Avoid dynamic_cast with derived classes (Cast Derived class) - c++

I am new to C++ and came to a point, where I generate an overhead with classes. I have a QTcpSocket and read messages from it and create objects, for example MessageJoin, MessagePart, MessageUserData etc. I send these objects to my client and display them (+ do some UI updating).
Now here comes my problem. I tested a few design techniques but all of them are not that nice:
Pass each parameter of a message object in a signal/slot connection to the client - small overhead but not that good-looking
Create a method for each Message-Type (messageJoinReceived, messageNoticeReceived etc.)
Create one method and use dynamic_cast to cast für each class and test it
For a better understanding, I added my dynamic_cast version. As a said, the code looks ugly and unusable. My questions are:
Is there a better way to do it with (a) dynamic_cast
Is there another way (For example a design pattern) to solve such a problem ? maybe add a method in the classes and return the type or something like this
I read about the visitor pattern. This pattern is just for dynamic object types in Getter/Setter methods ?
A few side notes
I can use RTTI
Speed isn't a big deal. Clean and understandable code is more important
I use Qt and have the possiblity to use qobject_cast and signal/slots
Here is my code (Pastebin-Link):
// Default class - contains the complete message (untouched)
class Message
{
public:
QString virtual getRawMessage() { return dataRawMessage; }
protected:
QString dataRawMessage;
};
// Join class - cointains the name of the joined user and the channel
class MessageJoin : public Message
{
public:
MessageJoin(const QString &rawmessage, const QString &channel, const QString &user)
{
dataRawMessage = rawmessage;
dataChannel = channel;
dataUser = user;
}
QString getChannel() { return dataChannel; }
QString getUser(){ return dataUser; }
private:
QString dataChannel;
QString dataUser;
};
// Notice class - contains a notification message
class MessageNotice : public Message
{
public:
MessageNotice(const QString &rawmessage, const QString &text)
{
dataRawMessage = rawmessage;
dataText = text;
}
QString getText() { return dataText;}
private:
QString dataText;
};
// Client code - print message and update UI
void Client::messageReceived(Message *message)
{
if(message)
{
MessageJoin *messagejoin;
MessagePart *messagepart;
MessageNotice *messagenotice;
if((messagejoin = dynamic_cast<MessageJoin *>(message)) != 0)
{
qDebug() << messagejoin->getUser() << " joined " << messagejoin->getChannel();
// Update UI: Add user
}
else if((messagenotice = dynamic_cast<MessageNotice *>(message)) != 0)
{
qDebug() << messagenotice->getText();
// Update UI: Display message
}
else
{
qDebug() << "Cannot cast message object";
}
delete message; // Message was allocated in the library and is not used anymore
}
}

This looks quite similar to the expression problem and AFAIK there is no way to avoid casts if you are going to add new messages and new ways to handle them. However it's not that hard to make more eye pleasing wrap for necessary run-time stuff. Just create a map from message type to corresponding handler using typeid.
#include <functional>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
typedef std::function<void(Message *)> handler_t;
typedef std::unordered_map<
std::type_index,
handler_t> handlers_map_t;
template <class T, class HandlerType>
handler_t make_handler(HandlerType handler)
{
return [=] (Message *message) { handler(static_cast<T *>(message)); };
}
template <class T, class HandlerType>
void register_handler(
handlers_map_t &handlers_map,
HandlerType handler)
{
handlers_map[typeid(T)] = make_handler<T>(handler);
}
void handle(handlers_map_t const &handlers_map, Base *message)
{
handlers_map_t::const_iterator i = handlers_map.find(typeid(*message));
if (i != handlers_map.end())
{
(i->second)(message);
}
else
{
qDebug() << "Cannot handle message object";
}
}
Then register handlers for specific message types:
handlers_map_t handlers_map;
register_handler<MessageJoin>(
handlers_map,
[] (MessageJoin *message)
{
qDebug() << message->getUser() << " joined " << message->getChannel();
// Update UI: Add user
});
register_handler<MessageNotice>(
handlers_map,
[] (MessageNotice *message)
{
qDebug() << message->getText();
// Update UI: Display message
});
And now you can handle messages:
// simple test
Message* messages[] =
{
new MessageJoin(...),
new MessageNotice(...),
new MessageNotice(...),
new MessagePart(...),
};
for (auto m: messages)
{
handle(handlers_map, m);
delete m;
}
Surely you might want to make some improvements like wrapping handlers stuff into reusable class, using QT or boost signals/slots so you can have multiple handlers for a single message, but the core idea is the same.

The visitor pattern could be a good fit i.e.
class Message
{
public:
QString virtual getRawMessage() { return dataRawMessage; }
virtual void accept(Client& visitor) = 0;
protected:
QString dataRawMessage;
};
// Join class - cointains the name of the joined user and the channel
class MessageJoin : public Message
{
public:
MessageJoin(const QString &rawmessage, const QString &channel, const QString &user)
{
dataRawMessage = rawmessage;
dataChannel = channel;
dataUser = user;
}
QString getChannel() { return dataChannel; }
QString getUser(){ return dataUser; }
void accept(Client& visitor) override
{
visitor.visit(*this);
}
private:
QString dataChannel;
QString dataUser;
};
// Notice class - contains a notification message
class MessageNotice : public Message
{
public:
MessageNotice(const QString &rawmessage, const QString &text)
{
dataRawMessage = rawmessage;
dataText = text;
}
QString getText() { return dataText;}
void accept(Client& visitor) override
{
visitor.visit(*this);
}
private:
QString dataText;
};
void Client::visit(MessageJoin& msg)
{
qDebug() << msg.getUser() << " joined " << msg.getChannel();
// Update UI: Add user
}
void Client::visit(MessageNotice& msg)
{
qDebug() << msg.getText();
// Update UI: Display message
}
// Client code - print message and update UI
void Client::messageReceived(Message *message)
{
if(message)
{
message->visit(this);
delete message; // Message was allocated in the library and is not used anymore
}
}

