Designing C++ classes with partly common implementations - c++

I am designing a C++ module. This module can receive 3 different types of requests: Request-A, Request-B and Request-C.
For each type, I have a corresponding handler class: RequestHandler-A, RequestHandler-B and RequestHandler-C (all of these implement the IRequestHandler interface).
Each handler has to carry out certain actions to fulfill its request.
For example, RequestHandler-A needs to perform these in sequence:
Action-1
Action-2
Action-3
Action-4
Action-5
RequestHandler-B needs to perform these in sequence:
Action-1
Action-3
Action-5
RequestHandler-C needs to perform these in sequence:
Action-4
Action-5
The result of one action is used by the next one.
I am struggling to design these classes so that common action implementations are reused across handlers.
Are there any design patterns that can be applied here? Maybe Template method pattern could be a possibility but I am not sure.
Any suggestions would be greatly appreciated.
PS: to make things more interesting, there is also a requirement where, if Action-2 fails, we should retry it with different data. But maybe I am thinking too far ahead.

"Common implementations" means that your solution does not have anything to do with inheritance. Inheritance is for interface reuse, not implementation reuse.
You find that you have common code, just use shared functions:
void action1();
void action2();
void action3();
void action4();
void action5();
struct RequestHandlerA : IRequestHandler {
virtual void handle( Request *r ) {
action1();
action2();
action3();
}
};
struct RequestHandlerB : IRequestHandler {
virtual void handle( Request *r ) {
action2();
action3();
action4();
}
};
struct RequestHandlerC : IRequestHandler {
virtual void handle( Request *r ) {
action3();
action4();
action5();
}
};
Assuming that the common function are just internal helpers, you probably want to make them static (or use an anonymous namespace) to get internal linkage.

Are you looking for something like this?
#include <iostream>
using namespace std;
class Interface{
public:
void exec(){
//prepare things up
vExec();
//check everything is ok
};
virtual ~Interface(){}
protected:
virtual void vExec() = 0;
virtual void Action0() = 0;
virtual void Action1(){}
void Action2(){}
};
void Interface::Action0(){
}
void Action3(){}
class HandlerA : public Interface{
protected:
virtual void vExec(){
Action0();
Action1();
Action3();
}
virtual void Action0(){
}
};
class HandlerB : public Interface{
protected:
virtual void vExec(){
Action0();
Action1();
Action2();
Action3();
}
virtual void Action0(){
Interface::Action0();
}
};
int main()
{
Interface* handler = new HandlerA();
handler->exec();
HandlerB b;
b.exec();
delete handler;
}
As you can see the actions can be virtual members, non-virtual members, free functions, or whatever you might think of, depending on what you need.
The "additional" feature of feeding the actions with different data can be performed in exec() (if it is generic) or in vExec (if it is handler specific). If you give us more details I can modify the example accordingly.
Also, you can make vExec public and get rid of exec. The one in the example is just a practice I like most (making interface non-virtual and virtual functions non-public).

You can have one base class which implements the 5 actions and have the handlers derive from it.
If the actions are sufficiently isolated from each other, you can probably separate them out into individual functions or classes too and just have the handler call those.

Have you considered the Chain Of Command design pattern?
http://en.wikipedia.org/wiki/Command_pattern
It is a time proven pattern that promotes loose coupling among handler objects and the requests(commands) they receive.
What you could do is translate the request objects to act as Command Objects. You then specify which type of Commands each of your Handler's can undertake. You can then pass the command to the Handlers and have them pass the command forward if they cannot handle them. If a handler can handle the action, then the command is processed through each of its respective Actions. You can then have each logical action reside within the Handler as objects themselves, utilizing composition.

Related

which is better, dynamic binding or interface class when implementing a callback interface

