Is there an easy way to check if something was serialized in stl::ostream. I am looking for something like:
some preparation
// ... a very complex code that may result in adding or not to the stream,
// that I will prefer not to change
check if the stream has something added
Note that this will need to works recursively. Is using register_callback is a good idea or there is easier way?
First the immediate question: register_callback() is intended to deal with appropriate copying and releasing of resources stored in pword() and will have operations only related to that (i.e., copying, assigning, and releasing plus observing std::locale changes). So, no, that won't help you at all.
What you can do, however, is to create a filtering stream buffer which observes if there was a write to the stream, e.g., something like this:
class changedbuf: std::streambuf {
std::streambuf* d_sbuf;
bool d_changed;
int_type overflow(int_type c) {
if (!traits_type::eq_int_type(c, traits_type::eof())) {
this->d_changed = true;
}
return this->d_sbuf->sputc(c);
}
public:
changedbuf(std::streambuf* sbuf): d_sbuf(d_sbuf), d_changed() {}
bool changed() const { return this->d_changed; }
}
You can use this in place of the std::ostream you already have, e.g.:
void f(std::ostream& out) {
changedbuf changedbuf(out.rdbuf());
std::ostream changedout(&changedbuf);
// use changedout instead of out; if you need to use a global objects, you'd
// replace/restore the used stream buffer using the version of rdbuf() taking
// an argument
if (changedbuf.change()) {
std::cout << "there was a change\n";
}
}
A real implementation would actually provide a buffer and deal with proper flushing (i.e., override sync()) and sequence output (i.e., override xsputn()). However, the above version is sufficient as a proof-of-concept.
Others are likely to suggest the use of std::ostringstream. Depending on the amount of data written, this can easily become a performance hog, especially compared to an advanced version of changedbuf which appropriately deals with buffering.
Are you passing the stream into the complex code, or is it globally visible? Can it be any kind of ostream or can you constrain the type to ofstream or ostringstream?
You may be able to use tellp to determine whether the file position has changed since your preparation code, if your ostream type supports it (such as with most fstreams). Or, if you're passing the stream in, you could pass an empty ostringstream in and check that it's not empty when the string is extracted to be printed out.
It's not entirely obvious which solution, if any, would be appropriate for you without knowing more about the context of your code and the specifics of your problem. The best answer may be to return (or set as a by-reference out-parameter) a flag indicating whether the stream was inserted into.
Related
Documentation states that FILE is object type that identifies a stream. So, is it possible to get the stream object associated with a FILE?
For example, I'd like to get std::cout object from stdout FILE pointer, or std::cerr from stderr etc. More generally I want to write a function that redirects a given stream and sets the custom streambuf to it, something like this:
void redirect(FILE* file, std::ios stream) {
freopen_s((FILE**)file, "CONOUT$", "w", file);
stream.rdbuf(customBuffer);
}
used to redirect streams
redirect(stdout, std::cout);
redirect(stderr, std::cerr);
It seems redundant to have 2 parameters, since both parameters are always associated with each other.
The C++ standard library includes the C standard library. A FILE is a C stream, which is quite a different animal than a C++ iostream. It is possible for an std::stream implementation to rely of an underlying FILE, but this is not required by the standard, and even in that case there is no way to retrieve it.
What is possible is to build a custom std::streambuf that explicitly uses an underlying FILE *, and use it in a std::stream. std::basic_streambuf is one of the few classes from the C++ standard library that is explicitely designed as a base class for custom derivation. Unfortunately I could not find a tutorial for it, but the class contains a number of virtual methods that you just have to override. It is not exactly an easy path, but is possible with some works, heavy testing, and eventually some help from SO if you get stuck somewhere. But a full implementation is far beyond a SO answer.
TL/DR: there is no underlying std::stream associated with a FILE but with some work you can build a custom stream_buffer that will use an underlying FILE *. Though those are rather advanced operations...
While it is not possible to cleanly do this in C++ you could do something like this.
FILE * file = popen("someFile")
const unsigned BUFF = 2048;
string total;
bool done = false;
while (!done) {
vector<char> cBuf[BUFF];
size_t read = fread((void *)&cBuf[0], 1, BUFF, f);
if (read)
{
total.append(cBuf.begin(), cBuf.end());
}
if (read < BUFF)
{
done = true;
}
}
pclose(f);
istringstream filey(total);
Hope this helps.
How can I calculate a hash/checksum/fingerprint of an object in c++?
Requirements:
The function must be 'injective'(*). In other words, there should be no two different input objects, that return the same hash/checksum/fingerprint.
Background:
I am trying to come up with a simple pattern for checking whether or not an entity object has been changed since it was constructed. (In order to know which objects need to be updated in the database).
Note that I specifically do not want to mark the object as changed in my setters or anywhere else.