A better design might be to have an abstract virtual function in the Message class, called process or onReceive or similar, the sub-classes implements this function. Then in Client::messageReceived just call this function:
message->onReceive(...);
No need to for the dynamic_cast.
I would also recommend you to look into smart pointers, such as std::unique_ptr.
If you have private data in the Client class that is needed for the message processing functions, then there are many methods of solving that:
The simplest is to use a plain "getter" function in the client:
class Client
{
public:
const QList<QString>& getList() const { return listContainingUiRelatedStuff; }
// Add non-const version if you need to modify the list
};
If you just want add items to the list in your example, then add a function for that:
void addStringToList(const QString& str)
{ listContainingUiRelatedStuff.push_back(str); }
Or the non-recommended variant, make Client a friend in all message classes.
The second variant is what I recommend. For example, if you have a list of all connected clients and want to send a message to all of them, then create a function sendAll that does it.
The big idea here is to try and minimize the coupling and dependencies between your classes. The less coupling there is, the easier it will be to modify one or the other, or add new message classes, or even completely rewrite one or the other of the involved classes without it affecting the other classes. This is why we split code into interface and implementation and data hiding.

Related

Using an virtual/abstract class to define an common API for a pipeline architecture

I'd like to create a pipeline architecture constructed of plugins that ingest a variety of data types and can produce a variety of data types that would then be fed to any plugin connected to it. Since templated abstract functions aren't a thing, I figured what ever base class I used would need to define send and receive functions for all possible types. Child classes would then define receive functions for data types they are interested in, process the content, then send the newly generated data on to a vector of base classes via their receive functions. By default, the base class would just return on data types it hasn't specialized a receive function for, thus not doing anything (I understand there is probably unnecessary overhead here).
I failed to recall that calling a base's virtual function will invoke said base's version of the virtual function unless defined as pure virtual or the object I'm actually handling was that of the child. But since connected plugins would be stored in a vector of base plugins, all I would have had access to is the base's receive function. Turning the base's receive method into a pure virtual method would elevate the call to the child's receive method but that would mean I need to implement the entire possible interface for each plugin. Is there an easier way to doing this?
More general, is this a good approach to what I'm trying to do? This plugin pipeline would ideally be dynamic and created on demand so connecting plugins together in such a fashion seemed to be the right way to go. And it needs to be quick. If iterating over connected plugins to push data even when some plugins don't do anything with the data is slow, I can cache the data before pushing the reference on so I only iterate through the plugins once.
Guess this boils down to, is there a design architecture out there that allows for convenient communication between classes that supports a varying amount of transferable data types.
#define ADD_TYPE(type) \
inline void send(const routing::route_t route, const type& data) { for(auto &plugin : m_registered_plugins) plugin->receive(route, data); } \
virtual inline void receive(const routing::route_t& route, const type& data) { return; }
// Thought about trying this second -->
// virtual inline void receive(const routing::route_t& route, const type& data) = 0;
class PluginBase
{
public:
PluginBase(const std::string& name)
: m_uuid(m_uuid_gen())
, m_log(name)
{ }
virtual ~PluginBase() { }
bool pluginIsDescendant(PluginBase* plugin) const
{
for (auto registered : m_registered_plugins)
{
// Did we find the plugin
if (registered == plugin)
return true;
// Is the plugin a descendant of this
if (registered->pluginIsDescendant(plugin))
return true;
}
return false;
}
bool connect(PluginBase* plugin)
{
// Don't connect to self
if (plugin == this)
{
m_log.error("Cannot connect plugin to self!");
return false;
}
// Check for recursion
if (plugin->pluginIsDescendant(this))
{
m_log.error("Cannot connect! Plugin recursion detected.");
return false;
}
// Check if it already exists in the forward pipeline
if (pluginIsDescendant(plugin))
m_log.warning("Plugin already connected as descendant.");
m_registered_plugins.push_back(plugin);
return true;
}
ADD_TYPE(int);
ADD_TYPE(std::string);
ADD_TYPE(float);
protected:
// Logger
logger::Log m_log;
private:
// Static boost generator
static boost::uuids::random_generator m_uuid_gen;
// UUID of plugin
boost::uuids::uuid m_uuid;
// Vector of registered analytics
std::vector<PluginBase*> m_registered_plugins;
};
// EXAMPLE number CHILD CLASS
class NumberClass: public PluginBase
{
public:
void receive(const routing::route_t& route, const int value)
{
int output= transform(route, value);
send(route, output);
}
void receive(const routing::route_t& route, const float value)
{
float output= transform(route, value);
send(route, output);
}
};
// EXAMPLE std::string CHILD CLASS
class StringClass : public PluginBase
{
public:
void receive(const routing::route_t& route, const std::string value)
{
std::string output= transform(route, value);
send(route, output);
}
};
// EXAMPLE print CHILD CLASS
class PrintClass : public PluginBase
{
public:
void receive(const routing::route_t& route, const int value)
{
std::cout << "Route " << route << " sent int = " << value << std::endl;
}
void receive(const routing::route_t& route, const std::string value)
{
std::cout << "Route " << route << " sent string = " << value << std::endl;
}
};
int main()
{
NumberClass c1;
StringClass c2;
NumberClass c3;
PrintClass c4;
c1.connect(c4);
c2.connect(c4);
c3.connect(c4);
c1.receive(1, 10);
c2.receive(2, "hello");
c3.receive(3, 3.1415);
};
Expected:
Route 1 sent int = 10
Route 2 sent string = hello
Nothing is shown for the float 3.1415 because PrintClass never implemented the receive for float.

