Related
How can I round a float value (such as 37.777779) to two decimal places (37.78) in C?
If you just want to round the number for output purposes, then the "%.2f" format string is indeed the correct answer. However, if you actually want to round the floating point value for further computation, something like the following works:
#include <math.h>
float val = 37.777779;
float rounded_down = floorf(val * 100) / 100; /* Result: 37.77 */
float nearest = roundf(val * 100) / 100; /* Result: 37.78 */
float rounded_up = ceilf(val * 100) / 100; /* Result: 37.78 */
Notice that there are three different rounding rules you might want to choose: round down (ie, truncate after two decimal places), rounded to nearest, and round up. Usually, you want round to nearest.
As several others have pointed out, due to the quirks of floating point representation, these rounded values may not be exactly the "obvious" decimal values, but they will be very very close.
For much (much!) more information on rounding, and especially on tie-breaking rules for rounding to nearest, see the Wikipedia article on Rounding.
Using %.2f in printf. It only print 2 decimal points.
Example:
printf("%.2f", 37.777779);
Output:
37.77
Assuming you're talking about round the value for printing, then Andrew Coleson and AraK's answer are correct:
printf("%.2f", 37.777779);
But note that if you're aiming to round the number to exactly 37.78 for internal use (eg to compare against another value), then this isn't a good idea, due to the way floating point numbers work: you usually don't want to do equality comparisons for floating point, instead use a target value +/- a sigma value. Or encode the number as a string with a known precision, and compare that.
See the link in Greg Hewgill's answer to a related question, which also covers why you shouldn't use floating point for financial calculations.
How about this:
float value = 37.777779;
float rounded = ((int)(value * 100 + .5) / 100.0);
printf("%.2f", 37.777779);
If you want to write to C-string:
char number[24]; // dummy size, you should take care of the size!
sprintf(number, "%.2f", 37.777779);
Always use the printf family of functions for this. Even if you want to get the value as a float, you're best off using snprintf to get the rounded value as a string and then parsing it back with atof:
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
double dround(double val, int dp) {
int charsNeeded = 1 + snprintf(NULL, 0, "%.*f", dp, val);
char *buffer = malloc(charsNeeded);
snprintf(buffer, charsNeeded, "%.*f", dp, val);
double result = atof(buffer);
free(buffer);
return result;
}
I say this because the approach shown by the currently top-voted answer and several others here -
multiplying by 100, rounding to the nearest integer, and then dividing by 100 again - is flawed in two ways:
For some values, it will round in the wrong direction because the multiplication by 100 changes the decimal digit determining the rounding direction from a 4 to a 5 or vice versa, due to the imprecision of floating point numbers
For some values, multiplying and then dividing by 100 doesn't round-trip, meaning that even if no rounding takes place the end result will be wrong
To illustrate the first kind of error - the rounding direction sometimes being wrong - try running this program:
int main(void) {
// This number is EXACTLY representable as a double
double x = 0.01499999999999999944488848768742172978818416595458984375;
printf("x: %.50f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.50f\n", res1);
printf("Rounded with round, then divided: %.50f\n", res2);
}
You'll see this output:
x: 0.01499999999999999944488848768742172978818416595459
Rounded with snprintf: 0.01000000000000000020816681711721685132943093776703
Rounded with round, then divided: 0.02000000000000000041633363423443370265886187553406
Note that the value we started with was less than 0.015, and so the mathematically correct answer when rounding it to 2 decimal places is 0.01. Of course, 0.01 is not exactly representable as a double, but we expect our result to be the double nearest to 0.01. Using snprintf gives us that result, but using round(100 * x) / 100 gives us 0.02, which is wrong. Why? Because 100 * x gives us exactly 1.5 as the result. Multiplying by 100 thus changes the correct direction to round in.
To illustrate the second kind of error - the result sometimes being wrong due to * 100 and / 100 not truly being inverses of each other - we can do a similar exercise with a very big number:
int main(void) {
double x = 8631192423766613.0;
printf("x: %.1f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.1f\n", res1);
printf("Rounded with round, then divided: %.1f\n", res2);
}
Our number now doesn't even have a fractional part; it's an integer value, just stored with type double. So the result after rounding it should be the same number we started with, right?
