How can I create one comparator to compare on different fields. Different fields can have different types (uint or string). Should I use T *?
It is necessary to reduce the code length.
template<typename T>
class ComparatorSelector
{
public:
struct CompareByLabel{
bool operator() ( const T & iRight, const T & iLeft )
{
return iRight->m_label > iLeft->m_label;
}
};
struct CompareByHouseNumber{
bool operator() ( const T & iRight, const T & iLeft )
{
return iRight->m_houseNumber > iLeft->m_houseNumber;
}
};
//...
};
template< class T, class C, typename W >
class SearchIndex
{
public:
SearchIndex() {}
void Build( std::vector< T > iElems, C iComparator, std::ofstream oStream )
{
std::map< T *, size_t> numbersOfElems;
for( class std::vector<T>::iterator it = iElems.begin(); it != iElems.end(); ++it){
m_elems.insert( &(*it));
numbersOfElems[&(*it)] = m_elems.end - it ;
}
oStream << m_elems.size();
for( class std::multiset< T * >::iterator it = m_elems.begin(); it!= m_elems.end(); ++it )
oStream << numbersOfElems[*it];
m_compareMode = iComparator;
}
//....
}
You can use pointers to members to customize your comparator objects. The slower but simpler approach is this:
#include <iostream>
template <typename Type, typename Class>
class comparator
{
Type Class::*d_member;
public:
comparator(Type Class::*member): d_member(member) {}
bool operator()(Class const& object0, Class const& object1) const {
return object0.*(this->d_member) < object1.*(this->d_member);
}
};
template <typename Type, typename Class>
comparator<Type, Class>
make_comparator(Type Class::*member)
{
return comparator<Type, Class>(member);
}
int main()
{
typedef std::pair<int, double> pair;
pair p0(17, 3.14);
pair p1(42, 2.7);
std::cout << std::boolalpha
<< "first: " << make_comparator(&pair::first)(p0, p1) << ' '
<< "second: " << make_comparator(&pair::second)(p0, p1) << ' '
<< '\n';
}
Since this version uses a pointer to member at run-time, it cannot be easily inlined and, thus, isn't as fast as you'd possibly want it to be. The member can also be embedded into the comparator's type making both its use a bit annoying:
template <typename Type, typename Class, Type Class::*Member>
class comparator
{
public:
bool operator()(Class const& object0, Class const& object1) const {
return object0.*Member < object1.*Member;
}
};
int main()
{
typedef std::pair<int, double> pair;
pair p0(17, 3.14);
pair p1(42, 2.7);
std::cout << std::boolalpha
<< "first: " << comparator<int, pair, &pair::first>()(p0, p1) << ' '
<< "second: " << comparator<double, pair, &pair::second>()(p0, p1) << ' '
<< '\n';
}
This is an example of a comparator that uses different fields of different types:
#include <set>
using namespace std;
class House {
public:
string m_label;
int m_houseNumber;
};
class HouseCompare {
public:
bool operator()( const House& a, const House& b)
{
if (a.m_houseNumber>0 && b.m_houseNumber>0)
return a.m_houseNumber < b.m_houseNumber;
else if (a.m_houseNumber>0)
return false;
else if (b.m_houseNumber)
return true;
else
return a.m_label < b.m_label;
}
};
int main(int argc, char *argv[])
{
typedef multiset<House, HouseCompare> Houses;
Houses houses;
House house_data[] = {
{"foo", 1},
{"foo1", 0},
{"foo0", 0},
{"foo", 2}
};
houses.insert (house_data, house_data+sizeof(house_data)/sizeof(House));
for (Houses::iterator i = houses.begin (); i != houses.end (); ++i)
cout << i->m_houseNumber << ": " << i->m_label << endl;
return 0;
}
Output:
0: foo0
0: foo1
1: foo
2: foo
Related
Hi I'm using boost::pfr for basic reflection, it works fine, but the problem is it is only print or deal with the field values, like with boost::pfr::io it prints each member of the struct, but how can I print it as name value pairs, same issue with for_each_field, the functor only accepts values, but not names. How can I get the field names?
struct S {
int n;
std::string name;
};
S o{1, "foo"};
std::cout << boost::pfr::io(o);
// Outputs: {1, "foo"}, how can I get n = 1, name = "foo"?
