There are a few questions on SO that address passing function pointers as parameters/arguments (here, here, here, etc.). In fact, I asked a related question the other day. However, this question is a little different.
My problem is that I am writing a class that I want to be extremely flexible.
What I have now works for non-member functions. It is posted below
template <typename T>
class MyClass
{
private:
typedef double (*firstFunctionPtr) (const T &var);
typedef bool (*secondFunctionPtr)(const T &var);
// Function pointers as member variables
firstFunctionPtr _firstFunc;
secondFunctionPtr _secondFunc;
public:
inline MyClass(firstFunctionPtr firstFunc,
secondFunctionPtr secondFunc);
};
template<typename T>
MyClass<T>::MyClass(firstFunctionPtr firstFunc, secondFunctionPtr secondFunc) :
_firstFunc(firstFunc),
_secondFunc(secondFunc),
{}
However, this falls apart when I need to initialize with a pointer to a member function of some other, arbitrary, class, which, unfortunately for me, happens to be a common use case for my purposes.
This answer suggests that
In a proper C++ interface you might want to have a look at having your function take templated argument for function objects to use arbitrary class types.
However, I have not been able to make this compile. I've tried templating my typedefs (using the C++11 aliasing approach), and I've tried adding a second template parameter to the class to handle the calling class of those member functions, but neither approach has worked.
This Q/A seems to be getting towards what I'm trying to do, but I can't make heads or tails of it.
Can someone please explain how I might modify my class to handle arbitrary member functions pointers being passed in?
Furthermore, is it possible to make it so that it can handle either arbitrary member functions or non-member functions?
Lastly, is it possible to do this with templates?
For the record, I'm trying to avoid using the functional header, but it may be a fool's errand not to use it.
If you want MyClass to be a template that can hold both free function
pointers of types:
double (*)(const T &var);
bool (*)(const T &var);
for some parameter type T, or alternatively member-function
pointers of types:
double (C::*)(const T &var);
bool (C::*)(const T &var);
for some parameter types C and T then, MyClass must be parameterized
by both T and C and you require two specializations:
Where C is some non-class type
Where C is any class type
In case (1), the non-class type C cannot possibly have member functions,
so that one will implement the free-function pointer specialization.
In case (2), the class C could be one that has member functions, so that one
will implement the member-function pointer specialization.
The obvious choice for a non-class type C is void. So we can make C
default to void:
Primary template
template<typename T, typename C = void>
struct MyClass;
So that:
MyClass<T>
will be the free function pointer specialization for T, and:
MyClass<T,C>
for any C other than void, will be the member-function pointer specialization.
As you may know you can use std::enable_if
and SFINAE to make the compiler
chose one specialization of a class template or another, depending on whether one
of its template parameters U satisfies some compiletime test. You could take
that approach here, but another one is available that does not require that apparatus:
Starting with the primary template, we would just like to have:
Free function specialization
template<typename T>
struct MyClass<T>
{
... for free function pointers ...
};
and:
Member function specialization
template<typename T, typename C>
struct MyClass<T,C>
{
... for member function pointers ...
};
But we can't have just that, because the member function "specialization" has exactly
the same template parameters as the primary template. Which means it isn't
a specialization, and the compiler won't allow it.
You can easily remove that problem, however, simply by giving the primary
template one more defaulting template parameter that it doesn't need, but whose
presence allows both those specializations to stand.