If you run the program above, you'll see:
x: 8631192423766613.0
Rounded with snprintf: 8631192423766613.0
Rounded with round, then divided: 8631192423766612.0
Oops. Our snprintf method returns the right result again, but the multiply-then-round-then-divide approach fails. That's because the mathematically correct value of 8631192423766613.0 * 100, 863119242376661300.0, is not exactly representable as a double; the closest value is 863119242376661248.0. When you divide that back by 100, you get 8631192423766612.0 - a different number to the one you started with.
Hopefully that's a sufficient demonstration that using roundf for rounding to a number of decimal places is broken, and that you should use snprintf instead. If that feels like a horrible hack to you, perhaps you'll be reassured by the knowledge that it's basically what CPython does.
Also, if you're using C++, you can just create a function like this:
string prd(const double x, const int decDigits) {
stringstream ss;
ss << fixed;
ss.precision(decDigits); // set # places after decimal
ss << x;
return ss.str();
}
You can then output any double myDouble with n places after the decimal point with code such as this:
std::cout << prd(myDouble,n);
There isn't a way to round a float to another float because the rounded float may not be representable (a limitation of floating-point numbers). For instance, say you round 37.777779 to 37.78, but the nearest representable number is 37.781.
However, you can "round" a float by using a format string function.
You can still use:
float ceilf(float x); // don't forget #include <math.h> and link with -lm.
example:
float valueToRound = 37.777779;
float roundedValue = ceilf(valueToRound * 100) / 100;
In C++ (or in C with C-style casts), you could create the function:
/* Function to control # of decimal places to be output for x */
double showDecimals(const double& x, const int& numDecimals) {
int y=x;
double z=x-y;
double m=pow(10,numDecimals);
double q=z*m;
double r=round(q);
return static_cast<double>(y)+(1.0/m)*r;
}
Then std::cout << showDecimals(37.777779,2); would produce: 37.78.
Obviously you don't really need to create all 5 variables in that function, but I leave them there so you can see the logic. There are probably simpler solutions, but this works well for me--especially since it allows me to adjust the number of digits after the decimal place as I need.
Use float roundf(float x).
"The round functions round their argument to the nearest integer value in floating-point format, rounding halfway cases away from zero, regardless of the current rounding direction." C11dr §7.12.9.5
#include <math.h>
float y = roundf(x * 100.0f) / 100.0f;
Depending on your float implementation, numbers that may appear to be half-way are not. as floating-point is typically base-2 oriented. Further, precisely rounding to the nearest 0.01 on all "half-way" cases is most challenging.
void r100(const char *s) {
float x, y;
sscanf(s, "%f", &x);
y = round(x*100.0)/100.0;
printf("%6s %.12e %.12e\n", s, x, y);
}
int main(void) {
r100("1.115");
r100("1.125");
r100("1.135");
return 0;
}
1.115 1.115000009537e+00 1.120000004768e+00
1.125 1.125000000000e+00 1.129999995232e+00
1.135 1.134999990463e+00 1.139999985695e+00
Although "1.115" is "half-way" between 1.11 and 1.12, when converted to float, the value is 1.115000009537... and is no longer "half-way", but closer to 1.12 and rounds to the closest float of 1.120000004768...
"1.125" is "half-way" between 1.12 and 1.13, when converted to float, the value is exactly 1.125 and is "half-way". It rounds toward 1.13 due to ties to even rule and rounds to the closest float of 1.129999995232...
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 and rounds to the closest float of 1.129999995232...
If code used
y = roundf(x*100.0f)/100.0f;
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 but incorrectly rounds to float of 1.139999985695... due to the more limited precision of float vs. double. This incorrect value may be viewed as correct, depending on coding goals.