If you think adapting a struct is not too intrusive (it doesn't change your existing definitions, and you don't even need to have it in a public header):
BOOST_FUSION_ADAPT_STRUCT(S, n, name)
Then you can concoct a general operator<< for sequences:
namespace BF = boost::fusion;
template <typename T,
typename Enable = std::enable_if_t<
// BF::traits::is_sequence<T>::type::value>
std::is_same_v<BF::struct_tag, typename BF::traits::tag_of<T>::type>>>
std::ostream& operator<<(std::ostream& os, T const& v)
{
bool first = true;
auto visitor = [&]<size_t I>() {
os << (std::exchange(first, false) ? "" : ", ")
<< BF::extension::struct_member_name<T, I>::call()
<< " = " << BF::at_c<I>(v);
};
// visit members
[&]<size_t... II>(std::index_sequence<II...>)
{
return ((visitor.template operator()<II>(), ...);
}
(std::make_index_sequence<BF::result_of::size<T>::type::value>{});
return os;
}
(Prior to c++20 this would require some explicit template types instead of the lambdas, perhaps making it more readable. I guess I'm lazy...)
Here's a live demo: Live On Compiler Explorer
n = 1, name = foo
Bonus: Correctly quoting string-like types
Live On Compiler Explorer
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/at_c.hpp>
#include <iostream>
#include <iomanip>
namespace MyLib {
struct S {
int n;
std::string name;
};
namespace BF = boost::fusion;
static auto inline pretty(std::string_view sv) { return std::quoted(sv); }
template <typename T,
typename Enable = std::enable_if_t<
not std::is_constructible_v<std::string_view, T const&>>>
static inline T const& pretty(T const& v)
{
return v;
}
template <typename T,
typename Enable = std::enable_if_t<
// BF::traits::is_sequence<T>::type::value>
std::is_same_v<BF::struct_tag, typename BF::traits::tag_of<T>::type>>>
std::ostream& operator<<(std::ostream& os, T const& v)
{
bool first = true;
auto visitor = [&]<size_t I>() {
os << (std::exchange(first, false) ? "" : ", ")
<< BF::extension::struct_member_name<T, I>::call()
<< " = " << pretty(BF::at_c<I>(v));
};
// visit members
[&]<size_t... II>(std::index_sequence<II...>)
{
return (visitor.template operator()<II>(), ...);
}
(std::make_index_sequence<BF::result_of::size<T>::type::value>{});
return os;
}
} // namespace MyLib
BOOST_FUSION_ADAPT_STRUCT(MyLib::S, n, name)
int main()
{
MyLib::S o{1, "foo"};
std::cout << o << "\n";
}
Outputs:
n = 1, name = "foo"
The library cannot offer any such functionality because it is currently impossible to obtain the name of a member of a class as value of an object.
If you want to output field names, you need to declare string objects mapped with the members and implement a operator<< which uses these strings manually.
To do this a more sophisticated reflection library would probably offer macros to use in the definition of the members. Macros can expand their argument(s) into a declaration using the provided name as identifier while also producing code using the name as string literal (via the # macro replacement operator).
It's stupid but hey, with a stringifying macro per field it could be enough for you.
