When I write a storm topology, I found that the order of tuples is not always the same as the one the spout emits.(the function of the spout is to read a file in line and send the line to a bolt without Thread.sleep(), so this procedure will be very fast).
Could anyone tell me how I can ensure the order of tuples which is emitted by a spout or a bolt? Thanks a lot!
You may want to take a look at Trident topology
Trident solves this problem by doing two things:
Each batch is given a unique id called the "transaction id". If a batch is retried it will have the exact same transaction id.
State updates are ordered among batches. That is, the state updates for batch 3 won't be applied until the state updates for batch 2 have succeeded.
Related
The concept of map-reduce is very familiar. It seems like a great fit for a problem I'm trying to solve, but it's either missing something (or I lack enough understanding of the concept).
I have a stream of items, structured as follows:
{
"jobId": 777,
"numberOfParts": 5,
"data": "some data..."
}
I want to do a map-reduce on many such items.
My mapping operation is straightforward - take the jobId.
My reduce operation is irrelevant for this phase, but all we know is that it takes multiple strings (the "some data..." part) and somehow reduces them to a single object.
The only problem is - I need all five parts of this job to complete before I can reduce all the strings into a single object. Every item has a "numberOfParts" property which indicates the number of items I must have before I apply the reduce operation. The items are not ordered, therefore I don't have a "partId" field.
Long story short - I need to apply some kind of a waiting mechanism that waits for all parts of the job to complete before initiating the reduce operation, and I need this waiting mechanism to rely on a value that exists within the payload (therefore solutions like kafka wouldn't work).
Is there a way to do that, hopefully using a single tool/framework?
I only want to write the map/reduce part and the "waiting" logic, the rest I believe should come out of the box.
**** EDIT ****
I'm currently in the design phase of the project and therefore not using any framework (such as spark, hadoop, etc...)
I asked this because I wanted to find out the best way to tackle this problem.
"Waiting" is not the correct approach.
Assuming your jobId is the key, and data contains some number of parts (zero or more), then you must have multiple reducers. One that gathers all parts of the same job, then another that processes all jobs with a collection of parts greater than or equal to numberOfParts while ignoring others
I would like to get some advice to see whether step function is suitable for my use case.
I have a bunch of user records generated at random time. I need to do some pre-processing and validation before putting them into a pool. I have a stage which runs periodically (1-5min) to collect records from the pool and combine them, then publish them.
I need realtime traceability/monitor of each record and I need to notify the user once the record is published.
Here is a diagram to illustrate the flow.
Is a step function suitable for my use case? if not, is there any alternative which help me to simplify the solution? Thanks
Yes, Step Functions is an option. Step Function "State Machines" add the greatest value vs other AWS serverless workflow patterns such as event-driven or pub/sub when the scenario involves complex branching/retry logic and observability requirements. SM logic is explicit and visual, which makes it simple to reason about the workflow. For each State Machine (SM) execution, you can easily trace the exact path the execution took and where it failed. This added functionality is reflected in its higher cost.
In any case, you need to gather records until its time to collect them. This batching requirement means that your achitecture will need more elements than just a State Machine. Here are some ideas:
(1) A SM preprocesses Records one-by-one as they arrive
One option is to use State Machines to orchestrate the preprocessing and validation only. Each arriving event record kicks off a SM execution. Pre-processed records go into a queue, from which they are periodically polled and sent to be combined.
[Records EventBrige event] -> [preprocessing SM] -> [Record queue] -> [polling lambda] -> [Combining Service]
(2) Preprocess and process bached records in a end-to-end State Machine
Gather records in a queue as they arrive. A lambda periodically polls the queue and begins the SM execution on a batch of records. A SM Map Task pre-processes and validates the records in parallel then calls the combining service, all within a single execution. This setup gives you the greatest visibility, but is more complex because you have to handle cases where a single record causes the batched execution to fail.
[Records arrive] -> [Record source queue] -> [polling lambda gets batch] -> [SM for preprocessing, collecting and combining]
Other
There are plenty of other combinations, including chaining SM's together if necessary. Or avoiding SM's altogether. Which option is best for you will depend on which pain points matter most to you: observability, error handling, simplicity, cost.
We have a AWS step function that processes csv files. These CSV files records can be anything from 1 to 4000.
Now, I want to create another inner AWS step function that will process these csv records. The problem is for each record I need to hit another API and for that I want all of the record to be executed asynchronously.
For example - CSV recieved having records of 2500
The step function called another step function 2500 times (The other step function will take a CSV record as input) process it and then store the result in Dynamo or in any other place.
I have learnt about the callback pattern in aws step function but in my case I will be passing 2500 tokens and I want the outer step function to process them when all the 2500 records are done processing.
So my question is this possible using the AWS step function.
If you know any article or guide for me to reference then that would be great.
Thanks in advance
It sounds like dynamic parallelism could work:
To configure a Map state, you define an Iterator, which is a complete sub-workflow. When a Step Functions execution enters a Map state, it will iterate over a JSON array in the state input. For each item, the Map state will execute one sub-workflow, potentially in parallel. When all sub-workflow executions complete, the Map state will return an array containing the output for each item processed by the Iterator.
This keeps the flow all within a single Step Function and allows for easier traceability.
The limiting factor would be the amount of concurrency available (docs):
Concurrent iterations may be limited. When this occurs, some iterations will not begin until previous iterations have completed. The likelihood of this occurring increases when your input array has more than 40 items.
One additional thing to be aware of here is cost. You'll easily blow right through the free tier and start incurring actual cost (link).