In my case, I have to give a callback interface, there're 2 solutions:
case 1, interface class
class interface {
public:
virtual void callback(param_t params);
};
case 2:
class dynamic_binding_interface {
public:
std::function<void(param_t params)> callback;
};
what I'm worried about case 2 is:
in my case, I don't need to change the implementation of callback, so it's acctually one-time bind
it could be difficult to debug, since std::function cannot hold param names
the point is I'm worried about case 1 is:
complicated inheritance in the future
I must create a new class to implement interface each time
so, any suggestions? thanks in advance
Using a callback via an abstract class (interface), and using std::function have each advantages and disadvantages. It's also a matter of opinion and preference.
Having said that, I'll try to demonstrate 2 extreme cases where I believe it is better suited to use this or the other.
Using an interface:
The main advantage of using an interface, is that you can have all the callback in one place. If you some server class with some methods (the incoming interface), it's convenient to think of the callbacks (where the server notifies of certain events) as an out going interface and treat them as one entity. It also allows, with the usage of pure virtual methods, to force the client to implement them (and therefore be aware of the various notifications).
Typical example:
struct SomeServerCallback
{
virtual void NotifyX() = 0;
virtual void NotifyY() = 0;
virtual void NotifyZ() = 0;
// ...
};
class SomeServer
{
public:
SomeServer(SomeServerCallback * pCallback) : m_pCallback(pCallback) {}
void Do1() { /*...*/ }
void Do2() { /*...*/ }
// ...
protected:
SomeServerCallback * m_pCallback;
};
Using a std::function:
On the other hand, if you have another server class that does not need to notify the client of various events, but does need a callback for printing messages, it can be more convenient to use std::function, rather then define an interface and force clients to derive from it. It allows the client to choose how to define the callback (using a lambda, std::bind with a class method etc.).
Typical example for this case:
#include <functional>
#include <string>
class SomeOtherServer
{
public:
using MyPrintCallback = std::function<void(std::string const&)>;
SomeOtherServer(MyPrintCallback printCallback) : m_printCallback(printCallback) {}
void Do1() { /*...*/ }
void Do2() { /*...*/ }
// ...
protected:
MyPrintCallback m_printCallback;
};
Using these solutions involves different overheads (performance-wise and others).
But I believe none of them is in principle prefered over the other.

Modifying class behavior depending on property using if() is code smell or not?

I have a class representing some parameter. The parameter can be number, array, enum or bitfield - this is the param type. The behavior is slightly different between these types, so they are subclasses of paramBase class. The parameter can be stored in RAM or be static (i.e. hardcoded in some way, currently saved in a file).
void read() implemented in paramBase and uses template method pattern to implement reading for any param type, but this works only for RAM storage. If parameter is static then read() must be completely different (i.e. read from file).
A straightforward solution can be further subclassing like paramArrayStatic, paramNumberStatic, etc. (it will be 8 subclasses).
The difference between paramArray and paramArrayStatic is basically only in the read() method, so a straightforward solution will lead to code duplication.
Also I can add if( m_storage==static ) to read() method and modify behavior, but this is also code smell(AFIK).
class paramBase
{
public:
virtual paramType_t type() = 0;
paramStorage_t storage();
virtual someDefaultImplementedMethod()
{
//default implementation
}
void read()
{
//template method pattern
m_prop1 = blablabla;
someDefaultImplementedMethod();
}
protected:
paramStorage_t m_storage;
int m_prop1;
