C++ template automatic type promotion - c++

template <class T>
class Foo {
public:
T val;
Foo(T _v): val(_v){}
friend ostream& operator<< (ostream& out, const Foo& A) {
out << A.val;
return out;
}
};
template <class X, class Y> Foo<???> operator+(const Foo<X>& A, const Foo<Y> & B) {
if (sizeof(X) > sizeof (Y))
return Foo<X>(A.val + B.val);
else
return Foo<Y>(A.val + B.val);
}
int main() {
Foo<double> a(1.5);
Foo<int> b(2);
cout << a << endl;
cout << b << endl;
cout << a+b << endl;
}
My goal is to have the operator+ function to return different type based on types of the arguments.
For example, if a is int and b is int then return Foo<int>, if one or both of them are double then return Foo<double>.
Is it possible to do?

(C++11): Use a declval expression inside dectype:
#include <utility>
template <class X, class Y>
Foo<decltype(std::declval<X>() + std::declval<Y>())> operator+(...);

This is possible (in C++03 or C++11) using partial template specializations.
// C++ does not allow partial specialization of function templates,
// so we're using a class template here.
template <typename X, typename Y, bool xLarger>
struct DoPlusImpl // When x is selected
{
typedef Foo<X> result_type;
};
template <typename X, typename Y>
struct DoPlusImpl<X, Y, false> // When y is selected
{
typedef Foo<Y> result_type;
};
template <typename X, typename Y> // Select X or Y based on their size.
struct DoPlus : public DoPlusImpl<X, Y, (sizeof (X) > sizeof (Y))>
{};
// Use template metafunction "DoPlus" to figure out what the type should be.
// (Note no runtime check of sizes, even in nonoptimized builds!)
template <class X, class Y>
typename DoPlus<X, Y>::result_type operator+(const Foo<X>& A, const Foo<Y> & B) {
return typename DoPlus<X, Y>::result_type
(A.val + B.val);
}
You can see this in action on IDEOne here -> http://ideone.com/5YE3dg

Yes ! Here is the way if you want to give your own rules:
template <typename X, typename Y> struct Rule {};
template<> struct Rule<int, int> { typedef int type;};
template<> struct Rule<float, int> { typedef bool type;};
Then
template <class X, class Y> Foo<typename Rule<X, Y>::type> operator+(...)

Related

Equality condition in containers [duplicate]