How can lambda functions and function typedefinitions work as a listener?

I'm trying to make the equivalent of a Event Listener from Java, but in C++.
My goal is, that I can call a function from a class, which triggers my listener I added to this class.
I found the following Link which gave me a solution to do this.
The problem hereby is, that my program crashed as soon as I tried to call the listeners.
My code is structured like this:
class MessageHandler abstract
{
public:
typedef const std::function<void(int, std::string)> Handler;
void addHandler(Handler& handler) {
handlers.push_back(&handler);
}
private:
std::vector<Handler*> handlers;
protected:
void someFunction(int id, std::string message) {
for (auto& handler : handlers) {
(*handler)(id, message); //Here it will crash
}
}
};
As you maybe already mentioned, this is the base class from which I derive some childclasses. These childclasses call then my "someFunction" code.
And the class where I create one of these childclasses, is structured like this:
class Server
{
private:
SubHandler handler;
void setHandlers() {
handler.addHandler([&](int id, std::string message) { executingFunction(id, message); });
}
void executingFunction(int id, std::string message) {
std::cout << "Listener Worked!" << std::endl;
//Not actually the code inside, but it doesn't matter, case I don't even get to this code
}
};
The program crashes at the line, where I loop over my listeners and call them with error:
"Access violation when reading at position 0x000000000000000010."
(This is translated, so its not the message you will get if you have your Visual Studio set to English)
You should compile your code using /permissive-. The compiler should refuse your code.
void addHandler(Handler& handler) {
handlers.push_back(&handler);
}
You shouldn't be able to send a temporary to this function, but yet you are!
// v----- This lambda is a temporary object --------------------------v
handler.addHandler([&](int id, std::string message) { executingFunction(id, message); });
The lambda object created at that line dies just after the statement is finished.
// v---- pointer to the temporary.
handlers.push_back(&handler);
My recomendation would be to drop the pointer and use std::function object by value. They are made to be used like that:
// abstract is not a C++ keyword.
class MessageHandler /* abstract */
{
public:
// using instead of typedef and non const
using Handler = std::function<void(int, std::string)>;
void addHandler(Handler const& handler) { // const reference
// insert by value
handlers.push_back(handler);
}
private:
// no pointer here.
std::vector<Handler> handlers;
protected:
void someFunction(int id, std::string message) {
for (auto const& handler : handlers) {
handler(id, message); //Here it will not crash anymore
}
}
};
This is because your lambda defined in your Server class method isn't in the scope of your MessageHandler class. I suggest you read through this : https://blog.feabhas.com/2014/03/demystifying-c-lambdas/ to get a good idea of what the problem is and how to fix it.
Though, it might be a good solution to define a struct holding your lambda, which would then work with std::mem_fn.
Hope this helps
Your source is bad :/
You might use instead something like:
class MessageHandler
{
public:
using Handler = std::function<void(int, const std::string&)> Handler;
void addHandler(const Handler& handler) { handlers.push_back(handler); }
void execute(int id, const std::string& message) {
for (auto& handler : handlers) {
(*handler)(id, message);
}
}
private:
std::vector<Handler> handlers;
};
And then use it:
class Server
{
private:
MessageHandler handler;
void setHandlers()
{
handler.addHandler(&Server::executingFunction);
handler.addHandler(
[](int id, const std::string& message)
{
std::cout << message << id << std::endl;
});
}
static void executingFunction(int id, const std::string& message) {
std::cout << "Listener Worked!" << std::endl;
}
};

What is the right way to switch on the actual type of an object?