C++14, no additional library
#include <boost/pfr.hpp>
struct S
{
int n;
std::string name;
static char const* const s_memNames[2];
};
char const* const S::s_memNames[2] = {"n", "name"};
// utility
template< size_t I, typename TR >
char const* MemberName()
{
using T = std::remove_reference_t<TR>;
if (I < std::size(T::s_memNames))
return T::s_memNames[I];
return nullptr;
}
// test:
#include <iostream>
using std::cout;
template< size_t I, typename T >
void StreamAt(T&& inst)
{
char const* n = MemberName<I,T>();
auto& v = boost::pfr::get<I>(inst);
cout << "(" << n << " = " << v << ")";
}
int main()
{
S s{2, "boo"};
boost::pfr::for_each_field(s, [&](const auto&, auto I)
{
StreamAt<decltype(I)::value>(s);
cout << "\n";
});
}
output:
(n = 2)
(name = boo)
(previous version of the suggestion, this one has more fluff so less interesting)
#include <boost/pfr.hpp>
// library additions:
static char const* g_names[100];
template< size_t V >
struct Id : std::integral_constant<size_t, V > {};
template< size_t I, typename T >
using TypeAt = boost::pfr::tuple_element_t<I, T>;
template<std::size_t Pos, class Struct>
constexpr int Ni() // name index
{
return std::tuple_element_t<Pos, typename std::remove_reference_t<Struct>::NamesAt >::value;
}
struct StaticCaller
{
template< typename Functor >
StaticCaller(Functor f) { f();}
};
///
/// YOUR CODE HERE
struct S
{
using NamesAt = std::tuple<Id<__COUNTER__>, Id<__COUNTER__>>; // add this
int n;
std::string name;
static void Init() // add this
{
g_names[Ni<0,S>()] = "n";
g_names[Ni<1,S>()] = "name";
}
};
StaticCaller g_sc__LINE__(S::Init); // add this
// utilities
template< size_t I, typename T >
auto GetValueName(T&& inst)
{
return std::make_pair(boost::pfr::get<I>(inst), g_names[Ni<I,T>()]);
}
// test:
#include <iostream>
using std::cout;
template< size_t I, typename T >
void StreamAt(T&& inst)
{
auto const& [v,n] = GetValueName<I>(inst);
cout << "(" << v << ", " << n << ")";
}
int main()
{
S s{2, "boo"};
boost::pfr::for_each_field(s, [&](const auto&, auto I)
{
StreamAt<decltype(I)::value>(s);
cout << "\n";
});
}
output
(2, n)
(boo, name)
What's the consistency of the following codes:-
TMAP.h
#include <algorithm>
#include <map>
template <class K, class V>
class TMAP
{
private:
std::map <K,V> map_K_V;
public:
bool key_exists(const K& key) { return map_K_V.count( key ) > 0; }
bool insert(const K& key, const V& value)
{
if (!key_exists(key))
{
if (map_K_V.insert( std::make_pair( key, value ) ).second)
{
return true;
}
}
return false;
}
V get_value(const K& key)
{
return map_K_V[ key ];
}
};
Template just like std::map, just more organized for other uses.
main.cpp
#include <iostream>
#include "TMAP.h"
class A;
TMAP< std::string, A* > map_cntr;
class A
{
public:
A( std::string nm )
{
name = nm;
std::cout << "A: " << name << ", object created." << std::endl;
}
~A()
{
std::cout << "A: " << name << ", object destroyed." << std::endl;
}
void printName()
{
std::cout << "A: printName - " << name << std::endl;
}
void setName( std::string nm )
{
name = nm;
}
private:
std::string name;
};
int main() {
// Setting
A* obj1 = new A( "obj1" );
map_cntr.insert( "obj1", obj1 );
obj1->printName();
A* obj2 = new A( "obj2" );
map_cntr.insert( "obj2", obj2 );
obj2->printName();
// Getting
A* obj1_cpy;
std::string obj1_name = "obj1";
if (map_cntr.key_exists(obj1_name))
{
obj1_cpy = map_cntr.get_value(obj1_name);
obj1_cpy->printName();
obj1_cpy->setName("OBJ1");
obj1_cpy->printName();
}
}
Outputs:
A: obj1, object created.
A: printName - obj1
A: obj2, object created.
A: printName - obj2
A: printName - obj1
A: printName - OBJ1
Outputs are as expected. Besides I've heard somewhere that using std::string as template parameter is not ideal just like in the above case somewhat relating to memory or pointer. Is it fair?