I am trying to create an example, which would check the existence of the operator== (member or, non-member function). To check whether a class has a member operator== is easy, but how to check whether it has a non-member operator==?
This is what I have to far :
#include <iostream>
struct A
{
int a;
#if 0
bool operator==( const A& rhs ) const
{
return ( a==rhs.a);
}
#endif
};
#if 1
bool operator==( const A &l,const A &r )
{
return ( l.a==r.a);
}
#endif
template < typename T >
struct opEqualExists
{
struct yes{ char a[1]; };
struct no { char a[2]; };
template <typename C> static yes test( typeof(&C::operator==) );
//template <typename C> static yes test( ???? );
template <typename C> static no test(...);
enum { value = (sizeof(test<T>(0)) == sizeof(yes)) };
};
int main()
{
std::cout<<(int)opEqualExists<A>::value<<std::endl;
}
Is it possible to write a test function to test the existence of non-member operator==?
If yes, how?
btw I have checked similar questions, but haven't found a proper solution :
Is it possible to use SFINAE/templates to check if an operator exists?
This is what I tried :
template <typename C> static yes test( const C*,bool(*)(const C&,constC&) = &operator== );
but the compilation fails if the non-member operator== is removed
C++03
The following trick works and it can be used for all such operators:
namespace CHECK
{
class No { bool b[2]; };
template<typename T, typename Arg> No operator== (const T&, const Arg&);
bool Check (...);
No& Check (const No&);
template <typename T, typename Arg = T>
struct EqualExists
{
enum { value = (sizeof(Check(*(T*)(0) == *(Arg*)(0))) != sizeof(No)) };
};
}
Usage:
CHECK::EqualExists<A>::value;
The 2nd template typename Arg is useful for some special cases like A::operator==(short), where it's not similar to class itself. In such cases the usage is:
CHECK::EqualExists<A, short>::value
// ^^^^^ argument of `operator==`
Demo.
C++11
We need not use sizeof and null reference trick when we have decltype and std::declval
namespace CHECK
{
struct No {};
template<typename T, typename Arg> No operator== (const T&, const Arg&);
template<typename T, typename Arg = T>
struct EqualExists
{
enum { value = !std::is_same<decltype(std::declval<T>() < std::declval<Arg>()), No>::value };
};
}
Demo
Have a look at Boost's Concept Check Library (BCCL) http://www.boost.org/doc/libs/1_46_1/libs/concept_check/concept_check.htm.
It enables you to write requirements that a class must match in order for the program to compile. You're relatively free with what you can check. For example, verifying the presence of operator== of a class Foo would write as follow:
#include <boost/concept_check.hpp>
template <class T>
struct opEqualExists;
class Foo {
public:
bool operator==(const Foo& f) {
return true;
}
bool operator!=(const Foo& f) {
return !(*this == f);
}
// friend bool operator==(const Foo&, const Foo&);
// friend bool operator!=(const Foo&, const Foo&);
};
template <class T>
struct opEqualExists {
T a;
T b;
// concept requirements
BOOST_CONCEPT_USAGE(opEqualExists) {
a == b;
}
};
/*
bool operator==(const Foo& a, const Foo& b) {
return true; // or whatever
}
*/
/*
bool operator!=(const Foo& a, const Foo& b) {
return ! (a == b); // or whatever
}
*/
int main() {
// no need to declare foo for interface to be checked
// declare that class Foo models the opEqualExists concept
// BOOST_CONCEPT_ASSERT((opEqualExists<Foo>));
BOOST_CONCEPT_ASSERT((boost::EqualityComparable<Foo>)); // need operator!= too
}
This code compiles fine as long as one of the two implementations of operator== is available.
Following #Matthieu M. and #Luc Touraille advice, I updated the code snippet to provide an example of boost::EqualityComparable usage. Once again, please note that EqualityComparable forces you to declare operator!= too.
It's also possible to use only c++11 type traits to check the existence of the member:
#include <type_traits>
#include <utility>
template<class T, class EqualTo>
struct has_operator_equal_impl
{
template<class U, class V>
static auto test(U*) -> decltype(std::declval<U>() == std::declval<V>());
template<typename, typename>
static auto test(...) -> std::false_type;
using type = typename std::is_same<bool, decltype(test<T, EqualTo>(0))>::type;
};
template<class T, class EqualTo = T>
struct has_operator_equal : has_operator_equal_impl<T, EqualTo>::type {};
You can use the trait like so:
bool test = has_operator_equal<MyClass>::value;
The resulting type of has_operator_equal will either be std::true_type or std::false_type (because it inherits from an alias of std::is_same::type), and both define a static value member which is a boolean.
If you want to be able to test whether your class defines operator==(someOtherType), you can set the second template argument:
bool test = has_operator_equal<MyClass, long>::value;
where the template parameter MyClass is still the class that you are testing for the presence of operator==, and long is the type you want to be able to compare to, e.g. to test that MyClass has operator==(long).
if EqualTo (like it was in the first example) is left unspecified, it will default to T, result in the normal definition of operator==(MyClass).
Note of caution: This trait in the case of operator==(long) will be true for long, or any value implicitly convertible to long, e.g. double, int, etc.
You can also define checks for other operators and functions, just by replacing what's inside the decltype. To check for !=, simply replace
static auto test(U*) -> decltype(std::declval<U>() == std::declval<V>());
with
static auto test(U*) -> decltype(std::declval<U>() != std::declval<V>());
C++20
I guess you want to check whether a user-provided type has equality operator or not; if that is the case then Concepts are here to help.
#include <concepts>
struct S{
int x;
};
template<std::equality_comparable T>
bool do_magic(T a, T b)
{
return a == b;
}
int main()
{
// do_magic(S{}, S{}); Compile time error
do_magic(56, 46); // Okay: int has == and !=
}
If you pass any type that does not have == and != defined, the compiler just errors out with message, e.g.:
equality_comparable concept not satisfied by type
