Resetting array using indices - c++

I have an array whose size and values keep changing during execution all the time.
I want to do that with minimum possible performance overhead.
Instead ochanging array size I simply have member int variables indicating start and end Index and I expect consumer of this array to use these indices in the foor loop. The risk is, if the consumer does not use the start and endindex it may end up causing error. Is there a better way of doing that?
So what I have is:
MyClass
{
public:
BusinessClass myArray[MAX_COUNT];//the array
int StartIndex; //start index
int EndIndex; //End index
Logic()
{
//modified the array and changes start and end index
}
}
MyConsumer
{
MyClass obj;
public:
void ReadArray()
{
for (int i = obj.StartIndex ; i <obj.EndIndex; i++)
{
//perform logic
}
}
}

Instead of exposing the underlying array, you could have a length method that returns EndIndex-StartIndex, and an array operator that returns an item from the array offset by the value of the StartIndex.
The you would access the items in the array like this:
for (int i = 0; i < obj.length(); i++) {
BusinessClass &item = obj[i];
}
The MyClass class would look something like this:
class MyClass {
public:
size_t length() const {
return EndIndex - StartIndex;
};
BusinessClass &operator[](size_t off) {
return myArray[StartIndex+off];
};
private:
BusinessClass myArray[MAX_COUNT];
int StartIndex; //start index
int EndIndex; //End index
};

Related

Delete Zero in ArrayList in C++

Inside the ArrayList I'm trying to delete all possible 0's that are appended as input, but for now it only deletes just one 0, no matter where it is located. But seems like I can't delete more than one zero at the time. How can I fix this?
void AList::elimZeros(){
int i;
int curr = 0;
for(i=0; i < listSize; i++) {
if ( (listArray[i] != 0 ) && (curr<listSize) ){
listArray[curr] = listArray[i];
curr++;
}
else if (listArray[i] == 0 )
{
listArray[curr] = listArray[i+1];
listSize--;
curr++;
}
}
}
This is the class for the ADT
class AList : public List {
private:
ListItemType* listArray; // Array holding list elements
static const int DEFAULT_SIZE = 10; // Default size
int maxSize; // Maximum size of list
int listSize; // Current # of list items
int curr; // Position of current element
// Duplicates the size of the array pointed to by listArray
// and update the value of maxSize.
void resize();
public:
// Constructors
// Create a new list object with maximum size "size"
AList(int size = DEFAULT_SIZE) : listSize(0), curr(0) {
maxSize = size;
listArray = new ListItemType[size]; // Create listArray
}
~AList(); // destructor to remove array
This is the input I'm testing with:
int main() {
AList L(10);
AList L2(20);
L.append(10);
expect(L.to_string()=="<|10>");
L.append(20);
expect(L.to_string()=="<|10,20>");
L.append(30);
L.append(0);
L.append(40);
L.append(0);
L.append(0);
expect(L.to_string()=="<|10,20,30,0,40>");
L.elimZeros();
expect(L.to_string()=="<|10,20,30,40>");
assertionReport();
}
It'd be helpful if you posted the class code for AList. Think you confused Java's ArrayList type, but assuming you're using vectors you can always just do:
for (int i = 0; i < listSize; i++) {
if(listArray[i] == 0) listArray.erase(i);
}
EDIT: Assuming this is the template of for the AList class, then there is simply a remove() function. In terms of your code, there are two issues.
You reference listSize in the for loop, then decrement it inside of the loop. Each iteration evaluates the value separately so you're reducing the number of total loop iterations and stopping early.
The other thing is if the entry is zero you shouldn't increment curr and set listArray[curr] = listArray[i+1]. This is basically assuming the next entry will not be a zero. So if it is, then you're copying the element and moving to the next. Your if statement can be cleaned up with:
if (listArray[i] == 0) {
listSize--;
} else {
listArray[curr] = listArray[i];
curr++;
}