It is std::map<const char*, Value> which is "problematic", as it compare only pointers and not C-string content.
Using std::map<std::string, Value> is fine.
I'm trying to use enum types to indexig some array but I want to allow different ordering of the vector depending on some option. In the class I also want functions that take the enum variable as input and use it as it should.
The solution I found is the following
#include<iostream>
#include<array>
#include<vector>
struct A{
struct XYZ{
enum coord{X=0,Y,Z};
};
struct YZX{
enum coord{Y=0,Z,X};
};
struct ZXY{
enum coord{Z=0,X,Y};
};
std::array<std::vector<float>,3> val;
void resize(int opt, size_t dim){
val[opt].resize(dim);
return;
}
void printsize(){
for(auto & i : val){
std::cout << i.size() << " ";
}
std::cout << std::endl;
return;
}
};
int main(){
A foo1;
A foo2;
A foo3;
foo1.resize(XYZ::X,10);
foo2.resize(YZX::X,10);
foo3.resize(ZXY::X,10);
std::cout << "Size foo1\n";
foo1.printsize();
std::cout << "Size foo2\n";
foo2.printsize();
std::cout << "Size foo3\n";
foo3.printsize();
return 0;
}
What I don't like in this solution is that my function resize takes an integer type as input and there's no type control of the enum.
Is there any other smarter solution? Am I doing something considered as anti-pattern?
Thank you
I suggest you to modify the member function resize (three parameters instead of two) and exploit the type safety of the enum classes:
#include <stdio.h>
#include<iostream>
#include<array>
#include<vector>
struct A{
enum class Coordinate
{
X = 0,
Y = 1,
Z = 2
};
enum class Permutation
{
XYZ = 0,
ZXY = 1,
YZX = 2
};
std::array<std::vector<float>,3> val;
/* resize takes three parameters now */
void resize(Permutation p, Coordinate c, size_t dim)
{
int index = ( static_cast<int>(p) + static_cast<int>(c) ) % 3 ;
val[index].resize(dim);
return;
}
void printsize(){
for(auto & i : val){
std::cout << i.size() << " ";
}
std::cout << std::endl;
return;
}
};
int main()
{
A foo1;
A foo2;
A foo3;
foo1.resize(A::Permutation::XYZ, A::Coordinate::X,10);
foo2.resize(A::Permutation::YZX, A::Coordinate::X,10);
foo3.resize(A::Permutation::ZXY, A::Coordinate::X,10);
std::cout << "Size foo1\n";
foo1.printsize();
std::cout << "Size foo2\n";
foo2.printsize();
std::cout << "Size foo3\n";
foo3.printsize();
return 0;
}
How about an Index class, constructible from several enum classes?
struct A
{
enum class XYZ {X,Y,Z};
enum class YZX {Y,Z,X};
enum class ZXY {Z,X,Y};
struct Index
{
int value;
operator int() const {return value;}
Index(XYZ value) : value(int(value)) {}
Index(YZX value) : value(int(value)) {}
Index(ZXY value) : value(int(value)) {}
};
std::array<std::vector<float>, 3> val;
void resize(Index opt, size_t dim)
{
val[opt].resize(dim);
}
void printsize() const
{
for (const auto &i : val)
std::cout << i.size() << ' ';
std::cout << '\n';
}
};
The goal of the code below is to implement a histogram where the bucket limits are template parameters:
#include <iostream>
#include <limits>
#include "histogram.h"
int main ( int argc, char* argv[] )
{
//histogram_tuple<5,10,15,std::numeric_limits<int>::max()> histogram;
histogram_tuple<5,10,15> histogram;
histogram.count ( 9 );
histogram.count ( 10 );
histogram.count ( 11 );
histogram.count ( 15 );
std::cout << sizeof ( histogram ) << std::endl;
std::cout << '<' << histogram.limit() << ' ' << histogram.count() << ", "
<< '<' << histogram.rest().limit() << ' ' << histogram.rest().count() << ", "
<< '<' << histogram.rest().rest().limit() << ' ' << histogram.rest().rest().count() << ", "
<< ' ' << histogram.rest().rest().rest().count()
<< std::endl;
std::cout << "====" << std::endl;
std::cout << '<' << bucket_limit<0>(histogram) << ':'
<< bucket_count<0>(histogram) << std::endl;
std::cout << '<' << bucket_limit<1>(histogram) << ':'
<< bucket_count<1>(histogram) << std::endl;
std::cout << '<' << bucket_limit<2>(histogram) << ':'
<< bucket_count<2>(histogram) << std::endl;
// std::cout << '<' << bucket_limit<3>(histogram) << ':'
// << bucket_count<3>(histogram) << std::endl;
}
The above works fine. With the repeated rest() calls, the count of the final bucket (values >= 15) is printed.
