BA |. 50 PUSH EAX ; |pThreadSecurity => NULL
004043BB |. 50 PUSH EAX ; |pProcessSecurity => NULL
004043BC |. 68 10E54000 PUSH OFFSET 0040E510 ; |CommandLine = "Game.exe"
004043C1 |. 50 PUSH EAX ; |ApplicationName => NULL
004043C2 |. FF15 8CB04000 CALL DWORD PTR DS:[<&KERNEL32.CreateProc ; \KERNEL32.CreateProcessA
When I say the game is a tiny screen it shows up like this:
versus this when it is executed directly with double click: (don't mind it being black its just the normal startup)
Additional info: Actually the problem only exists in windows 10. Windows 7 is completely fine.
For windows 10, the only way to make it normal screen is to use this setting:
When that is used, I get the normal screen when using double click or the secondary executable. But its still a tiny screen on my Golang app.
Now I'm writing bootloader which starts in the middle of memory, but after it finishes I need to go to the main app, thought to try jmp 0x00, however my chip doesn't support jmp, how should I start main app?
I would use RJMP:
Relative jump to an address within PC - 2K +1 and PC + 2K (words). In
the assembler, labels are used instead of relative operands.
For example:
entry:
rjmp reset
.org 512
reset:
rjmp foo
.org 3072
foo:
rjmp entry
By the way, there are several other jump instructions (RJMP, IJMP, RCALL, ICALL, CALL, RET, RETI etc.) See this relevant discussion.
Well take a look into RET instruction. It returns to previous location, so you can try:
push 0x00
push 0x00
ret
This should work because while entering into any function you push your current location, and RET makes you go back.
As far as I remember ATmege8 has 16-bit address line, but if I'm not right you may need more push 0x00
why not simply use IJMP?
set Z to 0x00 and use IJMP. may be faster than 2xpush and ret
EOR R30, R30 ; clear ZL
EOR R31, R31 ; clear ZH
IJMP ; set PC to Z
should be 4 cycles and 3 instruction words (6 Bytes program memory)
I'm currently working on hooking ntdll.dll calls via dll injection.
At first, I create thread in existing process via CreateRemoteThread() then I load my dll via LoadLibrary and finally hook calls on PROCESS_ATTACH.
Injection works fine, but then I want to log all registry and file system queries. And the problem is that it doesn't work properly.
I decided to publish code via PasteBin, because piece is pretty big. Here is the link:
http://pastebin.com/39r4Me6B
I'm trying to hook ZwOpenKey, then log key content and then launch "true" function by pointer. Function NOpenKey gets executed, but process stops without any errors.
Does anyone see any issues?
If you use OllyDbg, ZwOpenKey starts with 5 bytes MOV EAX, 77.
You can overwrite these bytes like so JMP _myZwOpenKey then from there you can do whatever with the values on the stack, restore all registers then do a JMP 7C90D5B5 which is address of ZwOpenKey + 5 bytes.
CPU Disasm
Address Hex dump Command Comments
7C90D5AF 90 NOP
7C90D5B0 /$ B8 77000000 MOV EAX,77 ; ntdll.ZwOpenKey(guessed rg1,Arg2,Arg3)
7C90D5B5 |. BA 0003FE7F MOV EDX,7FFE0300
7C90D5BA |. FF12 CALL DWORD PTR DS:[EDX]
7C90D5BC \. C2 0C00 RETN 0C
I usually do these in Assembly that way I don't have to mess around a lot with type casting and all that. Hope this helps.