Apache Thrift over the Internet - c++

I am interested in using Apache Thrift to implement a communication protocol between a client and a c++ device. As I ran through the Documentation i noticed that this is easily possible usind Thrift in a local network.
My question is, is it also possible to use Thrift to control my devices from outside the local network, i.e. from the internet? How would this work?
regards

If you are already using socket or HTTP Transport, you're on the right way. Technically, for a typical client/server scenario, there is no difference between internal and external network. Only for bidi-communication scenarios the presence of firewalls may make things a little more complicated.

Related

what is a good way to secure Cap'n Proto RPC network traffic?

I would like to use Cap'n Proto RPC to communicate with a server in the cloud from a desktop box in an office. Cap'n Proto doesn't provide secure network connections through a firewall. I would prefer c++ since I have other components which require this.
I see some people have been looking at nanomsg and other transports which link directly into the application, but I was wondering whether stunnel or something similar might be satisfactory.
The stunnel application, as most know, can provide HTTPS encapsulation of TCP/IP traffic under certain conditions, as per the FAQ:
The protocol is TCP, not UDP.
The protocol doesn't use multiple connections, like ftp.
The protocol doesn't depend on Out Of Band (OOB) data,
Remote site can't use an application-specific protocol, like ssltelnet, where SSL is a negotiated option, save for those protocols already supported by the protocol argument to stunnel.
It seems like Cap'n Proto RPC might satisfy these conditions. I don't think the customer will object to installing stunnel in this case. Has anyone tried this or something similar? If so, your experiences would be appreciated. If someone knows of a faster/lighter alternative it would also be helpful.
thanks!
Yes, Cap'n Proto's two-party protocol (the only one provided currently) should work great with stunnel, since it's a simple TCP-based transport. You will need to run both a stunnel client and a server, of course, but otherwise this should be straightforward to set up. You could also use SSH port forwarding or a VPN to achieve a similar result.
(Note that stunnel itself has nothing to do with HTTPS per se, but is often used to implement HTTPS because HTTP is also a simple TCP protocol and HTTPS is the same protocol except on TLS. In the Cap'n Proto case, Cap'n Proto replaces HTTP. So you're creating Cap'nProto-S, I guess.)
Another option is to implement the kj::AsyncIoStream abstract interface directly based on a TLS library like OpenSSL, GnuTLS, etc. Cap'n Proto's RPC layer will allow you to provide an arbitrary implementation of kj::AsyncIoStream as its transport (via interfaces in capnp/rpc-twoparty.h). Unfortunately, many TLS libraries have pretty ugly interfaces and so this may be hard to get right. But if you do write something, please contribute it back to the project as this is something I'd like to have in the base library.
Eventually we plan to add an official crypto transport to Cap'n Proto designed to directly support multi-party introductions (something Cap'n Proto actually doesn't do yet, but which I expect will be a killer feature when it's ready). I expect this support will appear some time in 2016, but can't make any promises.

implementing server for licencing management

I would like to implement the server side of a licence management software. I use C++ in LINUX OS.
When the software starts it must connect to a server that checks privileges and allows/disallow running of some features.
My question is about the implementation of the communication between client and server across internet:
The server will have a static IP on internet so is it enough to use a simple TCP/IP socket client that will connect to a TCP/IP socket server ( providing IP/PORT) ?
I am familiar with socket communication , but less with communication across internet so my question is whether this is the right approach or do I need to use a different mechanism like a http client server or other.
Regards
AFG
Here are some benefits to using HTTP as a transport:
easier to get right, more likely to work in production: Yes, you will probably have to add additional dependencies to deal with HTTP (client and server side), but it's still preferable to yet another homegrown protocol, which you have to implement, maintain, care about backwards compatibility, deal with multiplatform issues (eg. endianness), etc. In terms of implementation ease, using an HTTP based solution should be far easier in the common case (especially true if you build a REST style service API for license checking).
More help available: HTTP as the foundation of the web is one of the most widely used technologies today. Most (all?) problems you will run into are probably publicly documented with solutions/workarounds.
Encryption 'for free': Encryption is already a solved problem (HTTPS/SSL), both with regard to transport as well as with regard to what you have to implement on your end, and it's just a matter of setting it up.
Server Authentication 'for free': HTTPS/SSL doesn't only solve encryption but also server authentication, so that the client can verify whether it's actually talking to the right service.
Guaranteed to work on the internet: HTTP/HTTPS traffic is common on the internet, so you won't run into routing problems or firewalls which are hard to traverse. This might be a problem when using your own protocol.
Flexibility out of the box: You also put less constraints on clients communicating with your server, as it's very simple to build a client in many different environments, as long as they can talk HTTP (and maybe SSL), and they know how to issue the request to your server (ie. what your service API looks like).
Easy to integrate with administrative webapp: If you want to allow users to manage their accounts associated with licenses in some way (update contact info etc.), then you might even combine the license server with that application. You can also build the license administration UI part into the same app if that's useful.
And as a last remark (this puts additional constraints on your client side HTTPS/SSL implementation): you can even use client side SSL certificates, which essentially allow authenticating the client to the server. Depending on how you use them, client side certificates are harder to manage, but they can be eg. expired, or revoked, so to some extent they actually are licenses (to connect to the server).
HTTP is not a different mechanism. It is a protocol operated over TCP/IP connections.
Internet uses IP transport exclusively. You can use UDP, TCP or SCTP session (well, UDP is not much of a session) layer on top of it. TCP is the general choice.
Sockets are operating system interface. They are the only interface to network in most systems, but some systems have different interface. Nothing to do with the transport itself.
IP addresses are in practice tied to network topology, so I strongly discourage hardcoding the IP address into the server. If you have to change network provider for any reason, you won't be getting the same IP address. Use DNS, it's just one gethostbyname call.
And don't forget to authenticate the server; even with hardcoded IP it's too easy to redirect it.