I'm writing an xml parser and I need to add objects to a class generically, switching on the actual type of the object. Problem is, I'd like to keep to an interface which is simply addElement(BaseClass*) then place the object correctly.
void E_TableType::addElement(Element *e)
{
QString label = e->getName();
if (label == "state") {
state = qobject_cast<E_TableEvent*>(e);
}
else if (label == "showPaytable") {
showPaytable = qobject_cast<E_VisibleType*>(e);
}
else if (label == "sessionTip") {
sessionTip = qobject_cast<E_SessionTip*>(e);
}
else if (label == "logoffmedia") {
logoffMedia = qobject_cast<E_UrlType*>(e);
}
else {
this->errorMessage(e);
}
}
This is the calling class, an object factory. myElement is an instance of E_TableType.
F_TableTypeFactory::F_TableTypeFactory()
{
this->myElement = myTable = 0;
}
void F_TableTypeFactory::start(QString qname)
{
this->myElement = myTable = new E_TableType(qname);
}
void F_TableTypeFactory::fill(const QString& string)
{
// don't fill complex types.
}
void F_TableTypeFactory::addChild(Element* child)
{
myTable->addElement(child);
}
Element* F_TableTypeFactory::finish()
{
return myElement;
}
void F_TableTypeFactory::addAttributes(const QXmlAttributes &attribs) {
QString tName = attribs.value(QString("id"));
myTable->setTableName(tName);
}
Have you considered using polymorphism here? If a common interface can be implemented by each of your concrete classes then all of this code goes away and things become simple and easy to change in the future. For example:
class Camera {
public:
virtual void Init() = 0;
virtual void TakeSnapshot() = 0;
}
class KodakCamera : Camera {
public:
void Init() { /* initialize a Kodak camera */ };
void TakeSnapshot() { std::cout << "Kodak snapshot"; }
}
class SonyCamera : Camera {
public:
void Init() { /* initialize a Sony camera */ };
void TakeSnapshot() { std::cout << "Sony snapshot"; }
}
So, let's assume we have a system which contains a hardware device, in this case, a camera. Each device requires different logic to take a picture, but the code has to support a system with any supported camera, so we don't want switch statements littered throughout our code. So, we have created an abstract class Camera.
Each concrete class (i.e., SonyCamera, KodakCamera) implementation will incluse different headers, link to different libraries, etc., but they all share a common interface; we just have to decide which one to create up front. So...
std::unique_ptr<Camera> InitCamera(CameraType type) {
std::unique_ptr<Camera> ret;
Camera *cam;
switch(type) {
case Kodak:
cam = new KodakCamera();
break;
case Sony:
cam = new SonyCamera();
break;
default:
// throw an error, whatever
return;
}
ret.reset(cam);
ret->Init();
return ret;
}
int main(...) {
// get system camera type
std::unique_ptr<Camera> cam = InitCamera(cameraType);
// now we can call cam->TakeSnapshot
// and know that the correct version will be called.
}
So now we have a concrete instance that implements Camera. We can call TakeSnapshot without checking for the correct type anywhere in code because it doesn't matter; we know the correct version for the correct hardware will be called. Hope this helped.
Per your comment below:
I've been trying to use polymorphism, but I think the elements differ too much. For example, E_SessionTip has an amount and status element where E_Url just has a url. I could unify this under a property system but then I lose all the nice typing entirely. If you know of a way this can work though, I'm open to suggestions.
I would propose passing the responsibility for writing the XML data to your types which share a common interface. For example, instead of something like this:
void WriteXml(Entity *entity) {
switch(/* type of entity */) {
// get data from entity depending
// on its type and format
}
// write data to XML
}
Do something like this:
class SomeEntity : EntityBase {
public:
void WriteToXml(XmlStream &stream) {
// write xml to the data stream.
// the entity knows how to do this,
// you don't have to worry about what data
// there is to be written from the outside
}
private:
// your internal data
}
void WriteXml(Entity *entity) {
XmlStream str = GetStream();
entity->WriteToXml(stream);
}
Does that work for you? I've done exactly this before and it worked for me. Let me know.
Double-dispatch may be of interest. The table (in your case) would call a virtual method of the base element, which in turns calls back into the table. This second call is made with the dynamic type of the object, so the appropriate overloaded method is found in the Table class.
#include <iostream>
class Table; //forward declare
class BaseElement
{
public:
virtual void addTo(Table* t);
};
class DerivedElement1 : public BaseElement
{
virtual void addTo(Table* t);
};
class DerivedElement2 : public BaseElement
{
virtual void addTo(Table* t);
};
class Table
{
public:
void addElement(BaseElement* e){ e->addTo(this); }
void addSpecific(DerivedElement1* e){ std::cout<<"D1"; }
void addSpecific(DerivedElement2* e){ std::cout<<"D2"; }
void addSpecific(BaseElement* e){ std::cout<<"B"; }
};
void BaseElement::addTo(Table* t){ t->addSpecific(this); }
void DerivedElement1::addTo(Table* t){ t->addSpecific(this); }
void DerivedElement2::addTo(Table* t){ t->addSpecific(this); }
int main()
{
Table t;
DerivedElement1 d1;
DerivedElement2 d2;
BaseElement b;
t.addElement(&d1);
t.addElement(&d2);
t.addElement(&b);
}
output: D1D2B
Have a Look at the Visitor Pattern, it might help you