Arrays with unknown size on Arduino

I'm doing an Arduino project and I need to pass arrays with different sizes as parameter to my function.
The problem is that std::vector is not an option.
How can I do that?
The fallback is to pass a pointer to the first element in the array and the size:
void foo(int* arr, size_t size);
The reason for std::vector not being available on some platforms is that on some platforms dynamic allocations is a bad idea. However, once you are dynamically allocating arrays:
int* x = new int[42];
foo(arr,42); // array decays to pointer
delete[] x;
then you could as well use std::vector.
If std::vector is not available to you, then either search for an alternative (maybe this?) or write your own. The pointer + size approach is fragile and not recommended unless absolutely necessary. The power of std::vector is from the abstract concept to encapsulate the array, its size and capacity. Nobody can prevent you to apply that concept even if you cannot use std::vector.
In case you are talking about statically sized arrays, then thats not quite the use case for std::vector. You do not need dynamic allocation, and you can pass arrays by reference. I won't repeat here what you can find in this answer (std::array) or here (c-arrays).
Something like this should work
template<size_t N>
void DaFunction(std::array<int, N>& daArray)
you can do it without having to deal with memory allocation or pointers just by creating a string variable and a limited size array and then you start shifting
#include <Arduino.h>
class ArrayShifter
{
private:
// String Reservoire Tank
String _text;
// a fixed size array of 5 in my case (depending on the amount of data you expect)
String _viewPortArray[5];
int _size = 0;
// Methode to fill the array
bool shiftArray(int position);
public:
ArrayShifter(/* args */);
// Method that gets the text from Serial
String getSerialText();
// get data from the array
String getArrayData(int index);
// array size getter
int getSize();
//clear the array
void clearArray();
//remove item
void removeArrayItem(int index);
};
ArrayShifter::ArrayShifter(/* args */)
{
}
String ArrayShifter::getSerialText()
{
// lesteing to the serial and returning the value
_text = Serial.readString();
return _text;
}
bool ArrayShifter::shiftArray(int position)
{
/*Assuming that the data is comming separated with ";" for each row and ":" for each value
to optimize the size of array in this way :
name:value;age:value;gender:value;
*/
String text = getSerialText();
int index = 0;
_size = 0;
if (text.length() > 0) // text isn't empty
{
if (position <= 5) // if the data belongs to the first 5 range
{
for (int i = 0; i < 5; i++)
{
// get the index of our separator that we've chosed to be ";"
index = text.indexOf(";");
if (index > 0)
{
// index found
_size++;
// putting the value before ";" in the array
_viewPortArray[i] = text.substring(0, index);
// deleting the value from the tank
text = text.substring(index + 1);
}
}
}
else
{
_size = 0;
// to wich range the desired index belongs
unsigned int dataRange = ((position - position % 5));
int ghostIndex = 0;
// looping throught all ";" to get indexes
for (int i = 0; i < dataRange; i++)
{
ghostIndex = text.indexOf(";");
if (ghostIndex > 0)
{
_size++;
text = text.substring(ghostIndex + 1);
}
}
// grabing just 5 of the data
for (int i = 0; i < 5; i++)
{
if (ghostIndex > 0)
{
_size++;
_viewPortArray[i] = text.substring(0, ghostIndex);
text = text.substring(ghostIndex + 1);
}
// updating ghost index
ghostIndex = text.indexOf(';');
}
}
return true;
}
return false;
}
String ArrayShifter::getArrayData(int index)
{
// turn the roulette
if (shiftArray(index))
{
if (index <= 5)
{
// yes we have this
return _viewPortArray[index];
}
else
{
// but we have to put it in the range of 5
index = index - 5;
return _viewPortArray[index];
}
}
}
int ArrayShifter::getSize()
{
return _size;
}
void ArrayShifter::clearArray()
{
for(int i = 0 ; i <5 ; i ++)
{
_viewPortArray->remove(i);
_size = 0;
}
}
void ArrayShifter::removeArrayItem(int index)
{
_viewPortArray->remove(index);
_size--;
}
main class :
#include <Arduino.h>
#include <ArrayShifter.h>
ArrayShifter array;
void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
while (!Serial){}
}
void loop() {
if(Serial.available()>0)
{
Serial.println(array.getArrayData(7));
int sizeOption2 = array.getSize();
Serial.println(sizeOption2);
array.removeArrayItem(7);
Serial.println(array.getArrayData(7));
}
}
please check my github repository
https://github.com/Riadam/ViewPort-Array-Shifter-for-Arduino-Uno.git