Communication between two computers without opening ports, using a third computer to set up the connection

Let's say I have a server, and two clients connected to it. (via TCP, but it doesn't matter)
My goal is to allow a direct connection between those two clients. This is to allow direct voice contact between two players, for example, or any other client plugin they may have installed which don't need server interaction (like playing some kind of random game between the two). The server can be there to help setting up the connection.
From duskwuff's answer, I got several leads:
http://en.wikipedia.org/wiki/STUN which describes an algorithm to do that, and
http://en.wikipedia.org/wiki/UDP_hole_punching
From those, I got more leads:
http://www.h-online.com/security/features/How-Skype-Co-get-round-firewalls-747197.html
http://nutss.gforge.cis.cornell.edu/stunt.php -- A possible STUN implementation with TCP
With time, I could surely work out something for my program. For now I'm using C++ and TCP (Qt Sockets or Boost sockets), but if needed I don't mind doing UDP in C and wrapping it.
The bounty is there for any programmer having experience with those in C and C++ that may give tips to make this easier, by linking to example programs, updated libraries, or any other useful information. A documented, flexible & working C++ TCP implementation would be the best but I'll take what I get!
Punching TCP holes in NAT is sometimes/often possible (it depends of the NAT behavior). This is not a simple subject to learn, but read the corresponding chapter about NAT traversal from Practical JXTA II (available online on Scribd) to understand the nature of the issues to solve.
Then, read this. It comes from the guy who wrote that: http://nutss.gforge.cis.cornell.edu/stunt.php (one of the links in your question).
I am not a C/C++ specialist, but the issues to solve are not language specific. As long as you have access to TCP from your code base, that's enough. Keep in mind that implementing UDP traversal is easier than TCP.
Hope these tips help.
P.S.: I am not aware of a C/C++ implementation of the solution. The code mentioned in Cornell's link is NOT operational as confirmed by the author. I tried to resuscitate it myself, but he let me know it was completely tweaked for research purposes and far from production ready.
I'm not aware of any way to reliably punch through firewalls for TCP, but there's a similar method for UDP traffic that's pretty well documented:
http://en.wikipedia.org/wiki/STUN
http://en.wikipedia.org/wiki/UDP_hole_punching
A few links to projects that might be of interest or helpful:
http://sourceforge.net/projects/stun/
http://udt.sourceforge.net/
http://www.telehash.org/
You're looking for rendezvous server for NAT hole punching: the server that is publicly accessible (not behind NAT/firewall or they are properly configured) to help computers behind NAT/firewall to establish peer-to-peer connection.
UDP is more popular in NAT punching because provides much better results than TCP. Clear and informative description of UDP NAT hole punching can be found here.
If you need reliable communication, you can use reliable protocols over UDP:
SCTP (libraries) - standardized one, or
one of many custom protocols, e.g. RakNet (I used this library, it's quite mature and feature-rich and has NAT punching implementation), Enet or many others (Q8)
Ephemeral ports won't magically eliminate the need to relay through the server, because they are only valid during the life of the session opened through a well known service port. Basically ephemeral ports depend on a server session.
You will need to use the server to relay communications between both clients, that is act as a proxy server. One option would be to setup a SSH tunnel through a SSH proxy server, with the added benefit of security.
Still this doesn't guarantee that the firewall won't block the connection. That depends on the firewall type and configuration. Most residential routers that act as firewalls, by default block all incoming connections. This is normally fine because most of the time the computers behind the firewall act only as clients, which initiate the connections to the outside. And this setup varies, because some restrict initiating connections only to well known service ports like HTTP, HTTPS, FTP, SFTP, SSH, etc., and if your proxy server uses a non-well-known-service port then the connection will be blocked.
But firewalls can be setup to block outgoing traffic also, this is most common in corporate networks, which don't even allow direct connections to web servers and route everything through proxy servers, in order to control resource usage.
You can also research on the use of UPnP to open ports dynamically.