Implementing Observer pattern when observers wish to observe different items

Below I have attempted to write a sudo code for the Observer pattern when observers wish to observe different items.
Ignore the syntax errors. I wish to know if this is the correct way to implement this. If not, please suggest better ways.
// Used by the subject for keeping a track of what items the observer wants to observe
typedef struct observerListStruct
{
bool getTemperatureUpdate;
bool getHumidityUpdate;
bool getPressureUpdate;
observer's-function pointer's address;
};
// Subject's class
class weatherData
{
public:
// Observers will call this function to register themselves. The function pointer will point to the function which will get called when updates are available.
void registerObservers (observer obj, observer's-FunctionPointer)
{
// This observer's function returns which items to observe.
char* f = obj.returnItemsToObserve ();
if f[0] = `1`
observerListStruct.getTemperatureUpdate = true;
}
void unregisterObservers (observer obj) {}
private:
vector <observerListStruct> observerList;
float temperature;
float humidity;
float pressure;
void notifyObservers () {}
float getTemperature () {}
float getHumidity () {}
float getPressure () {}
} weatherDataObject;
// Base class for observers containing common functions
class observers
{
char ItemsToObserve [3] = {1, 2, 3};
// This observer's function returns which items to observe. Default - return all items
virtual char* returnItemsToObserve ()
{
return ItemsToObserve;
}
};
class observerDisplayElementCurrentConditions : public observers
{
char ItemsToObserve [3] = {1, 2};
char* returnItemsToObserve ()
{
return ItemsToObserve;
}
// this function will be used as a function pointer for getting updates
void getUpdatesAndDisplayWeatherData (float, float) {}
};
A more pattern oriented solution (but without function pointers) could be the following. You could parametrize the WeatherObserver-Class to get only the values, you want.
#include <list>
#include <iostream>
class Observable; //forward declaration
//Base class for all observers
class Observer {
friend class Observable; //allow access to observedSubject
protected:
Observable *observedSubject;
public:
virtual void update(){};
};
//Base class for all observables
class Observable {
private:
std::list<Observer * const> m_registeredObservers;
public:
~Observable()
{
//delete the observers
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
delete *it;
it = m_registeredObservers.erase(it);
}
}
void addObserver(Observer * const _pObserver)
{
_pObserver->observedSubject = this;
m_registeredObservers.push_back(_pObserver);
}
void removeObserver(Observer * const _pObserver)
{
m_registeredObservers.remove(_pObserver);
delete _pObserver;
}
void notifyObservers()
{
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
(*it)->update();
it++;
}
}
};
//Concrete Observable
class WeatherData : public Observable {
private:
float temperature;
float humidity;
float pressure;
public:
WeatherData(): temperature(0), humidity(0), pressure(0)
{};
float getTemperature () const
{
return temperature;
}
float getHumidity () const
{
return humidity;
}
float getPressure () const
{
return pressure;
}
void setTemperature(float _temperature)
{
if (temperature != _temperature)
{
temperature = _temperature;
notifyObservers();
}
}
void setHumidity(float _humidity)
{
if (humidity != _humidity)
{
humidity = _humidity;
notifyObservers();
}
}
void setPressure(float _pressure)
{
if (pressure != _pressure)
{
pressure = _pressure;
notifyObservers();
}
}
};
//Concrete implementation of an weather observer
class WeatherObserver : public Observer
{
public:
WeatherObserver():Observer(){};
void update()
{
WeatherData* pWeatherPtr = static_cast<WeatherData*>(observedSubject);
if (pWeatherPtr != 0)
{
float actHumidity = pWeatherPtr->getHumidity();
float actPressure = pWeatherPtr->getPressure();
float actTemperature = pWeatherPtr->getTemperature();
//do something with the data
std::cout << "WeatherObserver update" << std::endl;
std::cout << "Temperature : " << actTemperature << std::endl;
std::cout << "Humidity : " << actHumidity << std::endl;
std::cout << "Pressure : " << actPressure << std::endl;
}
}
};
int main()
{
WeatherData weatherData;
Observer * pObserver = new WeatherObserver();
weatherData.addObserver(pObserver);
weatherData.setHumidity(100);
weatherData.setTemperature(100);
}
#include <algorithm>
#include <vector>
class WeatherFlags
{
public:
WeatherFlags()
: mask_(0)
{}
union {
struct {
unsigned int temperature_ : 1;
unsigned int humidity_ : 1;
unsigned int pressure_ : 1;
};
unsigned int mask_;
};
};
class WeatherData;
class WeatherEvent
{
public:
WeatherEvent(WeatherData* data, WeatherFlags const& flags)
: data_(data)
, flags_(flags)
{}
double getTemperature() const;
WeatherData* data_;
WeatherFlags flags_;
};
class WeatherListener
{
public:
virtual ~WeatherListener() = 0;
virtual void onWeatherUpdate(WeatherEvent& e) = 0;
};
inline WeatherListener::~WeatherListener() {}
class WeatherListenerEntry
{
public:
WeatherListenerEntry()
: listener_(0)
{}
WeatherListenerEntry(WeatherListener* listener, WeatherFlags const& flags)
: listener_(listener)
, flags_(flags)
{}
WeatherListener* listener_;
WeatherFlags flags_;
};
class WeatherData
{
public:
WeatherData();
void addListener(WeatherListener* listener, WeatherFlags const& flags);
void removeListener(WeatherListener* listener);
void notify(WeatherFlags const& flags);
double getTemperature() const { return temperature_; }
private:
typedef std::vector<WeatherListenerEntry> Listeners;
Listeners listeners_;
double temperature_;
};
WeatherData::WeatherData()
: temperature_(0)
{}
void WeatherData::addListener(WeatherListener* listener, WeatherFlags const& flags)
{
// TODO Could maybe check for the addition of duplicates here...
listeners_.push_back(WeatherListenerEntry(listener, flags));
}
void WeatherData::removeListener(WeatherListener* listener)
{
struct ListenerEquals {