Code definition :
#define roundz(x,d) ((floor(((x)*pow(10,d))+.5))/pow(10,d))
Results :
a = 8.000000
sqrt(a) = r = 2.828427
roundz(r,2) = 2.830000
roundz(r,3) = 2.828000
roundz(r,5) = 2.828430
double f_round(double dval, int n)
{
char l_fmtp[32], l_buf[64];
char *p_str;
sprintf (l_fmtp, "%%.%df", n);
if (dval>=0)
sprintf (l_buf, l_fmtp, dval);
else
sprintf (l_buf, l_fmtp, dval);
return ((double)strtod(l_buf, &p_str));
}
Here n is the number of decimals
example:
double d = 100.23456;
printf("%f", f_round(d, 4));// result: 100.2346
printf("%f", f_round(d, 2));// result: 100.23
I made this macro for rounding float numbers.
Add it in your header / being of file
#define ROUNDF(f, c) (((float)((int)((f) * (c))) / (c)))
Here is an example:
float x = ROUNDF(3.141592, 100)
x equals 3.14 :)
Let me first attempt to justify my reason for adding yet another answer to this question. In an ideal world, rounding is not really a big deal. However, in real systems, you may need to contend with several issues that can result in rounding that may not be what you expect. For example, you may be performing financial calculations where final results are rounded and displayed to users as 2 decimal places; these same values are stored with fixed precision in a database that may include more than 2 decimal places (for various reasons; there is no optimal number of places to keep...depends on specific situations each system must support, e.g. tiny items whose prices are fractions of a penny per unit); and, floating point computations performed on values where the results are plus/minus epsilon. I have been confronting these issues and evolving my own strategy over the years. I won't claim that I have faced every scenario or have the best answer, but below is an example of my approach so far that overcomes these issues:
Suppose 6 decimal places is regarded as sufficient precision for calculations on floats/doubles (an arbitrary decision for the specific application), using the following rounding function/method:
double Round(double x, int p)
{
if (x != 0.0) {
return ((floor((fabs(x)*pow(double(10.0),p))+0.5))/pow(double(10.0),p))*(x/fabs(x));
} else {
return 0.0;
}
}
Rounding to 2 decimal places for presentation of a result can be performed as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,8),6),2));
For val = 6.825, result is 6.83 as expected.
For val = 6.824999, result is 6.82. Here the assumption is that the calculation resulted in exactly 6.824999 and the 7th decimal place is zero.
For val = 6.8249999, result is 6.83. The 7th decimal place being 9 in this case causes the Round(val,6) function to give the expected result. For this case, there could be any number of trailing 9s.
For val = 6.824999499999, result is 6.83. Rounding to the 8th decimal place as a first step, i.e. Round(val,8), takes care of the one nasty case whereby a calculated floating point result calculates to 6.8249995, but is internally represented as 6.824999499999....
Finally, the example from the question...val = 37.777779 results in 37.78.
This approach could be further generalized as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,N+2),N),2));
where N is precision to be maintained for all intermediate calculations on floats/doubles. This works on negative values as well. I do not know if this approach is mathematically correct for all possibilities.
...or you can do it the old-fashioned way without any libraries:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
That of course if you want to remove the extra information from the number.
this function takes the number and precision and returns the rounded off number
float roundoff(float num,int precision)
{
int temp=(int )(num*pow(10,precision));
int num1=num*pow(10,precision+1);
temp*=10;
temp+=5;
if(num1>=temp)
num1+=10;
num1/=10;
num1*=10;
num=num1/pow(10,precision+1);
return num;
}
it converts the floating point number into int by left shifting the point and checking for the greater than five condition.
I am writing a function in c++ that is supposed to find the largest single digit in the number passed (inputValue). For example, the answer for .345 is 5. However, after a while, the program is changing the inputValue to something along the lines of .3449 (and the largest digit is then set to 9). I have no idea why this is happening. Any help to resolve this problem would be greatly appreciated.