New primary template
template <typename T, typename C = void, typename Default = void>
struct MyClass;
So here is an illustrative solution:
// Primary template
template <typename T, typename C = void, typename Default = void>
struct MyClass;
// Free function specialization
template <typename T>
struct MyClass<T>
{
using firstFunctor_t = double(*)(T const &);
using secondFunctor_t = bool(*)(T const &);
MyClass(firstFunctor_t firstFunc, secondFunctor_t secondFunc)
: _firstFunc(firstFunc),
_secondFunc(secondFunc)
{}
double callFirst(T const & var) {
return _firstFunc(var);
}
bool callSecond(T const & var) {
return _secondFunc(var);
}
private:
firstFunctor_t _firstFunc;
secondFunctor_t _secondFunc;
};
// Member function specialization
template <typename T, typename C>
struct MyClass<T,C>
{
using firstFunctor_t = double(C::*)(T const &);
using secondFunctor_t = bool(C::*)(T const &) const;
MyClass(firstFunctor_t firstFunc, secondFunctor_t secondFunc)
: _firstFunc(firstFunc),
_secondFunc(secondFunc)
{}
double callFirst(C & obj, T const & var) {
return (obj.*_firstFunc)(var);
}
double callFirst(C const & obj, T const & var) {
auto & o = const_cast<C&>(obj);
return (o.*_firstFunc)(var);
}
bool callSecond(C & obj, T const & var) {
return (obj.*_secondFunc)(var);
}
bool callSecond(C const & obj, T const & var) {
auto & o = const_cast<C&>(obj);
return (o.*_secondFunc)(var);
}
private:
firstFunctor_t _firstFunc;
secondFunctor_t _secondFunc;
};
In the member function specialization, notice a couple of points that you might
not have considered:-
I decided that the second member function I want to store shall be a
const member function. It's more than likely that a member function of C
that take a T const & argument and returns bool will be a const member
function, isn't it? And if so, then that const-ness has to be part of
the member-function type definition that I use in the specialization:
using secondFunctor_t = bool(C::*)(T const &) const;
or attempts to instantiate the specialization with any bool (C::*)(T const &) const
will fail to compile.
Also, I have provided two overloads for each of MyClass<T,C>::callFirst
and MyClass<T,C>::callSecond, one with arguments:
C & obj, T const & var
and another with arguments:
C const & obj, T const & var
Without the second, attempts to call either MyClass<T,C>::callFirst
or MyClass<T,C>::callSecond with an obj that is const will fail to
compile.
For program to demo this solution you can append:
#include <iostream>
#include <string>
double foo(std::string const & s)
{
return std::stod(s);
}
bool bar(std::string const & s)
{
return s.size() > 0;
}
struct SomeClass
{
SomeClass(){};
double foo(std::string const & s) {
return ::foo(s);
}
bool bar(std::string const & s) const {
return ::bar(s);
}
};
int main()
{
MyClass<std::string> my0{foo,bar};
std::cout << std::boolalpha;
std::cout << my0.callFirst("1.11") << std::endl;
std::cout << my0.callSecond("Hello World") << std::endl;
MyClass<std::string,SomeClass> my1{&SomeClass::foo,&SomeClass::bar};
SomeClass thing;
std::cout << my1.callFirst(thing,"2.22") << std::endl;
std::cout << my1.callSecond(thing,"Hello World") << std::endl;
SomeClass const constThing;
std::cout << my1.callFirst(constThing,"3.33") << std::endl;
std::cout << my1.callSecond(constThing,"Hello World") << std::endl;
return 0;
}
See it live
You said that you want this template to be "extremely flexible". The
illustrated solution is fitted to your example, but you might be
interested in know that it isn't nearly as flexible as you could get.
For both free functions and member functions, with additional variadic template
parameters, your template could store and call [member] functions with
arbitary return types and arbitary numbers of arguments of arbitrary types.
See this question and
answer.
I will sugest to create a helper object which will store the type you want to work with:
template <typename RETURN, typename TYPE, typename CLASS>
struct function_pointer
{ using type_t = RETURN (CLASS::*)(const TYPE &); };
template <typename RETURN, typename TYPE>
struct function_pointer<RETURN, TYPE, std::nullptr_t>
{ using type_t = RETURN (*)(const TYPE &); };
This type will create a member-function-pointer if a class is provided as third parameter and a function-pointer otherwise. Now, we can use this helper in MyClass:
template <typename T, typename CLASS = std::nullptr_t>
class MyClass
{
using firstFunctionPtr = typename function_pointer<double, T, CLASS>::type_t;
using secondFunctionPtr = typename function_pointer<bool, T, CLASS>::type_t;
// Function pointers as member variables
firstFunctionPtr _firstFunc;
secondFunctionPtr _secondFunc;
public:
inline MyClass(firstFunctionPtr firstFunc, secondFunctionPtr secondFunc) :
_firstFunc(firstFunc),
_secondFunc(secondFunc)
{}
void call_first(CLASS &c, const T&v) { (c.*_firstFunc)(v); }
void call_second(CLASS &c, const T&v) { (c.*_secondFunc)(v); }
void call_first(const T&v) { (_firstFunc)(v); }
void call_second(const T&v) { (_secondFunc)(v); }
};
I've added call_* functions just to show a use case, which will be as below:
// Some class with the expected function signatures
struct S1
{
int i = 0;
double d(const int &) { std::cout << i << ' ' << __PRETTY_FUNCTION__ << '\n'; return{}; }
bool b(const int &) { std::cout << i << ' ' << __PRETTY_FUNCTION__ << '\n'; return{}; }
};
// Another class with the expected function signatures
struct S2
{
double d(const int &) { std::cout << __PRETTY_FUNCTION__ << '\n'; return{}; }
bool b(const int &) { std::cout << __PRETTY_FUNCTION__ << '\n'; return{}; }
};
// Free function with which could have the expected function signature
template <typename R>
R f(const int &) { std::cout << __PRETTY_FUNCTION__ << '\n'; return{}; }
Using MyClass with an arbitrary class (S1):
S1 a{1}, b{2};
S2 c, d;
MyClass<int, S1> MCiS1(&S1::d, &S1::b);
MCiS1.call_first(a, 111); // Prints -> 1 double S1::d(const int&)
MCiS1.call_second(b, 222); // Prints -> 2 bool S1::b(const int&)
MCiS1.call_first(c, 111); // Error decltype(c) is not S1.