You can also use std::equality_comparable_with<T, U> concept to check for those overload between two different types.
There are many more concepts that have been added to standards such as std::incrementable etc.. Have a look at Standard Library concepts as a good starting point.
As of c++14, the standard binary functions do most of the work for us for the majority of operators.
#include <utility>
#include <iostream>
#include <string>
#include <algorithm>
#include <cassert>
template<class X, class Y, class Op>
struct op_valid_impl
{
template<class U, class L, class R>
static auto test(int) -> decltype(std::declval<U>()(std::declval<L>(), std::declval<R>()),
void(), std::true_type());
template<class U, class L, class R>
static auto test(...) -> std::false_type;
using type = decltype(test<Op, X, Y>(0));
};
template<class X, class Y, class Op> using op_valid = typename op_valid_impl<X, Y, Op>::type;
namespace notstd {
struct left_shift {
template <class L, class R>
constexpr auto operator()(L&& l, R&& r) const
noexcept(noexcept(std::forward<L>(l) << std::forward<R>(r)))
-> decltype(std::forward<L>(l) << std::forward<R>(r))
{
return std::forward<L>(l) << std::forward<R>(r);
}
};
struct right_shift {
template <class L, class R>
constexpr auto operator()(L&& l, R&& r) const
noexcept(noexcept(std::forward<L>(l) >> std::forward<R>(r)))
-> decltype(std::forward<L>(l) >> std::forward<R>(r))
{
return std::forward<L>(l) >> std::forward<R>(r);
}
};
}
template<class X, class Y> using has_equality = op_valid<X, Y, std::equal_to<>>;
template<class X, class Y> using has_inequality = op_valid<X, Y, std::not_equal_to<>>;
template<class X, class Y> using has_less_than = op_valid<X, Y, std::less<>>;
template<class X, class Y> using has_less_equal = op_valid<X, Y, std::less_equal<>>;
template<class X, class Y> using has_greater_than = op_valid<X, Y, std::greater<>>;
template<class X, class Y> using has_greater_equal = op_valid<X, Y, std::greater_equal<>>;
template<class X, class Y> using has_bit_xor = op_valid<X, Y, std::bit_xor<>>;
template<class X, class Y> using has_bit_or = op_valid<X, Y, std::bit_or<>>;
template<class X, class Y> using has_left_shift = op_valid<X, Y, notstd::left_shift>;
template<class X, class Y> using has_right_shift = op_valid<X, Y, notstd::right_shift>;
int main()
{
assert(( has_equality<int, int>() ));
assert((not has_equality<std::string&, int const&>()()));
assert((has_equality<std::string&, std::string const&>()()));
assert(( has_inequality<int, int>() ));
assert(( has_less_than<int, int>() ));
assert(( has_greater_than<int, int>() ));
assert(( has_left_shift<std::ostream&, int>() ));
assert(( has_left_shift<std::ostream&, int&>() ));
assert(( has_left_shift<std::ostream&, int const&>() ));
assert((not has_right_shift<std::istream&, int>()()));
assert((has_right_shift<std::istream&, int&>()()));
assert((not has_right_shift<std::istream&, int const&>()()));
}
I know this question has long since been answered but I thought it might be worth noting for anyone who finds this question in the future that Boost just added a bunch of "has operator" traits to their type_traits library, and among them is has_equal_to, which does what OP was asking for.
This question has already been answered several times, but there is a simpler way to check for the existence of operator== or basically any other operation (e.g., testing for a member function with a certain name), by using decltype together with the , operator:
namespace detail
{
template<typename L, typename R>
struct has_operator_equals_impl
{
template<typename T = L, typename U = R> // template parameters here to enable SFINAE
static auto test(T &&t, U &&u) -> decltype(t == u, void(), std::true_type{});
static auto test(...) -> std::false_type;
using type = decltype(test(std::declval<L>(), std::declval<R>()));
};
} // namespace detail
template<typename L, typename R = L>
struct has_operator_equals : detail::has_operator_equals_impl<L, R>::type {};
You can use this same approach to check if a type T has a member function foo which is invocable with a certain argument list:
namespace detail
{
template<typename T, typename ...Args>
struct has_member_foo_impl
{
template<typename T_ = T>
static auto test(T_ &&t, Args &&...args) -> decltype(t.foo(std::forward<Args>(args)...), void(), std::true_type{});
static auto test(...) -> std::false_type;
using type = decltype(test(std::declval<T>(), std::declval<Args>()...));
};
} // namespace detail
template<typename T, typename ...Args>
struct has_member_foo : detail::has_member_foo_impl<T, Args...>::type {};
I think this makes the intent of the code much clearer. In addition to that, this is a C++11 solution, so it doesn't depend on any newer C++14 or C++17 features. The end result is the same, of course, but this has become my preferred idiom for testing these kinds of things.
Edit: Fixed the insane case of the overloaded comma operator, I always miss that.
Lets consider a meta-function of the following form, which checks for the existence of equality operator (i.e ==) for the given type:
template<typename T>
struct equality { .... };
However, that might not be good enough for some corner cases. For example, say your class X does define operator== but it doesn't return bool, instead it returns Y. So in this case, what should equality<X>::value return? true or false? Well, that depends on the specific use case which we dont know now, and it doesn't seem to be a good idea to assume anything and force it on the users. However, in general we can assume that the return type should be bool, so lets express this in the interface itself:
template<typename T, typename R = bool>
struct equality { .... };
The default value for R is bool which indicates it is the general case. In cases, where the return type of operator== is different, say Y, then you can say this:
equality<X, Y> //return type = Y
which checks for the given return-type as well. By default,
equality<X> //return type = bool
Here is one implementation of this meta-function:
namespace details
{
template <typename T, typename R, typename = R>
struct equality : std::false_type {};