However, when the final line of main() is uncommented, g++ 4.7.1 generates a compiler error that bucket_limit_entry<0u> and bucket_count_entry<0u> are incomplete.
Any advice on how to get the convenience functions bucket_limit<3> to compile, since the repeated rest() calls work?
Not really sure what's going on. Changing the index type to int and making the termination case -1 instead of 0 didn't work.
Here's histogram.h:
#pragma once
template <int ... Limits>
class histogram_tuple;
template<>
class histogram_tuple<>
{
int cnt_;
public:
histogram_tuple<>() :
cnt_ ( 0 )
{
}
void count ( int value )
{
++cnt_;
}
int count() const
{
return cnt_;
}
};
template <int First, int ... Rest>
class histogram_tuple <First,Rest...> :
private histogram_tuple<Rest...>
{
static const int limit_ = First;
int cnt_;
public:
histogram_tuple <First,Rest...>() :
cnt_ ( 0 )
{ }
int limit() const { return limit_; }
void count ( int value )
{
if ( value < limit_ )
++cnt_;
else
rest().count ( value );
}
int count() const
{
return cnt_;
}
const histogram_tuple<Rest...>& rest() const
{
return *this;
}
histogram_tuple<Rest...>& rest()
{
return *this;
}
};
template <unsigned index, int ... Limits>
struct bucket_count_entry;
template <int First, int ... Limits>
struct bucket_count_entry<0,First,Limits...>
{
static int value(histogram_tuple<First,Limits...> const& histogram)
{
return histogram.count();
}
};
template <unsigned index,int First, int ... Limits>
struct bucket_count_entry<index,First,Limits...>
{
static int value(histogram_tuple<First,Limits...> const& histogram)
{
return bucket_count_entry<index-1,Limits...>::value(histogram.rest());
}
};
template <unsigned index,int ... Limits>
int bucket_count( histogram_tuple<Limits...> const& histogram )
{
return bucket_count_entry<index,Limits...>::value(histogram);
}
template <unsigned index, int ... Limits>
struct bucket_limit_entry;
template <int First, int ... Limits>
struct bucket_limit_entry<0,First,Limits...>
{
static int value(histogram_tuple<First,Limits...> const& histogram)
{
return histogram.limit();
}
};
template <unsigned index,int First, int ... Limits>
struct bucket_limit_entry<index,First,Limits...>
{
static int value(histogram_tuple<First,Limits...> const& histogram)
{
return bucket_limit_entry<index-1,Limits...>::value(histogram.rest());
}
};
template <unsigned index,int ... Limits>
int bucket_limit( histogram_tuple<Limits...> const& histogram )
{
return bucket_limit_entry<index,Limits...>::value(histogram);
}
template <int First, int ... Limits>
bucket_limit_entry<0,First,Limits...>
won't match
bucket_limit_entry<0>
because First won't match nothing. (...Limits matches nothing, but First can only match one int).
So you need to add an additional template for the case where you've run out of limits:
template<>
struct bucket_limit_entry<0>
When you do that, you'll find that histogram<>::limit() is undefined, but you can easily fix that.