Protocol/Infrastructure for communicating between applications over a network

I have a C++ application that currently uses a simple TCP/IP client/server model to communicate between 2 instances of itself. This works fine on a local network, but I would like this to be used across an external network. Currently, maybe due to firewall issues, it is not able to connect across an external network.
I am not an expert on networking, but I was thinking about having a dedicated server in the middle acting as a hub for communications. Will this mitigate firewall issues?
How do networked games communicate with each other? Is there usually a server in the middle or is it peer-to-peer?
In any case, I'd appreciate any advice on protocols and infrastructure to implement a network enabled application.
Regards
I think the problem is dedicated to the NAT as mentioned by cnicutar.
Maybe you want to have a look at libupnp for automatic port forwarding in the hardware firewalls (your router at home)
There is no de facto architecture for multiplayer network games. Both client-server (most MMOs, most PC FPS's and RTS's) and Peer-to-Peer (most console games) are valid approaches.
Juoni Smed's survey in his book "Algorithms and Networking for Computer Games" is a pretty good overview of the different architectures in the wild.
For the specific issues you're talking about, your need for a proxy server, as others have noted, is probably down to NAT issues - the two machines you're trying to get talking do not have public IP addresses. If you want to pursue a Peer-to-Peer architecture (or to have one of your clients act as the server, as many modern Client-Server games do) you will need your clients to talk directly to each other. This can be achieved with NAT Traversal, unfortunately this is a fiddly process.
Luckily you can use a modern framework like the excellent Raknet which includes State Synchronisation, Remote Procedure Calls AND NAT Traversal out of the box. It's free for hobbyist use and is incorporated in to several modern industrial-grade game engines.
The bane of modern internet communications is NAT. Due to NAT (which shouldn't be confused with a simple firewall) a large portion of hosts on the internet don't have a public address and thus can't (easily) accept incoming connections. NAT breaks the internet so badly that people are moving to a totally different scheme, with slightly different semantics, just to get rid of it.
There are basically two class of solutions
NAT traversal which is sometimes used for peer-to-peer communication. Usually NAT traversal schemes require some publicly accessible server for brokering the initial connection, but the actual communication is done peer-to-peer
Client-server communication. This is easier (since the server generally should have a publicly accessible address) but also kind of inefficient. For instance, say you've got a peer on the same 10Gb LAN. If you want to send him a file through the server (which happens to be in another country) it's going to take ages instead of seconds.
I'm not sure which one is "generally used". But think of it this way:
If there is the logical need for a "controller" (say 8 people are playing a strategy game) then you probably need a server
If any two peers can logically interact without a "controller", you probably want peer-to-peer communication
If you need to transfer LOTS of data fast (file transfer), you almost surely want p2p.
The easiest way to accomplish what you want is by using sockets(in case you are doing it differently). The way you are connecting your app is usually how it's done. Also if it work sin a local network and it does not over the Internet it must be a firewall issue so try opening ports in your router configuration.
You will have to give more info about your program in order to explain if you should go with peer-to-peer or with a server.

Socket writing problem with TCP/IP

I am using TCP/IP socket example i.e. "echoclient", and I am facing problems with writing and reading.
I am connecting to server socket but it shows null data. I don't know whether it is data conversion problem or any other issue.
Download Wireshark and see if it helps debug. It can peek all network traffic.
In case if you are connecting via mobile, check with your GPRS/EDGE/3G service provider if they are not restricting arbitrary IPs ?
Also in case if you're connecting from Simulator on PC, check if you have Proxies over your network before internet ?
It is always a good idea to use well tested libraries and implementation. Socket programming is c++ requires good understanding of OS if you want to write potable code.
Try Ace Wrappers - http://www.cs.wustl.edu/~schmidt/ACE.html It provide well tested pattern based C++ implementation for distributed network programming.