This is the function in my .hpp file
void LargeInput(const double inputValue)
//Function to find the largest value of the input
{
int tempMax = 0,//Value that the temporary max number is in loop
digit = 0,//Value of numbers after the decimal place
test = 0,
powerOten = 10;//Number multiplied by so that the next digit can be checked
double number = inputValue;//A variable that can be changed in the function
cout << "The number is still " << number << endl;
for (int k = 1; k <= 6; k++)
{
test = (number*powerOten);
cout << "test: " << test << endl;
digit = test % 10;
cout << (static_cast<int>(number*powerOten)) << endl;
if (tempMax < digit)
tempMax = digit;
powerOten *= 10;
}
return;
}
You cannot represent real numbers (doubles) precisely in a computer - they need to be approximated. If you change your function to work on longs or ints there won't be any inaccuracies. That seems natural enough for the context of your question, you're just looking at the digits and not the number, so .345 can be 345 and get the same result.
Try this:
int get_largest_digit(int n) {
int largest = 0;
while (n > 0) {
int x = n % 10;
if (x > largest) largest = x;
n /= 10;
}
return largest;
}
This is because the fractional component of real numbers is in the form of 1/2^n. As a result you can get values very close to what you want but you can never achieve exact values like 1/3.
It's common to instead use integers and have a conversion (like 1000 = 1) so if you had the number 1333 you would do printf("%d.%d", 1333/1000, 1333 % 1000) to print out 1.333.
By the way the first sentence is a simplification of how floating point numbers are actually represented. For more information check out; http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding
This is how floating point number work, unfortunately. The core of the problem is that there are an infinite number of floating point numbers. More specifically, there are an infinite number of values between 0.1 and 0.2 and there are an infinite number of values between 0.01 and 0.02. Computers, however, have a finite number of bits to represent a floating point number (64 bits for a double precision number). Therefore, most floating point numbers have to be approximated. After any floating point operation, the processor has to round the result to a value it can represent in 64 bits.
Another property of floating point numbers is that as number get bigger they get less and less precise. This is because the same 64 bits have to be able to represent very big numbers (1,000,000,000) and very small numbers (0.000,000,000,001). Therefore, the rounding error gets larger when working with bigger numbers.
The other issue here is that you are converting from floating point to integer. This introduces even more rounding error. It appears that when (0.345 * 10000) is converted to an integer, the result is closer to 3449 than 3450.
I suggest you don't convert your numbers to integers. Write your program in terms of floating point numbers. You can't use the modulus (%) operator on floating point numbers to get a value for digit. Instead use the fmod function in the C math library (cmath.h).
As other answers have indicated, binary floating-point is incapable of representing most decimal numbers exactly. Therefore, you must reconsider your problem statement. Some alternatives are:
The number is passed as a double (specifically, a 64-bit IEEE-754 binary floating-point value), and you wish to find the largest digit in the decimal representation of the exact value passed. In this case, the solution suggested by user millimoose will work (provided the asprintf or snprintf function used is of good quality, so that it does not incur rounding errors that prevent it from producing correctly rounded output).
The number is passed as a double but is intended to represent a number that is exactly representable as a decimal numeral with a known number of digits. In this case, the solution suggested by user millimoose again works, with the format specification altered to convert the double to decimal with the desired number of digits (e.g., instead of “%.64f”, you could use “%.6f”).
The function is changed to pass the number in another way, such as with decimal floating-point, as a scaled integer, or as a string containing a decimal numeral.
Once you have clarified the problem statement, it may be interesting to consider how to solve it with floating-point arithmetic, rather than calling library functions for formatted output. This is likely to have pedagogical value (and incidentally might produce a solution that is computationally more efficient than calling a library function).
This question already has answers here:
Write your own implementation of math's floor function, C
(5 answers)
Closed 1 year ago.
I would like to know how to write my own floor function to round a float down.
Is it possible to do this by setting the bits of a float that represent the numbers after the comma to 0?
If yes, then how can I access and modify those bits?
Thanks.