You'll need to do the same with bucket_count_entry, except that histogram<>::count() is defined.
The fact that you can't just define template<int...Limits> struct bucket_limit_entry<0, Limits...> {...} is a bit odd. The problem, as I understand it, is that both "Index is 0" and "Limits... has at least one element", are restrictions on the general template, and there is no arbitrary ordering between them. Consequently, template<int...Limits> struct X<0, Limits...> and template<unsigned index, int First, int...Rest> struct X<index, First, Rest...> are not ordered by the partial ordering for template specialization, and when both of them apply, you end up with an ambiguity.
But it seems to me that there is a simpler solution, since you can let the type of the histogram_tuple just be deduced:
template<unsigned Index> struct bucket_limit_entry {
template<typename Hist>
static int value(Hist const& histogram) {
return bucket_limit_entry<Index-1>::value(histogram.rest());
}
};
template<> struct bucket_limit_entry<0> {
template<typename Hist>
static int value(Hist const& histogram) {
return histogram.limit();
}
};
template<unsigned index, typename Hist>
int bucket_limit(Hist const& histogram ) {
return bucket_limit_entry<index>::value(histogram);
}
I came across one requirement where the record is stored as
Name : Employee_Id : Address
where Name and Employee_Id are supposed to be keys that is, a search function is to be provided on both Name and Employee Id.
I can think of using a map to store this structure
std::map< std:pair<std::string,std::string> , std::string >
// < < Name , Employee-Id> , Address >
but I'm not exactly sure how the search function will look like.
Boost.Multiindex
This is a Boost example
In the above example an ordered index is used but you can use also a hashed index:
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <string>
#include <iostream>
struct employee
{
int id_;
std::string name_;
std::string address_;
employee(int id,std::string name,std::string address):id_(id),name_(name),address_(address) {}
};
struct id{};
struct name{};
struct address{};
struct id_hash{};
struct name_hash{};
typedef boost::multi_index_container<
employee,
boost::multi_index::indexed_by<
boost::multi_index::ordered_unique<boost::multi_index::tag<id>, BOOST_MULTI_INDEX_MEMBER(employee,int,id_)>,
boost::multi_index::ordered_unique<boost::multi_index::tag<name>,BOOST_MULTI_INDEX_MEMBER(employee,std::string,name_)>,
boost::multi_index::ordered_unique<boost::multi_index::tag<address>, BOOST_MULTI_INDEX_MEMBER(employee,std::string,address_)>,
boost::multi_index::hashed_unique<boost::multi_index::tag<id_hash>, BOOST_MULTI_INDEX_MEMBER(employee,int,id_)>,
boost::multi_index::hashed_unique<boost::multi_index::tag<name_hash>, BOOST_MULTI_INDEX_MEMBER(employee,std::string,name_)>
>
> employee_set;
typedef boost::multi_index::index<employee_set,id>::type employee_set_ordered_by_id_index_t;
typedef boost::multi_index::index<employee_set,name>::type employee_set_ordered_by_name_index_t;
typedef boost::multi_index::index<employee_set,name_hash>::type employee_set_hashed_by_name_index_t;
typedef boost::multi_index::index<employee_set,id>::type::const_iterator employee_set_ordered_by_id_iterator_t;
typedef boost::multi_index::index<employee_set,name>::type::const_iterator employee_set_ordered_by_name_iterator_t;
typedef boost::multi_index::index<employee_set,id_hash>::type::const_iterator employee_set_hashed_by_id_iterator_t;