int m_prop2;
};
class paramArray: public paramBase
{
public:
virtual paramType_t type()
{
return PT_ARRAY;
}
virtual someDefaultImplementedMethod()
{
//overriding default implementation of base
//i.e. modify templated read() method behavior
}
protected:
int m_additional_prop1;
int m_additional_prop2;
};
In the end, I have 4 subclasses of base and I need to modify behavior of read() by static/non_static modificator.
How do I solve this without code duplication and code smell? Is the condition if( m_storage==static ) in read() is code smell or not?
You never have to duplicate code: just only re-implement that single method read. If you need to use it from pointers to the base class, virtual does just that. If you have common code between that 8 read method (or just between some of them), put it in a common middle layer.
If you want to make it clear that the class might not use the method at the base level, you can make it abstract, the add a ninth subclass for the RAM case.
Having a huge switch calling 9 different read methods in the same class seems far worse to me.
Straightforward solution can be furhter subclassing like paramArrayStatic, paramNumberStatic..etc. i.e. totally it will be 8 subclasses. Difference between paramArray and paramArrayStatic is basically only in read() method, so straightforward solution will lead to code duplication.
I agree. Creating a class that overrides the behaviour in such a significant way would be in violation of the SOLID principles (specifically the LSP part).
Also i can add if( m_storage==static ) to read() method and modify behavior, but this is also code smell(AFIK).
Who decides that this is code smell? It seems most expressive, and sensible to me.
Stop worrying so much about code smells, and start questioning the expressiveness of your options...
SigmaN,
For your simple example I would not worry about the control coupling in the read method. It is often better to have clear and maintainable code versus code that is strictly decoupled.
The general idea of your questions seems to be about decoupling the source of a value from the business logic for that value. Oftentimes, a good strategy is creating an interface as an ABC and then taking an instance on the the ctor. Here is a very simple example.
class ReadValue
{
public:
virtual int32_t readValue(std::string & value) = 0;
};
class DatabaseReadValue::public ReadValue
{
public:
virtual int32_t readValue(std:string & value) override; // read from the database
}
class XMLReadValue::public ReadValue
{
public:
virtual int32_t readValue(std::string & value) override; // read from XML file
}
class Parameter
{
public:
Parameter(ReadValue & readValueObj): readValueObj_(readValueObj) {}
int32_t read() { return(readValueObj_.readValue(value_)); }
ReadValue & readValueObj_;
std::string value_;
}
Oftentimes, the idea will be used in a template class rather than using inheritance. The gist is the same however.
The idea is related several Design Patterns depending on the details. Bridge, Adapter, Factory, Abstract Factory, PIMPL.
https://en.wikipedia.org/wiki/Software_design_pattern
--Matt
My problem is solved in this way:
//public interface and basic functionality
class base
{
public:
virtual void arraySize() //part of interface
{
printf("base arraySize()\n");
}
//template method read
int read()
{
readImpl();
}
protected:
virtual void readImpl() = 0;
};
//only base functionality of array is here. no read implementation!
class array : public base
{
public:
virtual void arraySize()
{
printf("array arraySize()\n");
}
};
//implement static read for array
class stat_array : public array
{
public:
void readImpl()
{
printf("stat_array read() \n");
}
};
//implement non static read for array
class nostat_array : public array
{
public:
void readImpl()
{
printf("nostat_array read() \n");
}
};
//test
stat_array statAr;
nostat_array nonstatAr;
base *statArPtr = &statAr;
base *nonstatArPtr = &nonstatAr;
void main()
{
statArPtr->read();
nonstatArPtr->read();
}