You can do bit twiddling on floating point numbers, but getting it right depends on knowing exactly what the floating point binary representation is. For most machines these days its IEEE-754, which is reasonably straight-forward. For example IEEE-754 32-bit floats have 1 sign bit, 8 exponent bits, and 23 mantissa bits, so you can use shifts and masks to extract those fields and do things with them. So doing trunc (round to integer towards 0) is pretty easy:
float trunc(float x) {
union {
float f;
uint32_t i;
} val;
val.f = x;
int exponent = (val.i >> 23) & 0xff; // extract the exponent field;
int fractional_bits = 127 + 23 - exponent;
if (fractional_bits > 23) // abs(x) < 1.0
return 0.0;
if (fractional_bits > 0)
val.i &= ~((1U << fractional_bits) - 1);
return val.f;
}
First, we extract the exponent field, and use that to calculate how many bits after the
decimal point are present in the number. If there are more than the size of the mantissa, then we just return 0. Otherwise, if there's at least 1, we mask off (clear) that many low bits. Pretty simple. We're ignoring denormal, NaN, and infinity her, but that works out ok, as they have exponents of all 0s or all 1s, which means we end up converting denorms to 0 (they get caught in the first if, along with small normal numbers), and leaving NaN/Inf unchanged.
To do a floor, you'd also need to look at the sign, and rounds negative numbers 'up' towards negative infinity.
Note that this is almost certainly slower than using dedicated floating point intructions, so this sort of thing is really only useful if you need to use floating point numbers on hardware that has no native floating point support. Or if you just want to play around and learn how these things work at a low level.
Define from scratch. And no, setting the bits of your floating point number representing the numbers after the comma to 0 will not work. If you look at IEEE-754, you will see that you basically have all your floating-point numbers in the form:
0.xyzxyzxyz 2^(abc)
So to implement flooring, you can get the xyzxyzxyz and shift left by abc+1 times. Drop the rest. I suggest you read up on the binary representation of a floating point number (link above), this should shed light on the solution I suggested.
NOTE: You also need to take care of the sign bit. And the mantissa of your number is off by 127.
Here is an example, Let's say you have the number pi: 3.14..., you want to get 3.
Pi is represented in binary as
0 10000000 10010010000111111011011
This translate to
sign = 0 ; e = 1 ; s = 110010010000111111011011
The above I get directly from Wikipedia. Since e is 1. You will want to shift left s by 1 + 1 = 2, so you get 11 => 3.
#include <iostream>
#include <iomanip>
double round(double input, double roundto) {
return int(input / roundto) * roundto;
}
int main() {
double pi = 3.1415926353898;
double almostpi = round(pi, 0.0001);
std::cout << std::setprecision(14) << pi << '\n' << std::setprecision(14) << almostpi;
}
http://ideone.com/mdqFA
output:
3.1415926353898
3.1415
This will pretty much be faster than any bit twiddling you can come up with. And it works on all computers (with floats) instead of just one type.
Casting to unsigned while returning as a double does what you are seeking, but under the hood. This simple piece of code works for any POSITIVE number.
#include <iostream>
double floor(const double& num) {
return (unsigned long long) num;
}
This has been tested on tio.run (Try It Online) and onlinegdb.com. The function itself doesn't require any #include files, but to print out the answers, I have included stdio.h (in the tio.run and onlinegdb.com, not here). Here it is:
long double myFloor(long double x) /* Change this to your liking: long double might
be float in your situation. */
{
long double xcopy=x<0?x*-1:x;
unsigned int zeros=0;
long double n=1;
for(n=1;xcopy>n*10;n*=10,++zeros);
for(xcopy-=n;zeros!=-1;xcopy-=n)
if(xcopy<0)
{
xcopy+=n;
n/=10;
--zeros;
}
xcopy+=n;
return x<0?(xcopy==0?x:x-(1-xcopy)):(x-xcopy);
}
This function works everywhere (pretty sure) because it just removes all of the non-decimal parts instead of trying to work with the parts of floats.
The floor of a floating point number is the biggest integer less than or equal to it. Here are a some examples:
floor(5.7) = 5
floor(3) = 3
floor(9.9) = 9
floor(7.0) = 7
floor(-7.9) = -8
floor(-5.0) = -5
floor(-3.3) = -3
floor(0) = 0
floor(-0.0) = -0
floor(-0) = -0
Note: this is almost an exact copy from my other answer which answered a question that was basically the same as this one.
This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Why does Visual Studio 2008 tell me .9 - .8999999999999995 = 0.00000000000000055511151231257827?
c++
Hey so i'm making a function to return the number of a digits in a number data type given, but i'm having some trouble with doubles.