typedef boost::multi_index::index<employee_set,name_hash>::type::const_iterator employee_set_hashed_by_name_iterator_t;
int main()
{
employee_set employee_set_;
employee_set_.insert(employee(1, "Employer1", "Address1"));
employee_set_.insert(employee(2, "Employer2", "Address2"));
employee_set_.insert(employee(3, "Employer3", "Address3"));
employee_set_.insert(employee(4, "Employer4", "Address4"));
// search by id using an ordered index
{
const employee_set_ordered_by_id_index_t& index_id = boost::multi_index::get<id>(employee_set_);
employee_set_ordered_by_id_iterator_t id_itr = index_id.find(2);
if (id_itr != index_id.end() ) {
const employee& tmp = *id_itr;
std::cout << tmp.id_ << ", " << tmp.name_ << ", " << tmp .address_ << std::endl;
} else {
std::cout << "No records have been found\n";
}
}
// search by non existing id using an ordered index
{
const employee_set_ordered_by_id_index_t& index_id = boost::multi_index::get<id>(employee_set_);
employee_set_ordered_by_id_iterator_t id_itr = index_id.find(2234);
if (id_itr != index_id.end() ) {
const employee& tmp = *id_itr;
std::cout << tmp.id_ << ", " << tmp.name_ << ", " << tmp .address_ << std::endl;
} else {
std::cout << "No records have been found\n";
}
}
// search by name using an ordered index
{
const employee_set_ordered_by_name_index_t& index_name = boost::multi_index::get<name>(employee_set_);
employee_set_ordered_by_name_iterator_t name_itr = index_name.find("Employer3");
if (name_itr != index_name.end() ) {
const employee& tmp = *name_itr;
std::cout << tmp.id_ << ", " << tmp.name_ << ", " << tmp .address_ << std::endl;
} else {
std::cout << "No records have been found\n";
}
}
// search by name using an hashed index
{
employee_set_hashed_by_name_index_t& index_name = boost::multi_index::get<name_hash>(employee_set_);
employee_set_hashed_by_name_iterator_t name_itr = index_name.find("Employer4");
if (name_itr != index_name.end() ) {
const employee& tmp = *name_itr;
std::cout << tmp.id_ << ", " << tmp.name_ << ", " << tmp .address_ << std::endl;
} else {
std::cout << "No records have been found\n";
}
}
// search by name using an hashed index but the name does not exists in the container
{
employee_set_hashed_by_name_index_t& index_name = boost::multi_index::get<name_hash>(employee_set_);
employee_set_hashed_by_name_iterator_t name_itr = index_name.find("Employer46545");
if (name_itr != index_name.end() ) {
const employee& tmp = *name_itr;
std::cout << tmp.id_ << ", " << tmp.name_ << ", " << tmp .address_ << std::endl;
} else {
std::cout << "No records have been found\n";
}
}
return 0;
}
If you want to use std::map, you can have two separate containers, each one having adifferent key (name, emp id) and the value should be a pointer the structure, so that you will not have multiple copies of the same data.
Example with tew keys:
#include <memory>
#include <map>
#include <iostream>
template <class KEY1,class KEY2, class OTHER >
class MultiKeyMap {
public:
struct Entry
{
KEY1 key1;
KEY2 key2;
OTHER otherVal;
Entry( const KEY1 &_key1,
const KEY2 &_key2,
const OTHER &_otherVal):
key1(_key1),key2(_key2),otherVal(_otherVal) {};
Entry() {};
};
private:
struct ExtendedEntry;
typedef std::shared_ptr<ExtendedEntry> ExtendedEntrySptr;
struct ExtendedEntry {
Entry entry;
typename std::map<KEY1,ExtendedEntrySptr>::iterator it1;
typename std::map<KEY2,ExtendedEntrySptr>::iterator it2;
ExtendedEntry() {};
ExtendedEntry(const Entry &e):entry(e) {};
};
std::map<KEY1,ExtendedEntrySptr> byKey1;