MCiS1.call_second(d, 222); // Error decltype(d) is not S1.
Using MyClass with a different class (S2):
MyClass<int, S2> MCiS2(&S2::d, &S2::b);
MCiS2.call_first(c, 111); // Prints -> double S2::d(const int&)
MCiS2.call_second(d, 222); // Prints -> bool S2::b(const int&)
MCiS2.call_first(a, 111); // Error decltype(c) is not S2.
MCiS2.call_second(b, 222); // Error decltype(d) is not S2.
Using MyClass with non-member functions:
MyClass<int> MCi(f<double>, f<bool>);
MCi.call_first(111); // Prints -> R f(const int&) [with R = double]
MCi.call_second(222); // Prints -> R f(const int&) [with R = bool]
Check the live demo Here.
All you need to do is bind the object instance for the member function pointer as a first argument.
struct foo {
float bar1(const type &var);
bool bar2(const type &var);
};
foo my_foo;
auto f1 = std::bind(&foo::bar1, my_foo, _1);
auto f2 = std::bind(&foo::bar2, my_foo, _1);
MyClass<type> my_obj(f1, f2);
I want to define a template function that gets one argument passed by value for all types but std::string (and const char*).
template<typename T>
void foo( T value )
{
// some code using value
}
The std::string version should behave exactly as the template version, but have its parameter passed by const&.
What is the best approach to do what I want without duplicating the body of foo()?
The best I was able to think is to wrap the code using value inside another function, and then call it inside all versions of foo() (the template version and the std::string overload). Is there another way? For example, is it possible to call the template version from within the std::string overload?
EDIT
What I want to know is a good rule of thumb for avoiding code duplication among various specializations and overloads. What is a good pattern to follow? Shall I define a wrapper function for the body and then call that from within all overloads/specializations, or there is another way?
In order to avoid code duplication, the answer by 101010 can be extended to actually call the template from within the overload:
#include <string>
#include <iostream>
#include <type_traits>
#include <boost/core/demangle.hpp>
template<typename T>
void foo( T value )
{
std::cout << "inside template" << std::endl;
std::cout << boost::core::demangle(typeid(value).name()) << std::endl;
}
void foo(const std::string &value)
{
std::cout << "inside const string overload" << std::endl;
foo<const std::string&>(value);
}
int main()
{
foo(10);
foo(std::string("hello"));
return 0;
}
output
inside template
int
inside const string overload
inside template
std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >
live example
Simple solution: provide an overload for std::string:
void foo( std::string const &value ) {
// some code using value
}
I think what you are looking for is rvalue signature in C++ 11.
Its as simple as:
#include <iostream>
#include <string>
template<typename T>
void foo(T&& value)
{
std::cout << "was passed by refernece:" << std::is_lvalue_reference<T&&>::value << std::endl;
std::cout << value << std::endl;
}
int main()
{
std::string text = "hello";
foo(text);
foo(1);
}
You can either pass the parameter by reference or by value and the rvalue rules will use the appropriate type.