I figure out how many digits are in it by multiplying it by like 10 billion and then taking away digits 1 by 1 until the double ends up being 0. however when putting in a double of value say .7904 i never exit the function as it keeps taking away digits which never end up being 0 as the resut of .7904 ends up being 7,903,999,988 and not 7,904,000,000.
How can i solve this problem?? Thanks =) ! oh and any other feed back on my code is WELCOME!
here's the code of my function:
/////////////////////// Numb_Digits() ////////////////////////////////////////////////////
enum{DECIMALS = 10, WHOLE_NUMBS = 20, ALL = 30};
template<typename T>
unsigned long int Numb_Digits(T numb, int scope)
{
unsigned long int length= 0;
switch(scope){
case DECIMALS: numb-= (int)numb; numb*=10000000000; // 10 bil (10 zeros)
for(; numb != 0; length++)
numb-=((int)(numb/pow((double)10, (double)(9-length))))* pow((double)10, (double)(9-length)); break;
case WHOLE_NUMBS: numb= (int)numb; numb*=10000000000;
for(; numb != 0; length++)
numb-=((int)(numb/pow((double)10, (double)(9-length))))* pow((double)10, (double)(9-length)); break;
case ALL: numb = numb; numb*=10000000000;
for(; numb != 0; length++)
numb-=((int)(numb/pow((double)10, (double)(9-length))))* pow((double)10, (double)(9-length)); break;
default: break;}
return length;
};
int main()
{
double test = 345.6457;
cout << Numb_Digits(test, ALL) << endl;
cout << Numb_Digits(test, DECIMALS) << endl;
cout << Numb_Digits(test, WHOLE_NUMBS) << endl;
return 0;
}
It's because of their binary representation, which is discussed in depth here:
http://en.wikipedia.org/wiki/IEEE_754-2008
Basically, when a number can't be represented as is, an approximation is used instead.
To compare floats for equality, check if their difference is lesser than an arbitrary precision.
The easy summary about floating point arithmetic :
http://floating-point-gui.de/
Read this and you'll see the light.
If you're more on the math side, Goldberg paper is always nice :
http://cr.yp.to/2005-590/goldberg.pdf
Long story short : real numbers are stored with a fixed, irregular precision, leading to non obvious behaviors. This is unrelated to the language but more a design choice of how to handle real numbers as a whole.
This is because C++ (like most other languages) can not store floating point numbers with infinte precision.
Floating points are stored like this:
sign * coefficient * 10^exponent if you're using base 10.
The problem is that both the coefficient and exponent are stored as finite integers.
This is a common problem with storing floating point in computer programs, you usually get a tiny rounding error.
The most common way of dealing with this is:
Store the number as a fraction (x/y)
Use a delta that allows small deviations (if abs(x-y) < delta)
Use a third party library such as GMP that can store floating point with perfect precision.
Regarding your question about counting decimals.
There is no way of dealing with this if you get a double as input. You cannot be sure that the user actually sent 1.819999999645634565360 and not 1.82.
Either you have to change your input or change the way your function works.
More info on floating point can be found here: http://en.wikipedia.org/wiki/Floating_point
This is because of the way the IEEE floating point standard is implemented, which will vary depending on operations. It is an approximation of precision. Never use logic of if(float == float), ever!
Float numbers are represented in the form Significant digits × baseexponent(IEEE 754). In your case, float 1.82 = 1 + 0.5 + 0.25 + 0.0625 + ...
Since only a limited digits could be stored, therefore there will be a round error if the float number cannot be represented as a terminating expansion in the relevant base (base 2 in the case).
You should always check relative differences with floating point numbers, not absolute values.
You need to read this, too.
Computers don't store floating point numbers exactly. To accomplish what you are doing, you could store the original input as a string, and count the number of characters.
As part of a numerical library test I need to choose base 10 decimal numbers that can be represented exactly in base 2. How do you detect in C++ if a base 10 decimal number can be represented exactly in base 2?