template <typename T, typename R>
struct equality<T,R,decltype(std::declval<T>()==std::declval<T>())>
: std::true_type {};
}
template<typename T, typename R = bool>
struct equality : details::equality<T, R> {};
Test:
struct A {};
struct B { bool operator == (B const &); };
struct C { short operator == (C const &); };
int main()
{
std::cout<< "equality<A>::value = " << equality<A>::value << std::endl;
std::cout<< "equality<B>::value = " << equality<B>::value << std::endl;
std::cout<< "equality<C>::value = " << equality<C>::value << std::endl;
std::cout<< "equality<B,short>::value = " << equality<B,short>::value << std::endl;
std::cout<< "equality<C,short>::value = " << equality<C,short>::value << std::endl;
}
Output:
equality<A>::value = 0
equality<B>::value = 1
equality<C>::value = 0
equality<B,short>::value = 0
equality<C,short>::value = 1
Online Demo
Hope that helps.
c++17 slightly modified version of Richard Hodges godbolt
#include <functional>
#include <type_traits>
template<class T, class R, class ... Args>
std::is_convertible<std::invoke_result_t<T, Args...>, R> is_invokable_test(int);
template<class T, class R, class ... Args>
std::false_type is_invokable_test(...);
template<class T, class R, class ... Args>
using is_invokable = decltype(is_invokable_test<T, R, Args...>(0));
template<class T, class R, class ... Args>
constexpr auto is_invokable_v = is_invokable<T, R, Args...>::value;
template<class L, class R = L>
using has_equality = is_invokable<std::equal_to<>, bool, L, R>;
template<class L, class R = L>
constexpr auto has_equality_v = has_equality<L, R>::value;
struct L{};
int operator ==(int, L&&);
static_assert(has_equality_v<int>);
static_assert(!has_equality_v<L>);
static_assert(!has_equality_v<L, int>);
static_assert(has_equality_v<int, L>);
In addition to #coder3101 answer, concepts can help you implement any function existence tests you want to. For example, std::equality_comparable is implemented using 4 simple tests, that check the following scenarios:
For A and B variables, make sure that the following expressions are valid:
A == B, returns bool
A != B, returns bool
B == A, returns bool
B != A, returns bool
If any one of them is illegal at compile time, the program won't compile. The implementation of this test (simplified from the standard):
template <typename T> concept equality_comparable
= requires(T t, T u) {
{ t == u } -> std::convertible_to<bool>;
{ t != u } -> std::convertible_to<bool>;
{ u == t } -> std::convertible_to<bool>;
{ u != t } -> std::convertible_to<bool>;
};
As you can see, you can customize this concept and create your own concept the fulfill your conditions. For example, if you want to force only the existence of operator==, you can do something like this:
template <typename T> concept my_equality_comparable
= requires(T t, T u) {
{ t == u } -> std::convertible_to<bool>;
{ u == t } -> std::convertible_to<bool>;
};
Read more about concepts in C++20.
We can use std::equal_to<Type> (or any other overloaded struct members) to make a more generic solution if we want to test binary operators (or other binary functors).
struct No {};
template<class T, class BinaryOperator>
struct ExistsBinaryOperator>
{
enum { value = !std::is_same<decltype(std::declval<BinaryOperator>()(std::declval<T>(), std::declval<T>())), No>::value };
};
Usage:
using Type = int;
constexpr bool hasEqual = ExistsBinaryOperator<Type, std::equal_to<Type>>::value;
This should work on C++11
template <class Void, template<class...> class Type, class... Args>
struct validator
{
using value_t = std::false_type;
};
template <template<class...> class Type, class... Args>
struct validator< std::void_t<Type<Args...>>, Type, Args... >
{
using value_t = std::true_type;
};
template <template<class...> class Type, class... Args>
using is_valid = typename validator<void, Type, Args...>::value_t;
template<typename... T>
using has_equal_t = decltype((std::declval<T&>().operator ==(std::declval<T&>()), ...));
template<typename... T>
using has_gequal_t = decltype((operator ==(std::declval<T&>(),std::declval<T&>()), ...));
struct EQ
{
bool operator==(const EQ&) const;
};
struct GEQ
{
};
bool operator==(const GEQ&, const GEQ&);
struct NOEQ
{
};
static_assert(is_valid<has_equal_t,EQ>::value || is_valid<has_gequal_t,EQ>::value, "should have equal operator");
static_assert(is_valid<has_equal_t,GEQ>::value || is_valid<has_gequal_t,GEQ>::value, "should have equal operator");
// static_assert(is_valid<has_equal_t,NOEQ>::value || is_valid<has_gequal_t,NOEQ>::value, "should have equal operator"); // ERROR:
Just for a reference, I am posting how I solved my problem, without a need to check if the operator== exists :
#include <iostream>
#include <cstring>
struct A
{
int a;
char b;
#if 0
bool operator==( const A& r ) const
{
std::cout<<"calling member function"<<std::endl;
return ( ( a==r.a ) && ( b==r.b ) );
}
#endif
};
#if 1
bool operator==( const A &l,const A &r )
{
std::cout<<"calling NON-member function"<<std::endl;
return ( ( l.a==r.a ) &&( l.b==r.b ) );
}
#endif
namespace details
{
struct anyType
{
template < class S >
anyType( const S &s ) :
p(&s),
sz(sizeof(s))
{
}
const void *p;
int sz;
};
bool operator==( const anyType &l, const anyType &r )
{
std::cout<<"anyType::operator=="<<std::endl;
return ( 0 == std::memcmp( l.p, r.p, l.sz ) );
}
} // namespace details
int main()
{
A a1;
a1.a=3;a1.b=0x12;
A a2;
a2.a=3;a2.b=0x12;
using details::operator==;
std::cout<< std::boolalpha << "numbers are equals : " << ( a1 == a2 ) <<std::endl;
}
IMO, this must be part of the class itself as it's deals with the private attributes of the class. The templates are interpreted at compile time. By default it generates operator==,constructor, destructor and copy constructor which do bit-wise copy (shallow copy) or bit-wise comparisons for the object of same type. The special cases (different types) must be overloaded. If you use global operator function you will have to declare the function as friend to access the private part or else you've to expose the interfaces required. Sometimes this is really ugly which may cause an unnecessary expose of a function.