program crashes after assigning values to array elements

I have a class with name setaddress containing a structure that contains a 2D array:int WaterMeterIDs[20][2];
namespace Ui {
class SetAddress;
}
class SetAddress : public QDialog
{
Q_OBJECT
public:
struct AddressList{
int WaterMeterIDs[20][2];
};
explicit SetAddress(QWidget *parent = 0);
~SetAddress();
etc...
private:
Ui::SetAddress *ui;
AddressList m_address;
I want to save my data that is in a qtablewidget cells using this commands
in my .cpp file:
void SetAddress::on_pushButton_apply_clicked()
{
int rowscount = ui->tableWidget->rowCount();
//rowscount is always less than 20
for(int j = 0; j < 2; j++){
for(int i = 0; i < rowscount; i++){
if(ui->tableWidget->item(i,j) != 0x0 ){//if cell is not empty
m_address.WaterMeterIDs[i][j] = ui->tableWidget->item(i,j)->text().toInt();//convert data to int and put it in array
qDebug()<<m_address.WaterMeterIDs[i][j];
}
}
}
}
when I click on apply button the program works good(I can see array elements using qDebug()).
but after I pressed the apply button if I press any other key even the close button(or even if I want to resize the window) program crashes!
can you see any mistake in my code?
Even if you are sure that your indexes are within range, there's nothing in the code you've shown us that makes really sure that's the case, so I'd replace your array with this:
#include <array>
class AddressList{
std::array<std::array<int, 2>, 20> WaterMeterIDs;
public:
inline constexpr int& at(size_t row, size_t col) {
return WaterMeterIDs.at(row).at(col);
}
inline constexpr int const& at(size_t row, size_t col) const {
return WaterMeterIDs.at(row).at(col);
}
};
Then access the array via the at() function:
// set value
m_address.at(i,j) = ...
// log value
qDebug() << m_address.at(i,j);
That should make you sure that nothing slipped through the cracks regarding your 2D array.
And I'd check that ui->tableWidget->columnCount() >= 2 before the loop, just to rule that out too:
int colcount = std::min(2, ui->tableWidget->columnCount());
for(int j = 0; j < colcount; ++j) {
...

dynamic memory allocation with arrays in c++

I am trying to insert an int into an array that is in a class object, and I cannot figure out what I am doing wrong. The current state of my code never inserts the int into the array.
Basically what I am trying to do is when i call insert(int) it will check to to see if there is any room left in the array, and if there is it will add it, otherwise it would reallocate with 8 more spaces in the array.
here is some relevant class info
private:
unsigned Cap; // Current capacity of the set
unsigned Num; // Current count of items in the set
int * Pool; // Pointer to array holding the items
public:
// Return information about the set
//
bool is_empty() const { return Num == 0; }
unsigned size() const { return Num; }
unsigned capacity() const { return Cap; }
// Initialize the set to empty
//
Set()
{
Cap = Num = 0;
Pool = NULL;
}
here is the code i am working on
bool Set::insert(int X)
{
bool Flag = false;
if (Num == Cap)
{
//reallocate
const unsigned Inc = 8;
int * Temp = new int[Cap+Inc];
for (unsigned J=0;J<Num;J++)
{
Temp[J] = Pool[J];
}
delete [] Pool;
Pool = Temp;
Cap = Cap+Inc;
}
if(Num < Cap)
{
Pool[Num+1] = X;
Flag = true;
}
return Flag;
}
Your insert function never updates Num. Try Pool[Num++] = X; or something like that.
You probably want to increment the number of element but only after copying the new element in: the first element should have index 0. Basically, your insert() function should look something like this:
bool Set::insert(int X)
{
if (Num == Cap)
{
const unsigned Inc(std::max(8, 2 * Cap));
std::unique_ptr<int[]> Temp(new int[Cap+Inc]);
std::copy(Pool.get(), Pool.get() + Num, Temp.get());
Pool.swap(Temp);
Cap += Inc;
}
Pool[Num] = X;
++Num;
return true;
}
Of course, this assumes that Pool is reasonably declared as std::unique_ptr<int[]> (or something with similar functionality which is easy to write if necessary). The reason to use std::unique_ptr<int[]> rather than raw pointers is that they automatically clean up resources when they are destroyed. Copying a sequence of ints won't throw an exception but if int get's replaced by a std::string or a template parameters there is potential to throw exceptions.