Dealing with functions in a class that should be broken down into functions for clarity?

How is this situation usually dealt with. For example, an object may need to do very specific things:
class Human
{
public:
void eat(Food food);
void drink(Liquid liquid);
String talkTo(Human human);
}
Say that this is what this class is supposed to do, but to actually do these might result in functions that are well over 10,000 lines. So you would break them down. The problem is, many of those helper functions should not be called by anything other than the function they are serving. This makes the code confusing in a way. For example, chew(Food food); would be called by eat() but should not be called by a user of the class and probably should not be called anywhere else.
How are these cases dealt with generally. I was looking at some classes from a real video game that looked like this:
class CHeli (7 variables, 19 functions)
Variables list
CatalinaHasBeenShotDown
CatalinaHeliOn
NumScriptHelis
NumRandomHelis
TestForNewRandomHelisTimer
ScriptHeliOn
pHelis
Functions list
FindPointerToCatalinasHeli (void)
GenerateHeli (b)
CatalinaTakeOff (void)
ActivateHeli (b)
MakeCatalinaHeliFlyAway (void)
HasCatalinaBeenShotDown (void)
InitHelis (void)
UpdateHelis (void)
TestRocketCollision (P7CVector)
TestBulletCollision (P7CVectorP7CVectorP7CVector)
SpecialHeliPreRender (void)
SpawnFlyingComponent (i)
StartCatalinaFlyBy (void)
RemoveCatalinaHeli (void)
Render (void)
SetModelIndex (Ui)
PreRenderAlways (void)
ProcessControl (void)
PreRender (void)
All of these look like fairly high level functions, which mean their source code must be pretty lengthy. What is good about this is that at a glance it is very clear what this class can do and the class looks easy to use. However, the code for these functions might be quite large.
What should a programmer do in these cases; what is proper practice for these types of situations.
For example, chew(Food food); would be called by eat() but should not be called by a user of the class and probably should not be called anywhere else.
Then either make chew a private or protected member function, or a freestanding function in an anonymous namespace inside the eat implementation module:
// eat.cc
// details of digestion
namespace {
void chew(Human &subject, Food &food)
{
while (!food.mushy())
subject.move_jaws();
}
}
void Human::eat(Food &food)
{
chew(*this, food);
swallow(*this, food);
}
The benefits of this approach compared to private member functions is that the implementation of eat can be changed without the header changing (requiring recompilation of client code). The drawback is that the function cannot be called by any function outside of its module, so it can't be shared by multiple member functions unless they share an implementation file, and that it can't access private parts of the class directly.
The drawback compared to protected member functions is that derived classes can't call chew directly.
The implementation of one member function is allowed to be split in whatever way you want.
A popular option is to use private member functions:
struct Human
{
void eat();
private:
void chew(...);
void eat_spinach();
...
};
or to use the Pimpl idiom:
struct Human
{
void eat();
private:
struct impl;
std::unique_ptr<impl> p_impl;
};
struct Human::impl { ... };
However, as soon as the complexity of eat goes up, you surely don't want a collection of private methods accumulating (be it inside a Pimpl class or inside a private section).
So you want to break down the behavior. You can use classes:
struct SpinachEater
{
void eat_spinach();
private:
// Helpers for eating spinach
};
...
void Human::eat(Aliment* e)
{
if (e->isSpinach()) // Use your favorite dispatch method here
// Factories, or some sort of polymorphism
// are possible ideas.
{
SpinachEater eater;
eater.eat_spinach();
}
...
}
with the basic principles:
Keep it simple
One class one responsibility
Never duplicate code
Edit: A slightly better illustration, showing a possible split into classes:
struct Aliment;
struct Human
{
void eat(Aliment* e);
private:
void process(Aliment* e);
void chew();
void swallow();
void throw_up();
};
// Everything below is in an implementation file
// As the code grows, it can of course be split into several
// implementation files.
struct AlimentProcessor
{
virtual ~AlimentProcessor() {}
virtual process() {}
};
struct VegetableProcessor : AlimentProcessor
{
private:
virtual process() { std::cout << "Eeek\n"; }
};
struct MeatProcessor
{
private:
virtual process() { std::cout << "Hmmm\n"; }
};
// Use your favorite dispatch method here.
// There are many ways to escape the use of dynamic_cast,
// especially if the number of aliments is expected to grow.
std::unique_ptr<AlimentProcessor> Factory(Aliment* e)
{
typedef std::unique_ptr<AlimentProcessor> Handle;
if (dynamic_cast<Vegetable*>(e))
return Handle(new VegetableProcessor);
else if (dynamic_cast<Meat*>(e))
return Handle(new MeatProcessor);
else
return Handle(new AlimentProcessor);
};
void Human::eat(Aliment* e)
{
this->process(e);
this->chew();
if (e->isGood()) this->swallow();
else this->throw_up();
}
void Human::process(Aliment* e)
{
Factory(e)->process();
}
One possibility is to (perhaps privately) compose the Human of smaller objects that each do a smaller part of the work. So, you might have a Stomach object. Human::eat(Food food) would delegate to this->stomach.digest(food), returning a DigestedFood object, which the Human::eat(Food food) function processed further.
Function decomposition is something that is learnt from experience, and it usually implies type decomposition at the same time. If your functions become too large there are different things that can be done, which is best for a particular case depends on the problem at hand.
separate functionality into private functions
This makes more sense when the functions have to access quite a bit of state from the object, and if they can be used as building blocks for one or more of the public functions
decompose the class into different subclasses that have different responsibilities
In some cases a part of the work falls naturally into its own little subproblem, then the higher level functions can be implemented in terms of calls to the internal subobjects (usually members of the type).
Because the domain that you are trying to model can be interpreted in quite a number of different ways I fear trying to provide a sensible breakdown, but you could imagine that you had a mouth subobject in Human that you could use to ingest food or drink. Inside the mouth subobject you could have functions open, chew, swallow...