In C++-17, how to detect the existence of a templated static member function at compile time

I have a templated function (Process) where I would like to perform a compile time check to see if the supplied typename (Z) has a templated static member function taking arguments of the two supplied types (X) and (Y).
Is it possible to do this with an if constexpr test and if so, what would it be?
#include <iostream>
struct A { template<typename X, typename Y> static bool compare(const X&, const Y&) { return true; } };
struct B { };
template <typename Z, typename X, typename Y>
inline void Process(X x, Y y)
{
if constexpr (std::is_invocable_v<decltype(Z::compare), const X&, const Y&> )
{
Z::compare(x,y);
}
else {
std::cout << "hi";
}
}
int main()
{
Process<A>(3,2);
Process<B>(3,2);
}
I can't think of a way to do it with if constexpr alone, without a pair of overloads to test with SFINAE. See if something like this works for you:
template <typename Z, typename X, typename Y>
auto test(X x, Y y) ->
std::enable_if_t<sizeof(decltype(Z::compare(x, y))*) != 0, std::true_type>;
template <typename Z>
std::false_type test(...);
template <typename Z, typename X, typename Y>
inline void Process(X x, Y y)
{
if constexpr (decltype(test<Z>(x, y))::value)
{
Z::compare(x,y);
}
else {
std::cout << "hi";
}
}
Demo.
This doesn't test that Z has a templated member function specifically, just that it has a static member function with the right name callable with the right arguments.

How to arbitrarily enable or disable class method based on specific type?