Dynamically allocating array of objects

I need a double pointer of type DizzyCreature (my class) to point to an array of DizzyCreature pointers. When I run it I get "Access violation reading location 0x...". I can make a DizzyCreature* and call its member functions just fine, but when cannot run through the array and do the same thing for each obj.
I am following these instructions:
http://www.cplusplus.com/forum/beginner/10377/
Code
Server.h:
class Server
{
public:
Server(int x, int y, int count);
~Server(void);
void tick();
private:
DizzyCreature** dcArrPtr;
DizzyCreature* dcPtr;
int _count;
};
Server.cpp:
Server::Server(int x, int y, int count)
{
dcPtr = new DizzyCreature[count]; // this works just fine
dcArrPtr = new DizzyCreature*[count]; // this doesn't (but gets past this line)
_count = count;
}
Server::~Server(void)
{
delete[] *dcArrPtr;
delete[] dcPtr;
}
void Server::tick()
{
dcPtr->takeTurn(); // just fine
for (int i = 0; i < _count; i++) {
dcArrPtr[i]->takeTurn(); // crash and burn
}
}
EDIT:
The member function takeTurn() is in a parent class of DizzyCreature. The program makes it into the function, but as soon as it attempts to change a private member variable the exception is thrown. If it matters, DizzyCreature is of type GameCreature and WhirlyB as this is an assignment on MI.
You have allocated space for dcArrPtr, but didn't allocate every object in this array. You must do following:
Server::Server(int x, int y, int count)
{
dcPtr = new DizzyCreature[count];
dcArrPtr = new DizzyCreature*[count];
for ( int i = 0; i < count; i++ ) {
dcArrPtr[ i ] = new DizzyCreature;
}
_count = count;
}
Server::~Server(void)
{
for ( int i = 0; i < count; i++ ) {
delete dcArrPtr[ i ];
}
delete[] *dcArrPtr;
delete[] dcPtr;
}
This:
dcPtr = new DizzyCreature[count];
"creates" an array of DizzyCreatures, whereas:
dcArrPtr = new DizzyCreature*[count];
"creates" an array of pointers to DizzyCreatures, but crucially doesn't create instances for those pointers to point to.
The preferred solution is to use a standard container for tasks like this anyway though. If you really want to do it like this (and are aware that it's not best practice to do this manually) then you'll need a loop to call new for eachelement in the array of pointers.
You allocate an array of count pointers instead of an array of count objects.
Instead of
dcArrPtr = new DizzyCreature*[count];
you might want to
dcArrPtr = new DizzyCreature[count];
You're allocating an array of pointers, but those pointers aren't valid until you set them to something.
double **arr = new double*[10];
for(int i=0;i<10;++i) {
arr[i] = new double[10];
}
That said, when starting out with C++ you should probably avoid raw arrays and instead use std::array and std::vector:
class Server
{
public:
Server(int x, int y, int count);
void tick();
private:
std::vector<std::vector<DizzyCreature>> dcArrPtr;
std::vector<DizzyCreature> dcPtr;
};
Server::Server(int x, int y, int count)
{
dcPtr.resize(count);
dcArrPtr.resize(count);
}
void Server::tick()
{
dcPtr[0].takeTurn();
for (int i = 0; i < dcArrPtr.size(); i++) {
dcArrPtr[i][0].takeTurn();
}
}
Use a
std::vector<std::vector<DizzyCreature>>
Furthermore, if you want to use raw pointers (which I do not recommend), you'll have to allocate memory for each pointer in your array.
class A
{
std::vector<std::vector<int>> v_;
public:
A()
: v_(500, std::vector<int>(500))
{} // 500 x 500
};
class B
{
int** v_;
public:
B()
: v_(new int*[500])
{ // not even exception safe
for (int i = 500; i--; )
v_[i] = new int[500];
}
~B()
{
for (int i = 500; i--; )
delete[] v_[i];
delete[] v_;
}
};
If you would have seen the implementation of dynamic memory allocation of 2-Dimensional array . That would have given you a better insight of how to proceed in such cases . Most of the answers has already answered you what to do . But just go through any link and see how is memory allocated in case of 2-D array . That Will also help you .