You can define a type-trait-like class that will convert std::string to std::string& and will keep the type for all other types:
template<class T>
struct helper {
typedef T type;
};
template<>
struct helper<std::string> {
typedef std::string& type; // or const std::string& type if you want
};
template<typename T>
void foo( typename helper<T>::type value, T value2 )
{
value = value2;
}
int main()
{
int a = 10;
foo(a, 42);
std::cout << a << std::endl; // prints 10
std::string s = "abc";
foo(s, std::string("def"));
std::cout << s << std::endl; // prints def
}
Full example: http://coliru.stacked-crooked.com/a/96cf78e6c4846172
UPD: as noted by #PiotrSkotnicki, having only one parameter makes type-deduction fail. However, I will keep the answer as it might be helpful in case you indeed have several parameters of type T or if you are ok with specifying explicit template parameter to foo.
UPD2: To solve the type-deduction problem, you may add another wrapper:
template<typename T>
void foo_helper( typename helper<T>::type value )
{
value = T();
}
template<typename T>
void foo(T& value)
{
foo_helper<T>(value);
}
This still might have some problems, so whether this is applicable to your usecase, is up to you to decide.
use std::enable_if + std::is_convertibale:
template<typename T>
typename std::enable_if<!std::is_convertible<T,std::string>::value>::type foo( T value )
{
// some code using value
}
In this shortened example (not real world code), I'm attempting to call Callback with an int &, however, when going via the CallMethod method, the template parameter is interpreted as an int, meaning it can't convert it to the target parameter type.
Is this possible? I know I can cast the parameter to the correct type when calling CallMethod, however I'd like the solution to be implicit if possible.
#include <functional>
#include <iostream>
using namespace std;
void Callback(int &value)
{
value = 42;
}
template <typename Method, typename ...Params>
void CallMethod(Method method, Params ...params)
{
method(std::forward<Params>(params)...);
}
int main()
{
int value = 0;
CallMethod(&Callback, value);
cout << "Value: " << value << endl;
return 0;
}
You aren't correctly forwarding your arguments. In order to make use of perfect-forwarding std::forward should operate on forwarding references, which are when you have an rvalue reference in a deduced context. Your CallMethod function should look like this:
template <typename Method, typename ...Params>
void CallMethod(Method method, Params&& ...params)
{
method(std::forward<Params>(params)...);
}
Demo
I would like to store a std::function in a class as a member.
I have troubles with below test code when calling a.callMethod() where the method has been set just before with a.setMethod(). The code works fine if I remove the template.
I have tried to debug with a function callMethodOutsideClass without success.
Is there a better way to manage that ?
#include <iostream>
#include <vector>
#include <functional>
template<typename T>
struct A
{
A(size_t size, T value) : vec_(size, value), method_(nullptr) {}
void setMethod(const std::function<int(A<T>&)> method) { method_ = method; }
int callMethod()
{
if(method_)
return method_(*this);
else
std::cerr << "method not initialized" << std::endl;
return -1;
}
std::vector<int> vec_;
std::function<int(A<T>& a)> method_;
};
template<typename T>
int callMethodOutsideClass(struct A<T>& a, const std::function<int(A<T>&)> method)
{
return method(a);
}
template<typename T>
int apple(struct A<T>& a)
{
a.vec_[0] += 1;
return 1;
}
template<typename T>
int orange(struct A<T>& a)
{
a.vec_[0] += 2;
return 2;
}
int main()
{
A<int> a(10,4), b(10,4);
std::cout << callMethodOutsideClass(a, &apple) << std::endl;
a.setMethod(&orange);
std::cout << a.callMethod() << std::endl;
std::cout << a.vec_[0] << std::endl;
}
I currently get the following errors :
Foo6.cpp: In function ‘int main()’:
Foo6.cpp:46:47: error: cannot resolve overloaded function ‘apple’ based on conversion to type ‘std::function<int(A<int>&)>’
std::cout << callMethodOutsideClass(a, &apple) << std::endl;
^
Foo6.cpp:48:21: error: no matching function for call to ‘A<int>::setMethod(<unresolved overloaded function type>)’
a.setMethod(&orange);
^
Foo6.cpp:48:21: note: candidate is:
Foo6.cpp:9:7: note: void A<T>::setMethod(std::function<int(A<T>&)>) [with T = int]
void setMethod(const std::function<int(A<T>&)> method) { method_ = method; }
^
Foo6.cpp:9:7: note: no known conversion for argument 1 from ‘<unresolved overloaded function type>’ to ‘std::function<int(A<int>&)>’
A pointer to function is not a std::function<T>. The std::function<T> signature can't be deduced based on the function address given as an argument. In addition, the compiler can't resolve a proper function template specialization to get its address when a conversion to std::function<T> is requested, since the constructor of std::function<T> is a function template as well.