Optional Member Objects

Okay, so you have a load of methods sprinkled around your system's main class. So you do the right thing and refactor by creating a new class and perform move method(s) into a new class. The new class has a single responsibility and all is right with the world again:
class Feature
{
public:
Feature(){};
void doSomething();
void doSomething1();
void doSomething2();
};
So now your original class has a member variable of type object:
Feature _feature;
Which you will call in the main class. Now if you do this many times, you will have many member-objects in your main class.
Now these features may or not be required based on configuration so in a way it's costly having all these objects that may or not be needed.
Can anyone suggest a way of improving this?
EDIT: Based on suggestion to use The Null Object Design Pattern I've come up with this:
An Abstract Class Defining the Interface of the Feature:
class IFeature
{
public:
virtual void doSomething()=0;
virtual void doSomething1()=0;
virtual void doSomething2()=0;
virtual ~IFeature(){}
};
I then define two classes which implement the interface, one real implementation and one Null Object:
class RealFeature:public IFeature
{
public:
RealFeature(){};
void doSomething(){std::cout<<"RealFeature doSomething()"<<std::endl;}
void doSomething1(){std::cout<<"RealFeature doSomething()"<<std::endl;}
void doSomething2(){std::cout<<"RealFeature doSomething()"<<std::endl;}
};
class NullFeature:public IFeature
{
public:
NullFeature(){};
void doSomething(){std::cout<<"NULL doSomething()"<<std::endl;};
void doSomething1(){std::cout<<"NULL doSomething1()"<<std::endl;};
void doSomething2(){std::cout<<"NULL doSomething2()"<<std::endl;};
};
I then define a Proxy class which will delegate to either the real object or the null object depending on configuration:
class Feature:public IFeature
{
public:
Feature();
~Feature();
void doSomething();
void doSomething1();
void doSomething2();
private:
std::auto_ptr<IFeature> _feature;
};
Implementation:
Feature::Feature()
{
std::cout<<"Feature() CTOR"<<std::endl;
if(configuration::isEnabled() )
{
_feature = auto_ptr<IFeature>( new RealFeature() );
}
else
{
_feature = auto_ptr<IFeature>( new NullFeature() );
}
}
void Feature::doSomething()
{
_feature->doSomething();
}
//And so one for each of the implementation methods
I then use the proxy class in my main class (or wherever it's required):
Feature _feature;
_feature.doSomething();
If a feature is missing and the correct thing to do is ignore that fact and do nothing, you can get rid of your checks by using the Null Object pattern:
class MainThing {
IFeature _feature;
void DoStuff() {
_feature.Method1();
_feature.Method2();
}
interface IFeature {
void Method1();
void Method2();
}
class SomeFeature { /* ... */ }
class NullFeature {
void Method1() { /* do nothing */ }
void Method2() { /* do nothing */ }
}
Now, in MainThing, if the optional feature isn't there, you give it a reference to a NullFeature instead of an actual null reference. That way, MainThing can always safely assume that _feature isn't null.
An auto_ptr by itself won't buy you much. But having a pointer to an object that you lazily load only when and if you need it might. Something like:
class Foo {
private:
Feature* _feature;
public:
Foo() : _feature(NULL) {}
Feature* getFeature() {
if (! _feature) {
_feature = new Feature();
}
return _feature;
}
};
Now you can wrap that Feature* in a smart pointer if you want help with the memory management. But the key isn't in the memory management, it's the lazy creation. The advantage to this instead of selectively configuring what you want to go create during startup is that you don't have to configure – you simply pay as you go. Sometimes that's all you need.
Note that a downside to this particular implementation is that the creation now takes place the first time the client invokes what they think is just a getter. If creation of the object is time-consuming, this could be a bit of a shock to, or even a problem for, to your client. It also makes the getter non-const, which could also be a problem. Finally, it assumes you have everything you need to create the object on demand, which could be a problem for objects that are tricky to construct.
There is one moment in your problem description, that actually would lead to failure. You shouldn't "just return" if your feature is unavailable, you should check the availability of your feature before calling it!
Try designing that main class using different approach. Think of having some abstract descriptor of your class called FeatureMap or something like that, which actually stores available features for current class.
When you implement your FeatureMap everything goes plain and simple. Just ensure (before calling), that your class has this feature and only then call it. If you face a situation when an unsupported feature is being called, throw an exception.
Also to mention, this feature-lookup routine should be fast (I guess so) and won't impact your performance.
I'm not sure if I'm answering directly to your question (because I don't have any ideas about your problem domain and, well, better solutions are always domain-specific), but hope this will make you think in the right way.
Regarding your edit on the Null Object Pattern: If you already have a public interface / private implementation for a feature, it makes no sense to also create a null implementation, as the public interface can be your null implementation with no problems whatsoever).
Concretely, you can have:
class FeatureImpl
{
public:
void doSomething() { /*real work here*/ }
};
class Feature
{
class FeatureImpl * _impl;
public:
Feature() : _impl(0) {}
void doSomething()
{
if(_impl)
_impl->doSomething();
// else case ... here's your null object implementation :)
}
// code to (optionally) initialize the implementation left out due to laziness
};
This code only benefits from a NULL implementation if it is performance-critical (and even then, the cost of an if(_impl) is in most cases negligible).

calling a function from a set of overloads depending on the dynamic type of an object