I have a class like this:
struct X
{
enum Type { INT, FLOAT };
using val_t = std::tuple<int, float>;
X(Type t) : type(t) {}
Type type;
template<typename T>
X& operator =(T x)
{
// ???
static_assert(T is the same as `type');
// ???
std::get<type>(val) = x;
return *this;
}
val_t val;
};
Is it possible to assert at compile time if user tries to assign incompatible value?
For example:
X x1(X::INT);
x1 = 5; // OK
x1 = 3.14; // compilation error
Note: I prefer keeping the class as not a template because I need to keep its instances in collections (like std::vector etc).
You cannot: the value of type_ is run time data, compilation errors are not determined at runtime.
You could do:
enum Type { INT, FLOAT };
template<Type type_>
struct X {
using val_t = std::tuple<int, float>;
template<typename T>
X& operator =(T x) {
// ???
static_assert((type_==INT&&std::is_same<T,int>{})||(type_==FLOAT&&std::is_same<T,float>{}),
"types do not match"
);
std::get<T>(val) = x;
return *this;
}
val_t val;
};
X<INT> x1;
x1 = 5; // OK
x1 = 3.14; // compilation error
but I do not see much point.
One way would be to have a base type that does not do the checking just stores state, and a derived that knows its type.
struct Base{
enum {INT,FLOAT} Type;
// etc
};
template<Base::Type type>
struct Derived:private Base{
Derived():Base(type){}
using Base::some_method; // expose base methods
Base& get_base()&{return *this;}
Base get_base()&&{return std::move(*this);}
Base const& get_base()const&{return *this;}
template<class T>
Derived& operator=( T o){
static_assert((type_==INT&&std::is_same<T,int>{})||(type_==FLOAT&&std::is_same<T,float>{}),
"types do not match"
);
Base::operator=(std::move(o));
return *this;
}
};
Base does not check, at best it runtime asserts. Derived checks at compile time.
Niw when you know the type statically at compile time you use Derived<INT> d;; when you do not, or need to forget, use .get_base() or a Base b(type_enum_val);.
Considering that you have Type type; you can't assert at compiletime if type is INT or FLOAT or whatever you have. For that check you can only assert at runtime.
For everything else you can do a compiletime check, and a runtime check for using some template meta-programming:
namespace detail_tuple
{
template <typename T, std::size_t N, typename... ARGS>
struct get_by_type_impl {
enum {
kIdx = N
};
};
template <typename T, std::size_t N, typename... ARGS>
struct get_by_type_impl<T, N, T, ARGS...> {
enum {
kIdx = N
};
};
template <typename T, std::size_t N, typename U, typename... ARGS>
struct get_by_type_impl<T, N, U, ARGS...> {
enum {
kIdx = get_by_type_impl<T, N + 1, ARGS...>::kIdx
};
};
}
template <typename, typename>
struct validator;
template <typename T, typename... ARGS>
struct validator < T, std::tuple<ARGS...> >
{
static void validate(const std::size_t type_idx)
{
//compiletime checks
//get index of type T in ARGS...
constexpr auto ind = detail_tuple::get_by_type_impl<T, 0, ARGS...>::kIdx;
//check if index is valid
static_assert(ind < sizeof...(ARGS), "Type index out of bounds, type T is was not found in the tuple!");
//runtime checks
if (type_idx != ind)
std::cout << "Incompatible type index!\n";
}
};
struct X
{
enum Type
{
INT = 0,
FLOAT,
TYPE_COUNT,
};
using val_t = std::tuple<int, float>;
X(Type t) : type(t) {}
Type type;
template<typename T>
X& operator =(const T& x)
{
validator<T, val_t>::validate(type);
std::get<T>(val) = x;
return *this;
}
val_t val;
};
for that std::get uses type T instead of type

C++ template operator+ overloading in inner class

How do I overload operator+ for inner class of a class template? I've searched for hours now and I can't find an answer. This is a minimal example that does not work:
#include <iostream>
using namespace std;
template <class T>
struct A
{
struct B
{
T m_t;
B(T t) : m_t(t) {}
};
};
template <class T>
typename A<T>::B operator+(typename A<T>::B lhs, int n)
{
lhs.m_t += n;
return lhs;
}
int main(int argc, char **argv)
{
A<float> a;
A<float>::B b(17.2);
auto c = b + 5;
cout << c.m_t << endl;
return 0;
}
If I compile like this, I get error: no match for ‘operator+’ (operand types are ‘A<float>::B’ and ‘int’)
I found somewhere that operator+(A<T>::B, int) should be declared, so if I add the following:
struct B;
friend B operator+(typename A<T>::B lhs, int n);
after struct A {, I get a linker error.
If I don't try to call b+5, the program compiles correctly.
How did they (STL makers) program vector<T>::iterator operator+ with an int? I can't find it anywhere (and it's kind of hard to read stl_vector.h)!
Thank you.
The problem you're facing is that when you declare a function template like:
template <class T>
typename A<T>::B operator+(typename A<T>::B lhs, int n)
typename A<T>::B lhs is a non-deduced context. There is no way for the compiler to determine what T is in that context, so it doesn't try, so it cannot find your operator+. Consider a reduced example like:
template <class T> void foo(typename T::type );
struct A { using type = int; };
struct B { using type = int; };
foo(0); // what would T be?
// how many other possible T's are there that fit?
In order for template deduction to succeed with non-deduced contexts, the template type parameter must be explicitly specified. In this case, this monstrosity of a syntax compiles:
auto c = ::operator+<float>(b, 5);
But probably isn't your intended usage!
You will need to declare the operator+ within struct B:
struct B
{
T m_t;
B(T t) : m_t(t) {}
// member
B operator+(int n) {
return B(m_t + n);
}
// or non-member, non-template friend
friend B operator+(B lhs, int n) {
lhs.m_t += n;
return lhs;
}
};
Maybe you could do something like this:
#include <iostream>
#include <type_traits>
using namespace std;
template <class T>
struct A
{
struct B
{
typedef A<T> OuterType;
T m_t;
B(T t) : m_t(t) {}
};
};
template <class T>
typename T::OuterType::B operator+(T lhs, int n)
{
lhs.m_t += n;
return lhs;
}
int main(int argc, char **argv)
{
A<float> a;
A<float>::B b(17.2);
auto c = b + 5;
cout << c.m_t << endl;
return 0;
}
Edit: This would work as the T is deducable from first operand of expression (b + 5) and works only for the structs that contains OuterType struct defined that has subtype B as an inner struct. You can test if this struct is the same as T using typename enable_if<is_same<T, typename T::OuterType::B>::value, T>::type instead of result type: typename T::OuterType::B

How to check whether operator== exists?