WeatherListener* listener_;
ListenerEquals(WeatherListener* listener)
: listener_(listener)
{}
bool operator()(WeatherListenerEntry const& e) const {
return (e.listener_ == listener_);
}
};
listeners_.erase(
std::remove_if(listeners_.begin(), listeners_.end(), ListenerEquals(listener)),
listeners_.end());
}
void WeatherData::notify(WeatherFlags const& flags)
{
WeatherEvent evt(this, flags);
for (Listeners::iterator i = listeners_.begin(); i != listeners_.end(); ++i)
{
if (0 != (i->flags_.mask_ & flags.mask_)) {
i->listener_->onWeatherUpdate(evt);
}
}
}
double
WeatherEvent::getTemperature() const
{
return data_->getTemperature();
}
#include <iostream>
class WeatherObserverStdout : public WeatherListener
{
public:
void observe(WeatherData& data) {
WeatherFlags flags;
flags.temperature_ = true; // interested in temperature only.
data.addListener(this, flags);
}
virtual void onWeatherUpdate(WeatherEvent& e);
};
void
WeatherObserverStdout::onWeatherUpdate(WeatherEvent& e)
{
double temp = e.getTemperature();
std::cout << "Temperatrure: " << temp << std::endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
WeatherData wdata;
WeatherObserverStdout obs;
obs.observe(wdata);
WeatherFlags flags;
wdata.notify(flags);
flags.temperature_ = true;
wdata.notify(flags);
return 0;
}
I think it is easier, and more scalable, to define a set of event types that each observer can listen to. Then you register the observer to listen to that particular event type. The observed then keeps a list of observers registered for each event, and notifies them if and when the event occurs. Using a combination of std::function, std::bind (or boost equivalents), it is easy to register callbacks for a given event type. You could put the callbacks in a map of event type to callback.
For example, something along these lines (almost pseudo-code, has not been tested)
class Publisher {
public :
void subscribe(const std::string& event,
std::function<void(double)> callback) {
m_subscribers[s].push_back(callback);
}
void publish(const std::string& event) const {
for (auto& f : m_subscribers[event]) f( some double );}
void event(const std::string& event) const { publish(event);}
private:
// map of event types (here simply strings) to list of callbacks
std::map<std::string&,
std::list<std::function<void(const std::string&)>>> m_subscribers;
};
struct Foo {
void foo(double x) {
std::cout << "Foo received message: " << x << "\n";
}
};
struct Bar {
void bar(double x) {
std::cout << "Bar received message: " << x << "\n";
}
};
int main() {
Publisher pub;
Foo f0;
Foo f1;
Bar bar0;
pub.subscribe("RED", std::bind(&Foo::foo, &foo0, _1));
pub.subscribe("GREEN", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("WHITE", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("RED", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("BLUE", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("MAGENTA", std::bind(&Bar::bar, &bar0, _1));
// trigger a "GREEN" event
pub.event("GREEN");
}
Here, the observers (or subscribers) register to some events, represented by strings here, and their registered callbacks get called when this event happens. In the example above I manually trigger an event to illustrate the mechanism.
This event-callback mechanism allows to decouple the actual items from the callback action. The Observed (or publisher) knows what parameter to pass the callback for a given event, and which callbacks to call, so the observers are not dependent on the internal data of the observed object.
I write a lot of C++ code and needed to create an Observer for some game components I was working on. I needed something to distribute "start of frame", "user input", etc., as events in the game to interested parties.
I also wanted more granularity in the events that could be handled. I have a lot of little things that go off...I don't need to have the parts that are interested in resetting for the next frame worried about a change in the user input.
I also wanted it to be straight C++, not dependent on the platform or a specific technology (such as boost, Qt, etc.) because I often build and re-use components (and the ideas behind them) across different projects.
Here is the rough sketch of what I came up with as a solution:
The Observer is a singleton with keys (enumerated values, not strings; this is a speed tradeoff since the keys are not searched hashed, but it means no easy "string" names and you have to define them ahead of time) for Subjects to register interest in. Because it is a singleton, it always exists.
Each subject is derived from a common base class. The base class has an abstract virtual function Notify(...) which must be implemented in derived classes, and a destructor that removes it from the Observer (which it can always reach) when it is deleted.
Inside the Observer itself, if Detach(...) is called while a Notify(...) is in progress, any detached Subjects end up on a list.
When Notify(...) is called on the Observer, it creates a temporary copy of the Subject list. As it iterates over it, it compare it to the recently detached. If the target is not on it, Notify(...) is called on the target. Otherwise, it is skipped.
Notify(...) in the Observer also keeps track of the depth to handle cascading calls (A notifies B, C, D, and the D.Notify(...) triggers a Notify(...) call to E, etc.)
This is what the interface ended up looking like:
/*
The Notifier is a singleton implementation of the Subject/Observer design
pattern. Any class/instance which wishes to participate as an observer
of an event can derive from the Notified base class and register itself
with the Notiifer for enumerated events.
Notifier derived classes MUST implement the notify function, which has
a prototype of:
void Notify(const NOTIFIED_EVENT_TYPE_T& event)
This is a data object passed from the Notifier class. The structure
passed has a void* in it. There is no illusion of type safety here