My first guess is as follows:
bool canBeRepresentedInBase2(const double &pNumberInBase10)
{
//check if a number in base 10 can be represented exactly in base 2
//reference: http://en.wikipedia.org/wiki/Binary_numeral_system
bool funcResult = false;
int nbOfDoublings = 16*3;
double doubledNumber = pNumberInBase10;
for (int i = 0; i < nbOfDoublings ; i++)
{
doubledNumber = 2*doubledNumber;
double intPart;
double fracPart = modf(doubledNumber/2, &intPart);
if (fracPart == 0) //number can be represented exactly in base 2
{
funcResult = true;
break;
}
}
return funcResult;
}
I tested this function with the following values: -1.0/4.0, 0.0, 0.1, 0.2, 0.205, 1.0/3.0, 7.0/8.0, 1.0, 256.0/255.0, 1.02, 99.005. It returns true for -1.0/4.0, 0.0, 7.0/8.0, 1.0, 99.005 which is correct.
Any better ideas?
I think what you are looking for is a number which has a fractional portion which is the sum of a sequence of negative powers of 2 (aka: 1 over a power of 2). I believe this should always be able to be represented exactly in IEEE floats/doubles.
For example:
0.375 = (1/4 + 1/8) which should have an exact representation.
If you want to generate these. You could try do something like this:
#include <iostream>
#include <cstdlib>
int main() {
srand(time(0));
double value = 0.0;
for(int i = 1; i < 256; i *= 2) {
// doesn't matter, some random probability of including this
// fraction in our sequence..
if((rand() % 3) == 0) {
value += (1.0 / static_cast<double>(i));
}
}
std::cout << value << std::endl;
}
EDIT: I believe your function has a broken interface. It would be better if you had this:
bool canBeRepresentedExactly(int numerator, int denominator);
because not all fractions have exact representations, but the moment you shove it into a double, you've chosen a representation in binary... defeating the purpose of the test.
If you're checking to see if it's binary, it will always return true. If your method takes a double as the parameter, the number is already represented in binary (double is a binary type, usually 64 bits). Looking at your code, I think you're actually trying to see if it can be represented exactly as an integer, in which case why can't you just cast to int, then back to double and compare to the original. Any integer stored in a double that's within the range representable by an int should be exact, IIRC, because a 64 bit double has 53 bits of mantissa (and I'm assuming a 32 bit int). That means if they're equal, it's an integer.
If you're passing in a double, then by definition, it has already been represented in binary and if not, then you've already lost accuracy.
Maybe try passing in numerator and denominator of the fraction to the function. Then you have not lost accuracy and can check to see if you can come up with a binary representation of the answer that is the same as the fraction you've passed in.
As rmeador have pointed out, it might not be a good idea to accept the double, because the number has been converted to a double, an possible approximation to the number that you're trying to check.
So, in a very abstract way, you should split your check into integers, and decimals. Integers should not be too large such that the mantissa cannot express all the integers, (e.g. 9007199254740993 should not be represented properly by a 64-bit fp)
Decimal points may be a bit easier, mentally, because if anything after the decimal point (e.g. yyy in xxx.yyy) contains a factor of anything other than 2, the floating point repeats in order to try to represent it. It's the reason why 1/3 cannot be represented with finite digits in base 10 = base (2*5)... See Recurring Decimal
EDIT: As the comments pointed out, if the decimal number has a factor of anything other than 1/2, that would be the mathematically correct way to say it...
As others have mentioned, your method doesn't do what you mean, since you pass a number represented as a (binary) double. The method actually detects, if the number you passed is in the form integer/2^48. This should fail for numbers like (1+2^-50), which is binary, and 259/255, which isn't.
If you really want to test a number for being exactly representable by finite binary string, you have to pass a number in an exact form.
You can't pass IN a Double because it's already lost precision. You should be able to use the toString() method of Double to check for this. (example in Java)
public static Boolean canBeRepresentedInBase2(String thenumber)
{
// Reuturns true of the parsed Double did not loose precision.
// Only works for numbers that are not converted into scientific notation by toString.
return thenumber.equals(Double.parseDouble(thenumber).toString())
}
You asked for C++ but maybe this algorithm will help. I use "EE" to mean "exactly expressible as a float."