I am considering the following pattern: In short, every entity object that should be persisted, has a member function "bool is_changed()". Changed, in this context, means changed since the objects' constructor was called.
Note: My motivation for all this is to avoid the boilerplate code that comes with marking objects as clean/dirty or doing a member by member comparison. In other words, reduce risk of human error.
(Warning: psudo c++ code ahead. I have not tried compiling it).
class Foo {
private:
std::string my_string;
// Assume the "fingerprint" is of type long.
long original_fingerprint;
long current_fingerprint()
{
// *** Suggestions on which algorithm to use here? ***
}
public:
Foo(const std::string& my_string) :
my_string(my_string)
{
original_fingerprint = current_fingerprint();
}
bool is_changed() const
{
// If new calculation of fingerprint is different from the one
// calculated in the constructor, then the object has
// been changed in some way.
return current_fingerprint() != original_fingerprint;
}
void set_my_string(const std::string& new_string)
{
my_string = new_string;
}
}
void client_code()
{
auto foo = Foo("Initial string");
// should now return **false** because
// the object has not yet been changed:
foo.is_changed();
foo.set_my_string("Changed string");
// should now return **true** because
// the object has been changed:
foo.is_changed();
}
(*) In practice, not necessarily in theory (like uuids are not unique in theory).
You can use the CRC32 algorithm from Boost. Feed it with the memory locations of the data you want to checksum. You could use a hash for this, but hashes are cryptographic functions intended to guard against intentional data corruption and are slower. A CRC performs better.
For this example, I've added another data member to Foo:
int my_integer;
And this is how you would checksum both my_string and my_integer:
#include <boost/crc.hpp>
// ...
long current_fingerprint()
{
boost::crc_32_type crc32;
crc32.process_bytes(my_string.data(), my_string.length());
crc32.process_bytes(&my_integer, sizeof(my_integer));
return crc32.checksum();
}
However, now we're left with the issue of two objects having the same fingerprint if my_string and my_integer are equal. To fix this, we should include the address of the object in the CRC, since C++ guarantees that different objects will have different addresses.
One would think we can use:
process_bytes(&this, sizeof(this));
to do it, but we can't since this is an rvalue and thus we can't take its address. So we need to store the address in a variable instead:
long current_fingerprint()
{
boost::crc_32_type crc32;
void* this_ptr = this;
crc32.process_bytes(&this_ptr, sizeof(this_ptr));
crc32.process_bytes(my_string.data(), my_string.length());
crc32.process_bytes(&my_integer, sizeof(my_integer));
return crc32.checksum();
}
Such a function does not exist, at least not in the context that you are requesting.
The STL provides hash functions for basic types (std::hash), and you could use these to implement a hash function for your objects using any reasonable hashing algorithm.
However, you seem to be looking for an injective function, which causes a problem. Essentially, to have an injective function, it would be necessary to have an output of size greater or equal to that of the object you are considering, since otherwise (from the pigeon hole principle) there would be two inputs that give the same output. Given that, the most sensible option would be to just do a straight-up comparison of the object to some sort of reference object.
I've created an fstream object to write info to files.
I write strings to the new file like
fStreamObject << "New message.\n";
because I want each << to print a string to the next line.
I want to be able to set a property and make a call like
fstreamObject << "New message.";
which will write the string to the next line.
Are there flags/settings for fstream objects that allows this to be done?
I've seen the different file modes (i.e. ofstream::in, ofstream::out, etc.), but I couldn't find one that auto writes to a new line. Also, I'm not looking to write my own solution. I want to be able to use a built in feature.
No, there are no readily configurable capabilities of that sort within the standard streams.
You may have to subclass the stream type and fiddle with operator<< to get this to work the way you want, or do it with a helper function of some description:
fstreamObject << nl("New message.");
(but that's hardly easier than just having the \n in there (for a string, anyway).
It depends on what you mean by "setting the stream". If we consider this to be fairly broad then the answer happens to be "yes"!
Here is how:
Create a stream buffer which inserts a newline every time it is flushed, i.e., when sync() is called. Otherwise it just forwards characters.
Change the file stream's stream buffer to use this stream buffer filtering to the file stream's stream buffer.
Set the flag std::ios_base::unitbuf which causes a flush after every [properly written] output operation.
Here are is the example code to do just that:
#include <iostream>
class newlinebuf
: public std::streambuf {
std::ostream* stream;
std::streambuf* sbuf;
int overflow(int c) { return this->sbuf->sputc(c); }
int sync() {
return (this->sbuf->sputc('\n') == std::char_traits::eof()
|| this->sbuf->pubsync() == -1)? -1: 0;
}
public:
newlinebuf(std::ostream& stream)
: stream(&stream)
, sbuf(stream.rdbuf(this)) {
stream << std::unitbuf;
}
~newlinebuf() { this->stream->rdbuf(this->sbuf); }
};
int main() {
newlinebuf sbuf(std::cout);
std::cout << "hello" << "world";
}
Although this approach work, I would recommend against using it! On problem is that all composite output operators, i.e., those using multiple output operators to do their work, will cause multiple newlines. I'm not aware of anything which can be done to prevent this behavior. There isn't anything in the standard library which enables just configuring the stream to do this: you'll need to insert the newline somehow.