I am trying to create an example, which would check the existence of the operator== (member or, non-member function). To check whether a class has a member operator== is easy, but how to check whether it has a non-member operator==?
This is what I have to far :
#include <iostream>
struct A
{
int a;
#if 0
bool operator==( const A& rhs ) const
{
return ( a==rhs.a);
}
#endif
};
#if 1
bool operator==( const A &l,const A &r )
{
return ( l.a==r.a);
}
#endif
template < typename T >
struct opEqualExists
{
struct yes{ char a[1]; };
struct no { char a[2]; };
template <typename C> static yes test( typeof(&C::operator==) );
//template <typename C> static yes test( ???? );
template <typename C> static no test(...);
enum { value = (sizeof(test<T>(0)) == sizeof(yes)) };
};
int main()
{
std::cout<<(int)opEqualExists<A>::value<<std::endl;
}
Is it possible to write a test function to test the existence of non-member operator==?
If yes, how?
btw I have checked similar questions, but haven't found a proper solution :
Is it possible to use SFINAE/templates to check if an operator exists?
This is what I tried :
template <typename C> static yes test( const C*,bool(*)(const C&,constC&) = &operator== );
but the compilation fails if the non-member operator== is removed
C++03
The following trick works and it can be used for all such operators:
namespace CHECK
{
class No { bool b[2]; };
template<typename T, typename Arg> No operator== (const T&, const Arg&);
bool Check (...);
No& Check (const No&);
template <typename T, typename Arg = T>
struct EqualExists
{
enum { value = (sizeof(Check(*(T*)(0) == *(Arg*)(0))) != sizeof(No)) };
};
}
Usage:
CHECK::EqualExists<A>::value;
The 2nd template typename Arg is useful for some special cases like A::operator==(short), where it's not similar to class itself. In such cases the usage is:
CHECK::EqualExists<A, short>::value
// ^^^^^ argument of `operator==`
Demo.
C++11
We need not use sizeof and null reference trick when we have decltype and std::declval
namespace CHECK
{
struct No {};
template<typename T, typename Arg> No operator== (const T&, const Arg&);
template<typename T, typename Arg = T>
struct EqualExists
{
enum { value = !std::is_same<decltype(std::declval<T>() < std::declval<Arg>()), No>::value };
};
}
Demo
Have a look at Boost's Concept Check Library (BCCL) http://www.boost.org/doc/libs/1_46_1/libs/concept_check/concept_check.htm.
It enables you to write requirements that a class must match in order for the program to compile. You're relatively free with what you can check. For example, verifying the presence of operator== of a class Foo would write as follow:
#include <boost/concept_check.hpp>
template <class T>
struct opEqualExists;
class Foo {
public:
bool operator==(const Foo& f) {
return true;
}
bool operator!=(const Foo& f) {
return !(*this == f);
}
// friend bool operator==(const Foo&, const Foo&);
// friend bool operator!=(const Foo&, const Foo&);
};
template <class T>
struct opEqualExists {
T a;
T b;
// concept requirements
BOOST_CONCEPT_USAGE(opEqualExists) {
a == b;
}
};
/*
bool operator==(const Foo& a, const Foo& b) {
return true; // or whatever
}
*/
/*
bool operator!=(const Foo& a, const Foo& b) {
return ! (a == b); // or whatever
}
*/
int main() {
// no need to declare foo for interface to be checked
// declare that class Foo models the opEqualExists concept
// BOOST_CONCEPT_ASSERT((opEqualExists<Foo>));
BOOST_CONCEPT_ASSERT((boost::EqualityComparable<Foo>)); // need operator!= too
}
This code compiles fine as long as one of the two implementations of operator== is available.
Following #Matthieu M. and #Luc Touraille advice, I updated the code snippet to provide an example of boost::EqualityComparable usage. Once again, please note that EqualityComparable forces you to declare operator!= too.
It's also possible to use only c++11 type traits to check the existence of the member:
#include <type_traits>
#include <utility>
template<class T, class EqualTo>
struct has_operator_equal_impl
{
template<class U, class V>
static auto test(U*) -> decltype(std::declval<U>() == std::declval<V>());
template<typename, typename>
static auto test(...) -> std::false_type;
using type = typename std::is_same<bool, decltype(test<T, EqualTo>(0))>::type;
};
template<class T, class EqualTo = T>
struct has_operator_equal : has_operator_equal_impl<T, EqualTo>::type {};
You can use the trait like so:
bool test = has_operator_equal<MyClass>::value;
The resulting type of has_operator_equal will either be std::true_type or std::false_type (because it inherits from an alias of std::is_same::type), and both define a static value member which is a boolean.
If you want to be able to test whether your class defines operator==(someOtherType), you can set the second template argument:
bool test = has_operator_equal<MyClass, long>::value;
where the template parameter MyClass is still the class that you are testing for the presence of operator==, and long is the type you want to be able to compare to, e.g. to test that MyClass has operator==(long).
if EqualTo (like it was in the first example) is left unspecified, it will default to T, result in the normal definition of operator==(MyClass).
Note of caution: This trait in the case of operator==(long) will be true for long, or any value implicitly convertible to long, e.g. double, int, etc.
You can also define checks for other operators and functions, just by replacing what's inside the decltype. To check for !=, simply replace
static auto test(U*) -> decltype(std::declval<U>() == std::declval<V>());
with
static auto test(U*) -> decltype(std::declval<U>() != std::declval<V>());
C++20
I guess you want to check whether a user-provided type has equality operator or not; if that is the case then Concepts are here to help.
#include <concepts>
struct S{
int x;
};
template<std::equality_comparable T>
bool do_magic(T a, T b)
{
return a == b;
}
int main()
{
// do_magic(S{}, S{}); Compile time error
do_magic(56, 46); // Okay: int has == and !=
}
If you pass any type that does not have == and != defined, the compiler just errors out with message, e.g.:
equality_comparable concept not satisfied by type
You can also use std::equality_comparable_with<T, U> concept to check for those overload between two different types.
There are many more concepts that have been added to standards such as std::incrementable etc.. Have a look at Standard Library concepts as a good starting point.
As of c++14, the standard binary functions do most of the work for us for the majority of operators.
#include <utility>
#include <iostream>
#include <string>
#include <algorithm>
#include <cassert>
template<class X, class Y, class Op>
struct op_valid_impl
{
template<class U, class L, class R>
static auto test(int) -> decltype(std::declval<U>()(std::declval<L>(), std::declval<R>()),
void(), std::true_type());
template<class U, class L, class R>
static auto test(...) -> std::false_type;
using type = decltype(test<Op, X, Y>(0));
};
template<class X, class Y, class Op> using op_valid = typename op_valid_impl<X, Y, Op>::type;
namespace notstd {
struct left_shift {
template <class L, class R>
constexpr auto operator()(L&& l, R&& r) const
noexcept(noexcept(std::forward<L>(l) << std::forward<R>(r)))
-> decltype(std::forward<L>(l) << std::forward<R>(r))
{
return std::forward<L>(l) << std::forward<R>(r);
}
};
struct right_shift {
template <class L, class R>
constexpr auto operator()(L&& l, R&& r) const
noexcept(noexcept(std::forward<L>(l) >> std::forward<R>(r)))
-> decltype(std::forward<L>(l) >> std::forward<R>(r))
{
return std::forward<L>(l) >> std::forward<R>(r);
}
};
}
template<class X, class Y> using has_equality = op_valid<X, Y, std::equal_to<>>;
template<class X, class Y> using has_inequality = op_valid<X, Y, std::not_equal_to<>>;
template<class X, class Y> using has_less_than = op_valid<X, Y, std::less<>>;
template<class X, class Y> using has_less_equal = op_valid<X, Y, std::less_equal<>>;
template<class X, class Y> using has_greater_than = op_valid<X, Y, std::greater<>>;
template<class X, class Y> using has_greater_equal = op_valid<X, Y, std::greater_equal<>>;
template<class X, class Y> using has_bit_xor = op_valid<X, Y, std::bit_xor<>>;
template<class X, class Y> using has_bit_or = op_valid<X, Y, std::bit_or<>>;
template<class X, class Y> using has_left_shift = op_valid<X, Y, notstd::left_shift>;
template<class X, class Y> using has_right_shift = op_valid<X, Y, notstd::right_shift>;
int main()
{
assert(( has_equality<int, int>() ));
assert((not has_equality<std::string&, int const&>()()));
assert((has_equality<std::string&, std::string const&>()()));
assert(( has_inequality<int, int>() ));
assert(( has_less_than<int, int>() ));
assert(( has_greater_than<int, int>() ));
assert(( has_left_shift<std::ostream&, int>() ));
assert(( has_left_shift<std::ostream&, int&>() ));
assert(( has_left_shift<std::ostream&, int const&>() ));
assert((not has_right_shift<std::istream&, int>()()));
assert((has_right_shift<std::istream&, int&>()()));
assert((not has_right_shift<std::istream&, int const&>()()));
}