std::map<KEY2,ExtendedEntrySptr> byKey2;
public:
void del(ExtendedEntrySptr p)
{
if (p)
{
byKey1.erase(p->it1);
byKey2.erase(p->it2);
}
}
void insert(const Entry &entry) {
auto p=ExtendedEntrySptr(new ExtendedEntry(entry));
p->it1=byKey1.insert(std::make_pair(entry.key1,p)).first;
p->it2=byKey2.insert(std::make_pair(entry.key2,p)).first;
}
std::pair<Entry,bool> getByKey1(const KEY1 &key1)
{
const auto &ret=byKey1[key1];
if (ret)
return std::make_pair(ret->entry,true);
return std::make_pair(Entry(),false);
}
std::pair<Entry,bool> getByKey2(const KEY2 &key2)
{
const auto &ret=byKey2[key2];
if (ret)
return std::make_pair(ret->entry,true);
return std::make_pair(Entry(),false);
}
void deleteByKey1(const KEY1 &key1)
{
del(byKey1[key1]);
}
void deleteByKey2(const KEY2 &key2)
{
del(byKey2[key2]);
}
};
int main(int argc, const char *argv[])
{
typedef MultiKeyMap<int,std::string,int> M;
M map1;
map1.insert(M::Entry(1,"aaa",7));
map1.insert(M::Entry(2,"bbb",8));
map1.insert(M::Entry(3,"ccc",9));
map1.insert(M::Entry(7,"eee",9));
map1.insert(M::Entry(4,"ddd",9));
map1.deleteByKey1(7);
auto a=map1.getByKey1(2);
auto b=map1.getByKey2("ddd");
auto c=map1.getByKey1(7);
std::cout << "by key1=2 (should be bbb ): "<< (a.second ? a.first.key2:"Null") << std::endl;
std::cout << "by key2=ddd (should be ddd ): "<< (b.second ? b.first.key2:"Null") << std::endl;
std::cout << "by key1=7 (does not exist): "<< (c.second ? c.first.key2:"Null") << std::endl;
return 0;
}
Output:
by key1=2 (should be bbb ): bbb
by key2=ddd (should be ddd ): ddd
by key1=7 (does not exist): Null
If EmployeeID is the unique identifier, why use other keys? I would use EmployeeID as the internal key everywhere, and have other mappings from external/human readable IDs (such as Name) to it.
C++14 std::set::find non-key searches solution
This method saves you from storing the keys twice, once one the indexed object and secondly on as the key of a map as done at: https://stackoverflow.com/a/44526820/895245
This provides minimal examples of the central technique that should be easier to understand first: How to make a C++ map container where the key is part of the value?
#include <cassert>
#include <set>
#include <vector>
struct Point {
int x;
int y;
int z;
};
class PointIndexXY {
public:
void insert(Point *point) {
sx.insert(point);
sy.insert(point);
}
void erase(Point *point) {
sx.insert(point);
sy.insert(point);
}
Point* findX(int x) {
return *(this->sx.find(x));
}
Point* findY(int y) {
return *(this->sy.find(y));
}
private:
struct PointCmpX {
typedef std::true_type is_transparent;
bool operator()(const Point* lhs, int rhs) const { return lhs->x < rhs; }
bool operator()(int lhs, const Point* rhs) const { return lhs < rhs->x; }
bool operator()(const Point* lhs, const Point* rhs) const { return lhs->x < rhs->x; }
};
struct PointCmpY {
typedef std::true_type is_transparent;
bool operator()(const Point* lhs, int rhs) const { return lhs->y < rhs; }
bool operator()(int lhs, const Point* rhs) const { return lhs < rhs->y; }
bool operator()(const Point* lhs, const Point* rhs) const { return lhs->y < rhs->y; }
};
std::set<Point*, PointCmpX> sx;
std::set<Point*, PointCmpY> sy;
};
int main() {
std::vector<Point> points{
{1, -1, 1},
{2, -2, 4},
{0, 0, 0},
{3, -3, 9},
};
PointIndexXY idx;
for (auto& point : points) {
idx.insert(&point);
}
Point *p;
p = idx.findX(0);
assert(p->y == 0 && p->z == 0);
p = idx.findX(1);
assert(p->y == -1 && p->z == 1);
p = idx.findY(-2);
assert(p->x == 2 && p->z == 4);
}