No, the C++ streams do not allow that.
There is no way to decide where one insertion stops and the next starts.
For example for custom types, their stream-inserters are often implemented as calls to other stream-inserters and member-functions.
The only things you can do, is write your own class, which delegates to a stream of your choosing, and does that.
That's of strictly limited utiliy though.
struct alwaysenter {
std::ostream& o;
template<class X> alwaysenter& operator<<(X&& x) {
o<<std::forward<X>(x);
return *this;
}
};
I want to write a simple istream object, that would simply transform another istream.
I want to only implement readline (which would read a line from the original stream, would process it, and return the processed line), and have some generic code that upon read would use my read line, cache it, and give the required amount of bytes as output.
Is there any class that would allow me to do that?
For example
struct mystream : istreamByReadLine {
istream& s;
mystream(istream& _s):s(_s){}
virtual string getline() {
string line;
getline(s,line);
f(line);
return line;
}
}
class istreamByReadLine : istream {
... // implementing everything needed to be istream compatible, using my
... // getline() virtual method
}
Have you looked at boost.iostreams? It does most of the grunt work for you (possibly not for your exact use case, but for C++ standard library streams in general).
Are you sure this is the way to go? In similar cases, I've
either defined a class (e.g. Line), with a >> operator which
did what I wanted, and read that, e.g.:
Line line
while ( source >> line ) ...
The class itself can be very simple, with just a std::string
member, and an operator std::string() const function which
returns it. All of the filtering work would be done in the
std::istream& operator>>( std::istream&, Line& dest )
function. Or I've installed a filtering streambuf in front of the
normal streambuf ; Boost iostream has good support for
this.
I have some kind of an ideological question, so:
Suppose I have some templated function
template <typename Stream>
void Foo(Stream& stream, Object& object) { ... }
which does something with this object and the stream (for example, serializes that object to the stream or something like that).
Let's say I also add some plain wrappers like (and let's say the number of these wrappers equals 2 or 3):
void FooToFile(const std::string& filename, Object& object)
{
std::ifstream stream(filename.c_str());
Foo(stream, object);
}
So, my question is:
Where in this case (ideologically) should I throw the exception if my stream is bad? Should I do this in each wrapper or just move that check to my Foo, so that it's body would look like
if (!foo.good()) throw (something);
// Perform ordinary actions
I understand that this may be not the most important part of coding and these solutions are actually equal, but I just wan't to know "the proper" way to implement this.
Thank you.
In this case it's better to throw it in the lower-level Foo function so that you don't have to copy the validation and exception throwing code in all of your wrappers. In general using exceptions correctly can make your code a lot cleaner by removing a lot of data validation checking that you might otherwise do redundantly at multiple levels in the call stack.
I would prefer not to delay notifying an error. If you know after you have created the stream, that it is no good, why call a method that works on it? I know that to reduce code-redundancy you plan to move it further down. But the downside of that approach is a less-specific error message. So this depends to some extent on the source-code context. If you could get away with a generic error message at the lower-function level you can add the code there, this will surely ease maintanence of the code especially when there are new developers on the team. If you need a specific error message better handle it at the point of failure itself.
To avoid code redundancy call a common function that makes this exception/error for you. Do not copy/paste the code in every wrapper.
The sooner you catch the exceptiont the better. The more specific the exception is - the better. Don't be scared of including most of your code into a try catch blocks, apart fromt he declaration.
For example:
int count = 0;
bool isTrue = false;
MyCustomerObject someObject = null;
try
{
// Initialise count, isTrue, someObject. Process.
}
catch(SpecificException e)
{
// Handle and throw up the stack. You don't want to lose the exception.
}
I like to use helper functions for this:
struct StreamException : std::runtime_error
{
StreamException(const std::string& s) : std::runtime_error(s) { }
virtual ~StreamException() throw() { }
};
void EnsureStreamIsGood(const std::ios& s)
{
if (!s.good()) { throw StreamException(); }
}
void EnsureStreamNotFail(const std::ios& s)
{
if (s.fail()) { throw StreamException(); }
}
I test them immediately before and after performing stream operations if I don't expect a failure.
Traditionally in C++, stream operations don't throw exceptions. This is partly for historic reasons, and partly because streaming failures are expected errors. The way C++ standard stream classes deal with this is to set a flag on a stream to indicate an error has occurred, which user code can check. Not using exceptions makes resumption (which is often required for streaming ops) easier than if exceptions were thrown.