I know this question has long since been answered but I thought it might be worth noting for anyone who finds this question in the future that Boost just added a bunch of "has operator" traits to their type_traits library, and among them is has_equal_to, which does what OP was asking for.
This question has already been answered several times, but there is a simpler way to check for the existence of operator== or basically any other operation (e.g., testing for a member function with a certain name), by using decltype together with the , operator:
namespace detail
{
template<typename L, typename R>
struct has_operator_equals_impl
{
template<typename T = L, typename U = R> // template parameters here to enable SFINAE
static auto test(T &&t, U &&u) -> decltype(t == u, void(), std::true_type{});
static auto test(...) -> std::false_type;
using type = decltype(test(std::declval<L>(), std::declval<R>()));
};
} // namespace detail
template<typename L, typename R = L>
struct has_operator_equals : detail::has_operator_equals_impl<L, R>::type {};
You can use this same approach to check if a type T has a member function foo which is invocable with a certain argument list:
namespace detail
{
template<typename T, typename ...Args>
struct has_member_foo_impl
{
template<typename T_ = T>
static auto test(T_ &&t, Args &&...args) -> decltype(t.foo(std::forward<Args>(args)...), void(), std::true_type{});
static auto test(...) -> std::false_type;
using type = decltype(test(std::declval<T>(), std::declval<Args>()...));
};
} // namespace detail
template<typename T, typename ...Args>
struct has_member_foo : detail::has_member_foo_impl<T, Args...>::type {};
I think this makes the intent of the code much clearer. In addition to that, this is a C++11 solution, so it doesn't depend on any newer C++14 or C++17 features. The end result is the same, of course, but this has become my preferred idiom for testing these kinds of things.
Edit: Fixed the insane case of the overloaded comma operator, I always miss that.
Lets consider a meta-function of the following form, which checks for the existence of equality operator (i.e ==) for the given type:
template<typename T>
struct equality { .... };
However, that might not be good enough for some corner cases. For example, say your class X does define operator== but it doesn't return bool, instead it returns Y. So in this case, what should equality<X>::value return? true or false? Well, that depends on the specific use case which we dont know now, and it doesn't seem to be a good idea to assume anything and force it on the users. However, in general we can assume that the return type should be bool, so lets express this in the interface itself:
template<typename T, typename R = bool>
struct equality { .... };
The default value for R is bool which indicates it is the general case. In cases, where the return type of operator== is different, say Y, then you can say this:
equality<X, Y> //return type = Y
which checks for the given return-type as well. By default,
equality<X> //return type = bool
Here is one implementation of this meta-function:
namespace details
{
template <typename T, typename R, typename = R>
struct equality : std::false_type {};
template <typename T, typename R>
struct equality<T,R,decltype(std::declval<T>()==std::declval<T>())>
: std::true_type {};
}
template<typename T, typename R = bool>
struct equality : details::equality<T, R> {};
Test:
struct A {};
struct B { bool operator == (B const &); };
struct C { short operator == (C const &); };
int main()
{
std::cout<< "equality<A>::value = " << equality<A>::value << std::endl;
std::cout<< "equality<B>::value = " << equality<B>::value << std::endl;
std::cout<< "equality<C>::value = " << equality<C>::value << std::endl;
std::cout<< "equality<B,short>::value = " << equality<B,short>::value << std::endl;
std::cout<< "equality<C,short>::value = " << equality<C,short>::value << std::endl;
}
Output:
equality<A>::value = 0
equality<B>::value = 1
equality<C>::value = 0
equality<B,short>::value = 0
equality<C,short>::value = 1
Online Demo
Hope that helps.
c++17 slightly modified version of Richard Hodges godbolt
#include <functional>
#include <type_traits>
template<class T, class R, class ... Args>
std::is_convertible<std::invoke_result_t<T, Args...>, R> is_invokable_test(int);
template<class T, class R, class ... Args>
std::false_type is_invokable_test(...);
template<class T, class R, class ... Args>
using is_invokable = decltype(is_invokable_test<T, R, Args...>(0));
template<class T, class R, class ... Args>
constexpr auto is_invokable_v = is_invokable<T, R, Args...>::value;
template<class L, class R = L>
using has_equality = is_invokable<std::equal_to<>, bool, L, R>;
template<class L, class R = L>
constexpr auto has_equality_v = has_equality<L, R>::value;
struct L{};
int operator ==(int, L&&);
static_assert(has_equality_v<int>);
static_assert(!has_equality_v<L>);
static_assert(!has_equality_v<L, int>);
static_assert(has_equality_v<int, L>);
In addition to #coder3101 answer, concepts can help you implement any function existence tests you want to. For example, std::equality_comparable is implemented using 4 simple tests, that check the following scenarios:
For A and B variables, make sure that the following expressions are valid:
A == B, returns bool
A != B, returns bool
B == A, returns bool
B != A, returns bool
If any one of them is illegal at compile time, the program won't compile. The implementation of this test (simplified from the standard):
template <typename T> concept equality_comparable
= requires(T t, T u) {
{ t == u } -> std::convertible_to<bool>;
{ t != u } -> std::convertible_to<bool>;
{ u == t } -> std::convertible_to<bool>;
{ u != t } -> std::convertible_to<bool>;
};
As you can see, you can customize this concept and create your own concept the fulfill your conditions. For example, if you want to force only the existence of operator==, you can do something like this:
template <typename T> concept my_equality_comparable
= requires(T t, T u) {
{ t == u } -> std::convertible_to<bool>;
{ u == t } -> std::convertible_to<bool>;
};
Read more about concepts in C++20.
We can use std::equal_to<Type> (or any other overloaded struct members) to make a more generic solution if we want to test binary operators (or other binary functors).
struct No {};
template<class T, class BinaryOperator>
struct ExistsBinaryOperator>
{
enum { value = !std::is_same<decltype(std::declval<BinaryOperator>()(std::declval<T>(), std::declval<T>())), No>::value };
};
Usage:
using Type = int;
constexpr bool hasEqual = ExistsBinaryOperator<Type, std::equal_to<Type>>::value;
This should work on C++11
template <class Void, template<class...> class Type, class... Args>
struct validator
{
using value_t = std::false_type;
};
template <template<class...> class Type, class... Args>
struct validator< std::void_t<Type<Args...>>, Type, Args... >
{
using value_t = std::true_type;
};
template <template<class...> class Type, class... Args>
using is_valid = typename validator<void, Type, Args...>::value_t;
template<typename... T>
using has_equal_t = decltype((std::declval<T&>().operator ==(std::declval<T&>()), ...));
template<typename... T>
using has_gequal_t = decltype((operator ==(std::declval<T&>(),std::declval<T&>()), ...));
struct EQ
{
bool operator==(const EQ&) const;
};
struct GEQ
{
};
bool operator==(const GEQ&, const GEQ&);
struct NOEQ
{
};
static_assert(is_valid<has_equal_t,EQ>::value || is_valid<has_gequal_t,EQ>::value, "should have equal operator");
static_assert(is_valid<has_equal_t,GEQ>::value || is_valid<has_gequal_t,GEQ>::value, "should have equal operator");
// static_assert(is_valid<has_equal_t,NOEQ>::value || is_valid<has_gequal_t,NOEQ>::value, "should have equal operator"); // ERROR:
Just for a reference, I am posting how I solved my problem, without a need to check if the operator== exists :
#include <iostream>
#include <cstring>
struct A
{
int a;
char b;
#if 0
bool operator==( const A& r ) const
{
std::cout<<"calling member function"<<std::endl;
return ( ( a==r.a ) && ( b==r.b ) );
}
#endif
};
#if 1
bool operator==( const A &l,const A &r )
{
std::cout<<"calling NON-member function"<<std::endl;
return ( ( l.a==r.a ) &&( l.b==r.b ) );
}
#endif
namespace details
{
struct anyType
{
template < class S >
anyType( const S &s ) :
p(&s),
sz(sizeof(s))
{
}
const void *p;
int sz;
};
bool operator==( const anyType &l, const anyType &r )
{
std::cout<<"anyType::operator=="<<std::endl;
return ( 0 == std::memcmp( l.p, r.p, l.sz ) );
}
} // namespace details
int main()
{
A a1;
a1.a=3;a1.b=0x12;
A a2;
a2.a=3;a2.b=0x12;
using details::operator==;
std::cout<< std::boolalpha << "numbers are equals : " << ( a1 == a2 ) <<std::endl;
}
IMO, this must be part of the class itself as it's deals with the private attributes of the class. The templates are interpreted at compile time. By default it generates operator==,constructor, destructor and copy constructor which do bit-wise copy (shallow copy) or bit-wise comparisons for the object of same type. The special cases (different types) must be overloaded. If you use global operator function you will have to declare the function as friend to access the private part or else you've to expose the interfaces required. Sometimes this is really ugly which may cause an unnecessary expose of a function.