You need to be more explicit:
std::cout << callMethodOutsideClass<int>(a, &apple<int>) << std::endl;
// ^^^^^ ^^^^^
a.setMethod(&orange<int>);
// ^^^^^
Is there any way to deduce templates parameters "easily" ?
You can modify the signature of callMethodOutsideClass in one of two ways:
Option #1:
Disable a type deduction on a std::function<int(A<T>&)> parameter:
template <typename T> struct identity { using type = T; };
template<typename T>
int callMethodOutsideClass(A<T>& a, const typename identity<std::function<int(A<T>&)>>::type method)
{
return method(a);
}
But you'll have to pay for the type-erasure applied by a std::function.
Option #2:
Let the compiler deduce the real type of a functor object given as an argument:
template <typename T, typename F>
int callMethodOutsideClass(A<T>& a, F&& method)
{
return std::forward<F>(method)(a);
}
In both cases you can just say:
callMethodOutsideClass(a, &apple<int>);
// ^^^^^
Note: You still have to pass the address of a concrete function template specialization by providing a list of template arguments &apple<int>. If you want to get away with a simple &address syntax, then the function taking it needs to declare an exact type of that argument:
template<typename T>
int callMethodOutsideClass(A<T>& a, int(*method)(A<T>&))
{
return method(a);
}
callMethodOutsideClass(a, &apple);
or you could help the compiler resolve the proper overload at a call site:
callMethodOutsideClass(a, static_cast<int(*)(decltype(a)&)>(&apple));
...or, you can use a lambda expression defined as follows:
template<typename T, typename F>
int callMethodOutsideClass(struct A<T>& a, F&& method)
{
return std::forward<F>(method)(a);
}
// in C++11:
callMethodOutsideClass(a, [](decltype(a)& x){return apple(x);});
// in C++14:
callMethodOutsideClass(a, [](auto&& x){return apple(std::forward<decltype(x)>(x));});
As far as the setMethod member function is concerned, the things are easier, since the compiler knows exactly that it expects const std::function<int(A<T>&)> method where T is known (not deduced). So basically, you just need to help the compiler to get the address of a function template specialzation you need at the call site:
a.setMethod(&orange<int>);
a.setMethod(static_cast<int(*)(decltype(a)&)>(&orange));
EDIT: Just to clarify "t" is successfully called when casted. The compiler knows and does state that it is a function pointer that takes an argument of type int. I supply a null int pointer to break the loop because it is calling itself recursively. It may just be a bug in the compiler.
I am trying to call a function from a template function argument.
I would assume that it would be possible to call the function without explicit casting but that does not seem to be the case. Using VC2013.
template<typename T>
void func(T t)
{
printf("calling func...\n");
if (t)
{
((void(__cdecl*)(int))t)((int)nullptr); // explicit casting is successful
t ((int)nullptr); // compile error: ``term does not evaluate to a function taking 1 arguments``
}
}
void main()
{
auto pe = func < int > ;
auto pf = func < void(__cdecl*)(int) >;
pf(pe);
}
You have the error for func<int> which becomes:
void func(int t)
{
printf("calling func...\n");
if (t)
{
((void(__cdecl*)(int))t)((int)nullptr); // bad casting
t ((int)nullptr); // compile error: int is not a callable object
}
}
When t is an int, of course you can't treat it like a function. You'll have to specialize the template for ints or use a different function. Also, please forget that there are C-style casts, they only serve to shoot yourself into the foot.
I don't understand what do you want exactly. But maybe something like this ?:
#include <iostream>
#include <type_traits>
template<typename T>
void call_helper(T value, std::true_type) // value is function
{
std::cout << "Function" << std::endl;
value(0);
}
template<typename T>
void call_helper(T value, std::false_type) // value is NOT function
{
std::cout << "Not function" << std::endl;
std::cout << value << std::endl;
}
template<typename T>
void call(T value)
{
call_helper(value, std::is_function<typename std::remove_pointer<T>::type>());
}
int main()
{
void (*f)(int) = call<int>;
call(f);
}
live example: http://rextester.com/DIYYZ43213