I feel like the answer to this question is really simple, but I really am having trouble finding it. So here goes:
Suppose you have the following classes:
class Base;
class Child : public Base;
class Displayer
{
public:
Displayer(Base* element);
Displayer(Child* element);
}
Additionally, I have a Base* object which might point to either an instance of the class Base or an instance of the class Child.
Now I want to create a Displayer based on the element pointed to by object, however, I want to pick the right version of the constructor. As I currently have it, this would accomplish just that (I am being a bit fuzzy with my C++ here, but I think this the clearest way)
object->createDisplayer();
virtual void Base::createDisplayer()
{
new Displayer(this);
}
virtual void Child::createDisplayer()
{
new Displayer(this);
}
This works, however, there is a problem with this:
Base and Child are part of the application system, while Displayer is part of the GUI system. I want to build the GUI system independently of the Application system, so that it is easy to replace the GUI. This means that Base and Child should not know about Displayer. However, I do not know how I can achieve this without letting the Application classes know about the GUI.
Am I missing something very obvious or am I trying something that is not possible?
Edit: I missed a part of the problem in my original question. This is all happening quite deep in the GUI code, providing functionality that is unique to this one GUI. This means that I want the Base and Child classes not to know about the call at all - not just hide from them to what the call is
It seems a classic scenario for double dispatch. The only way to avoid the double dispatch is switching over types (if( typeid(*object) == typeid(base) ) ...) which you should avoid.
What you can do is to make the callback mechanism generic, so that the application doesn't have to know of the GUI:
class app_callback {
public:
// sprinkle const where appropriate...
virtual void call(base&) = 0;
virtual void call(derived&) = 0;
};
class Base {
public:
virtual void call_me_back(app_callback& cb) {cb.call(*this);}
};
class Child : public Base {
public:
virtual void call_me_back(app_callback& cb) {cb.call(*this);}
};
You could then use this machinery like this:
class display_callback : public app_callback {
public:
// sprinkle const where appropriate...
virtual void call(base& obj) { displayer = new Displayer(obj); }
virtual void call(derived& obj) { displayer = new Displayer(obj); }
Displayer* displayer;
};
Displayer* create_displayer(Base& obj)
{
display_callback dcb;
obj.call_me_back(dcb);
return dcb.displayer;
}
You will have to have one app_callback::call() function for each class in the hierarchy and you will have to add one to each callback every time you add a class to the hierarchy.
Since in your case calling with just a base& is possible, too, the compiler won't throw an error when you forget to overload one of these functions in a callback class. It will simply call the one taking a base&. That's bad.
If you want, you could move the identical code of call_me_back() for each class into a privately inherited class template using the CRTP. But if you just have half a dozen classes it doesn't really add all that much clarity and it requires readers to understand the CRTP.
Have the application set a factory interface on the system code. Here's a hacked up way to do this. Obviously, apply this changes to your own preferences and coding standards. In some places, I'm inlining the functions in the class declaration - only for brevity.
// PLATFORM CODE
// platformcode.h - BEGIN
class IDisplayer;
class IDisplayFactory
{
virtual IDisplayer* CreateDisplayer(Base* pBase) = 0;
virtual IDisplayer* CreateDisplayer(Child* pBase) = 0;
};
namespace SystemDisplayerFactory
{
static IDisplayFactory* s_pFactory;
SetFactory(IDisplayFactory* pFactory)
{
s_pFactory = pFactory;
}
IDisplayFactory* GetFactory()
{
return s_pFactory;
}
};
// platformcode.h - end
// Base.cpp and Child.cpp implement the "CreateDisplayer" methods as follows
void Base::CreateDisplayer()
{
IDisplayer* pDisplayer = SystemDisplayerFactory::GetFactory()->CreateDisplayer(this);
}
void Child::CreateDisplayer()
{
IDisplayer* pDisplayer = SystemDisplayerFactory::GetFactory()->CreateDisplayer(this);
}
// In your application code, do this:
#include "platformcode.h"
class CDiplayerFactory : public IDisplayerFactory
{
IDisplayer* CreateDisplayer(Base* pBase)
{
return new Displayer(pBase);
}
IDisplayer* CreateDisplayer(Child* pChild)
{
return new Displayer(pChild);
}
}
Then somewhere early in app initialization (main or WinMain), say the following:
CDisplayerFactory* pFactory = new CDisplayerFactory();
SystemDisplayFactory::SetFactory(pFactory);
This will keep your platform code from having to know the messy details of what a "displayer" is, and you can implement mock versions of IDisplayer later to test Base and Child independently of the rendering system.
Also, IDisplayer (methods not shown) becomes an interface declaration exposed by the platform code. Your implementation of "Displayer" is a class (in your app code) that inherits from IDisplayer.