Start with a decimal representation of the number you want to test. Remove any trailing zeroes (that is, 0.123450000 becomes 0.12345).
1) If the number is not an integer, check to see if the rightmost digit is 5. If it's not, then stop -- the number is not EE.
2) Multiply the number by 2. If the result is an integer, then stop -- the number is EE. Otherwise, go back to step 1.
I don't have rigorous proof for this but a "warm fuzzy." Fire up Calculator and enter your favorite fractional power of 2, like 0.0000152587890625. Add it to itself a few dozen times (I just hit "+" once then "=" a bunch of times). If there are any non-zero digits to the right of the decimal point, the last digit is always 5.
Here is the code in C# and it works. Because it works with the Decimal data - there are no inherent rounding errors that show up in the original code which uses double. (decimal in C# stores using base 10 instead of base 2 - which is what double does)
static bool canBeRepresentedInBase2(decimal pNumberInBase10)
{
//check if a number in base 10 can be represented exactly in base 2
//reference: http://en.wikipedia.org/wiki/Binary_numeral_system
bool funcResult = false;
int nbOfDoublings = 16*3;
decimal doubledNumber = pNumberInBase10;
for (int i = 0; i < nbOfDoublings ; i++)
{
doubledNumber = 2*doubledNumber;
decimal intPart;
decimal fracPart = ModF(doubledNumber/2, out intPart);
if (fracPart == 0) //number can be represented exactly in base 2
{
funcResult = true;
break;
}
}
return funcResult;
}
static decimal ModF(decimal number, out decimal intPart)
{
intPart = Math.Floor(number);
decimal fractional = number - (intPart);
return fractional;
}
Tested with the following code (where WL does a Console.WritelLine - SnippetCompiler)
WL(canBeRepresentedInBase2(-1.0M/4.0M)); //true
WL(canBeRepresentedInBase2(0.0M)); //true
WL(canBeRepresentedInBase2(0.1M)); //false
WL(canBeRepresentedInBase2(0.2M)); //false
WL(canBeRepresentedInBase2(0.205M)); //false
WL(canBeRepresentedInBase2(1.0M/3.0M)); //false
WL(canBeRepresentedInBase2(7.0M/8.0M)); //true
WL(canBeRepresentedInBase2(1.0M)); //true
WL(canBeRepresentedInBase2(256.0M/255.0M)); //false
WL(canBeRepresentedInBase2(1.02M)); //false
WL(canBeRepresentedInBase2(99.005M)); //false
WL(canBeRepresentedInBase2(2.53M)); //false
Or even easier:
return pNumber == floor(pNumber);
On the other hand, if you have some weird fractional representation (numerator denominator pair, or string with a decimal in it, or something), and you really do want to know if the value can be exactly represented as a double, it's a bit harder.
But you would need a different parameter(s) for that...
Given a number r it can be represented exactly with finite precision in base 2 iff r can be written as r = m/2^n, where m, n are integers, and n >= 0.
For example 1/7 doesn't have a finite binary expression, also 1/6 and 1/10 can't be written with a finite expression in base 2.
But 1/4+1/32+1/1024, have a finite expression in base.
PS: In general you can express a number r with finite digits in a base b iff r=m/b^n where m, n are integers an n >= 0.
PPS: As almost everybody has stated previously using a double as input is a bad idea, because you are loosing precision, and you will end up with a different number.
I don't think this is what he's asking... I think he's looking for a solution that will tell him if a number can be represented EXACTLY in binary form. For example, 33.3.. That's a number cannot be represented in binary, because it will go on forever, so depending on your FPU settings, it will be represented as something like "33.333333333333336". So, it looks like his method will do the job. I don't know of a better way off the top of my head.
\
Ignoring the general criticism of using a double...
For a general finite decimal, you can determine if it has a finite representation in binary with the following algorithm:
Extract the fraction part of the decimal f.
Determine f x 10b = c, where b and c are integers.
Determine 2d >= 10b, where d is an integer.
If c x 2b / 10b is an integer, then the decimal has a finite representation in binary. Otherwise, it doesn't.
You can generalize this to any two bases.