I have a dataflow job processing data from pub/sub defined like this:
read from pub/sub -> process (my function) -> group into day windows -> write to BQ
I'm using Write.Method.FILE_LOADS because of bounded input.
My job works fine, processing lots of GBs of data but it fails and tries to retry forever when it gets to create another table. The job is meant to run continuously and create day tables on its own, it does fine on the first few ones but then gives me indefinitely:
Processing stuck in step write-bq/BatchLoads/SinglePartitionWriteTables/ParMultiDo(WriteTables) for at least 05h30m00s without outputting or completing in state finish
Before this happens it also throws:
Load job <job_id> failed, will retry: {"errorResult":{"message":"Not found: Table <name_of_table> was not found in location US","reason":"notFound"}
It is indeed a right error because this table doesn't exists. Problem is that the job should create it on its own because of defined option CreateDisposition.CREATE_IF_NEEDED.
The number of day tables that it creates correctly without a problem depens on number of workers. It seems that when some worker creates one table its CreateDisposition changes to CREATE_NEVER causing the problem, but it's only my guess.
The similar problem was reported here but without any definite answer:
https://issues.apache.org/jira/browse/BEAM-3772?focusedCommentId=16387609&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-16387609
ProcessElement definition here seems to give some clues but I cannot really say how it works with multiple workers: https://github.com/apache/beam/blob/master/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/WriteTables.java#L138
I use 2.15.0 Apache SDK.
I encountered the same issue, which is still not fixed in BEAM 2.27.0 of january 2021. Therefore I had to develop a workaround: a custom PTransform which checks if the target table exist before the the BigQueryIO stage. It uses the bigquery java client for this and a Guava cache, as well as a windowing strategy (fixed, check every 15s) to sustain a heavy traffic of about 5000 elements per second. Here is the code: https://gist.github.com/matthieucham/85459eff5fdea8d115be520e2dd5ccc1
There was a bug in the past that caused this error, but that particular one was fixed in commit https://github.com/apache/beam/commit/d6b4dcec5f297f5c1bd08f345f0e1e5c756775c2#diff-3f40fd931c8b8b972772724369cea310 Can you check to see if the version of Beam you are running includes this commit?
I have data I have to join at the record level. For example data about users is coming in from different source systems but there is not a common primary key or user identifier
Example Data
Source System 1:
{userid = 123, first_name="John", last_name="Smith", many other columns...}
Source System 2:
{userid = EFCBA-09DA0, fname="J.", lname="Smith", many other columns...}
There are about 100 rules I can use to compare one record to another
to see if customer in source system 1 is the same as source system 2.
Some rules may be able to infer record values and add data to a master record about a customer.
Because some rules may infer/add data to any particular record, the rules must be re-applied again when a record changes.
We have millions of records per day we'd have to unify
Apache Beam / Dataflow implementation
Apache beam DAG is by definition acyclic but I could just republish the data through pubsub to the same DAG to make it a cyclic algorithm.
I could create a PCollection of hashmaps that continuously do a self join against all other elements but this seems it's probably an inefficient method
Immutability of a PCollection is a problem if I want to be constantly modifying things as it goes through the rules. This sounds like it would be more efficient with Flink Gelly or Spark GraphX
Is there any way you may know in dataflow to process such a problem efficiently?
Other thoughts
Prolog: I tried running on subset of this data with a subset of the rules but swi-prolog did not seem scalable, and I could not figure out how I would continuously emit the results to other processes.
JDrools/Jess/Rete: Forward chaining would be perfect for the inference and efficient partial application, but this algorithm is more about applying many many rules to individual records, rather than inferring record information from possibly related records.
Graph database: Something like neo4j or datomic would be nice since joins are at the record level rather than row/column scans, but I don't know if it's possible in beam to do something similar
BigQuery or Spanner: Brute forcing these rules in SQL and doing full table scans per record is really slow. It would be much preferred to keep the graph of all records in memory and compute in-memory. We could also try to concat all columns and run multiple compare and update across all columns
Or maybe there's a more standard way to solving these class of problems.
It is hard to say what solution works best for you from what I can read so far. I would try to split the problem further and try to tackle different aspects separately.
From what I understand, the goal is to combine together the matching records that represent the same thing in different sources:
records come from a number of sources:
it is logically the same data but formatted differently;
there are rules to tell if the records represent the same entity:
collection of rules is static;
So, the logic probably roughly goes like:
read a record;
try to find existing matching records;
if matching record found:
update it with new data;
otherwise save the record for future matching;
repeat;
To me this looks very high level and there's probably no single 'correct' solution at this level of detail.
I would probably try to approach this by first understanding it in more detail (maybe you already do), few thoughts:
what are the properties of the data?
are there patterns? E.g. when one system publishes something, do you expect something else from other systems?
what are the requirements in general?
latency, consistency, availability, etc;
how data is read from the sources?
can all the systems publish the records in batches in files, submit them into PubSub, does your solution need to poll them, etc?
can the data be read in parallel or is it a single stream?
then the main question of how can you efficiently match a record in general will probably look different under different assumptions and requirements as well. For example I would think about:
can you fit all data in memory;
are your rules dynamic. Do they change at all, what happens when they do;
can you split the data into categories that can be stored separately and matched efficiently, e.g. if you know you can try to match some things by id field, some other things by hash of something, etc;
do you need to match against all of historical/existing data?
can you have some quick elimination logic to not do expensive checks?
what is the output of the solution? What are the requirements for the output?