and it is the responsibility of the user to ensure it is cast properly.
In most cases, it will be "NULL".
Classes derived from Notified do not need to deregister (though it may
be a good idea to do so) as the base class destructor will attempt to
remove itself from the Notifier system automatically.
The event type is an enumeration and not a string as it is in many
"generic" notification systems. In practical use, this is for a closed
application where the messages will be known at compile time. This allows
us to increase the speed of the delivery by NOT having a
dictionary keyed lookup mechanism. Some loss of generality is implied
by this.
This class/system is NOT thread safe, but could be made so with some
mutex wrappers. It is safe to call Attach/Detach as a consequence
of calling Notify(...).
*/
class Notified;
class Notifier : public SingletonDynamic<Notifier>
{
public:
typedef enum
{
NE_MIN = 0,
NE_DEBUG_BUTTON_PRESSED = NE_MIN,
NE_DEBUG_LINE_DRAW_ADD_LINE_PIXELS,
NE_DEBUG_TOGGLE_VISIBILITY,
NE_DEBUG_MESSAGE,
NE_RESET_DRAW_CYCLE,
NE_VIEWPORT_CHANGED,
NE_MAX,
} NOTIFIED_EVENT_TYPE_T;
private:
typedef vector<NOTIFIED_EVENT_TYPE_T> NOTIFIED_EVENT_TYPE_VECTOR_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T> NOTIFIED_MAP_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T>::iterator NOTIFIED_MAP_ITER_T;
typedef vector<Notified*> NOTIFIED_VECTOR_T;
typedef vector<NOTIFIED_VECTOR_T> NOTIFIED_VECTOR_VECTOR_T;
NOTIFIED_MAP_T _notifiedMap;
NOTIFIED_VECTOR_VECTOR_T _notifiedVector;
NOTIFIED_MAP_ITER_T _mapIter;
// This vector keeps a temporary list of observers that have completely
// detached since the current "Notify(...)" operation began. This is
// to handle the problem where a Notified instance has called Detach(...)
// because of a Notify(...) call. The removed instance could be a dead
// pointer, so don't try to talk to it.
vector<Notified*> _detached;
int32 _notifyDepth;
void RemoveEvent(NOTIFIED_EVENT_TYPE_VECTOR_T& orgEventTypes, NOTIFIED_EVENT_TYPE_T eventType);
void RemoveNotified(NOTIFIED_VECTOR_T& orgNotified, Notified* observer);
public:
virtual void Reset();
virtual bool Init() { Reset(); return true; }
virtual void Shutdown() { Reset(); }
void Attach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for a specific event
void Detach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for ALL events
void Detach(Notified* observer);
/* The design of this interface is very specific. I could
* create a class to hold all the event data and then the
* method would just have take that object. But then I would
* have to search for every place in the code that created an
* object to be used and make sure it updated the passed in
* object when a member is added to it. This way, a break
* occurs at compile time that must be addressed.
*/
void Notify(NOTIFIED_EVENT_TYPE_T, const void* eventData = NULL);
/* Used for CPPUnit. Could create a Mock...maybe...but this seems
* like it will get the job done with minimal fuss. For now.
*/
// Return all events that this object is registered for.
vector<NOTIFIED_EVENT_TYPE_T> GetEvents(Notified* observer);
// Return all objects registered for this event.
vector<Notified*> GetNotified(NOTIFIED_EVENT_TYPE_T event);
};
/* This is the base class for anything that can receive notifications.
*/
class Notified
{
public:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const void* eventData) = 0;
virtual ~Notified();
};
typedef Notifier::NOTIFIED_EVENT_TYPE_T NOTIFIED_EVENT_TYPE_T;
NOTE: The Notified class has a single function, Notify(...) here. Because the void* is not type safe, I created other versions where notify looks like:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, int value);
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const string& str);
Corresponding Notify(...) methods were added to the Notifier itself. All these used a single function to get the "target list" then called the appropriate function on the targets. This works well and keeps the receiver from having to do ugly casts.
This seems to work well. The solution is posted on the web here along with the source code. This is a relatively new design, so any feedback is greatly appreciated.
My two cents...
Classic (Gang of Four) implementation of Observer pattern notifies observer on changes in any property of the subject. In your question you want to register observer to particular properties, not to a subject as a whole. You can move Observer pattern one level down and take properties as concrete subjects and define their observers (per property) but there is one nicer way to solve this problem.
In C# Observer pattern is implemented through events and delegates. Delegates represent event handlers - functions that should be executed when an event is fired. Delegates can be added (registered) or removed(unregistered) from events.
In C++, functors act as delegates - they can store all necessary information to call some global function or class method in a different context. Events are collections of (registered) functors and when event is raised (called) it basically goes through that list and calls all functors (see Publisher::publish method in juanchopanza's solution).
I tried to implement C++ version of events and delegates and use them in modified Observer pattern which could be applied in your case. This is what I came up with:
#include <list>
#include <iostream>
#include <algorithm>
// use base class to resolve the problem of how to put into collection objects of different types
template <typename TPropertyType>
struct PropertyChangedDelegateBase
{
virtual ~PropertyChangedDelegateBase(){};
virtual void operator()(const TPropertyType& t) = 0;
};
template <typename THandlerOwner, typename TPropertyType>
struct PropertyChangedDelegate : public PropertyChangedDelegateBase<TPropertyType>
{
THandlerOwner* pHandlerOwner_;
typedef void (THandlerOwner::*TPropertyChangeHandler)(const TPropertyType&);
TPropertyChangeHandler handler_;
public:
PropertyChangedDelegate(THandlerOwner* pHandlerOwner, TPropertyChangeHandler handler) :
pHandlerOwner_(pHandlerOwner), handler_(handler){}
void operator()(const TPropertyType& t)
{
(pHandlerOwner_->*handler_)(t);
}
};
template<typename TPropertyType>
class PropertyChangedEvent
{
public:
virtual ~PropertyChangedEvent(){};
void add(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
throw std::runtime_error("Observer already registered");
observers_.push_back(d);
}
void remove(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
observers_.remove(d);
}
// notify
void operator()(const TPropertyType& newValue)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = observers_.begin();
for(; it != observers_.end(); ++it)
{
(*it)->operator()(newValue);
}
}
protected:
std::list<PropertyChangedDelegateBase<TPropertyType>* const> observers_;
};
// class that owns concrete subjects
class PropertyOwner1
{
int property1_;
float property2_;
public:
PropertyChangedEvent<int> property1ChangedEvent;
PropertyChangedEvent<float> property2ChangedEvent;
PropertyOwner1() :
property1_(0),
property2_(0.0f)
{}
int property1() const {return property1_;}
void property1(int n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner1::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
float property2() const {return property2_;}
void property2(float n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner1::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that owns concrete subjects
class PropertyOwner2
{
bool property1_;
double property2_;
public:
PropertyChangedEvent<bool> property1ChangedEvent;
PropertyChangedEvent<double> property2ChangedEvent;
PropertyOwner2() :
property1_(false),
property2_(0.0)
{}
bool property1() const {return property1_;}
void property1(bool n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner2::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
double property2() const {return property2_;}
void property2(double n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner2::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that observes changes in property1 of PropertyOwner1 and property1 of PropertyOwner2
struct PropertyObserver1
{
void OnPropertyOwner1Property1Changed(const int& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner1Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property1Changed(const bool& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner2Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
// class that observes changes in property2 of PropertyOwner1 and property2 of PropertyOwner2
struct PropertyObserver2
{
void OnPropertyOwner1Property2Changed(const float& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner1Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property2Changed(const double& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner2Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
int main(int argc, char** argv)
{
PropertyOwner1 propertyOwner1;
PropertyOwner2 propertyOwner2;
PropertyObserver1 propertyObserver1;
PropertyObserver2 propertyObserver2;
// register observers
PropertyChangedDelegate<PropertyObserver1, int> delegate1(&propertyObserver1, &PropertyObserver1::OnPropertyOwner1Property1Changed);
propertyOwner1.property1ChangedEvent.add(&delegate1);
PropertyChangedDelegate<PropertyObserver2, float> delegate2(&propertyObserver2, &PropertyObserver2::OnPropertyOwner1Property2Changed);
propertyOwner1.property2ChangedEvent.add(&delegate2);
PropertyChangedDelegate<PropertyObserver1, bool> delegate3(&propertyObserver1, &PropertyObserver1::OnPropertyOwner2Property1Changed);
propertyOwner2.property1ChangedEvent.add(&delegate3);
PropertyChangedDelegate<PropertyObserver2, double> delegate4(&propertyObserver2, &PropertyObserver2::OnPropertyOwner2Property2Changed);
propertyOwner2.property2ChangedEvent.add(&delegate4);
propertyOwner1.property1(1);
propertyOwner1.property2(1.2f);
propertyOwner2.property1(true);
propertyOwner2.property2(3.4);
// unregister PropertyObserver1
propertyOwner1.property1ChangedEvent.remove(&delegate1);
propertyOwner2.property1ChangedEvent.remove(&delegate3);
propertyOwner1.property1(2);
propertyOwner1.property2(4.5f);
}
Output:
PropertyOwner1::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner1Property1Changed():
new value is: 1
PropertyOwner1::property2(): property2_ set to 1.2
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 1.2
PropertyOwner2::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner2Property1Changed():
new value is: 1
PropertyOwner2::property2(): property2_ set to 3.4
PropertyObserver2::OnPropertyOwner2Property2Changed():
new value is: 3.4
PropertyOwner1::property1(): property1_ set to 2
PropertyOwner1::property2(): property2_ set to 4.5
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 4.5
Each observer is registered with a particular property and when notified, each observer knows exactly who is the owner of the property and what's property's new value.

QtScript -- script-side callback through C++-side implementation

The solution may be simple. Then again it may not be possible.
I have the base callback class:
class CFCallback {
int command_;
int transfer_rate_;
public:
CFCallback(int command, int transfer_rate = 0) {
command_ = command; transfer_rate_ = transfer_rate; }
virtual ~CFCallback() {}
virtual void operator()(void *data) = 0;
int GetCommand() { return command_; }
int GetTransferRate() { return transfer_rate_; }
};
And here's one example of deriving from CFCallback:
void CFPacketVersion::InitiateVersion() {
class InitiateVersionCB : public CFCallback {
CFPacketVersion *visitor_;
public:
InitiateVersionCB(CFPacketVersion *v, int command) :
CFCallback(command) {
visitor_ = v;
}
void operator()(void *data) {
Packet *pkt = (Packet *)data;
unsigned char *pkt_data = pkt->GetData();
std::string version = "";
for(unsigned int i = 0; i < pkt->GetDataLength(); i++ )
version+= pkt_data[i];
delete []pkt_data;
boost::regex rex("CFA(.*?):h(.*?),v(.*?)$");
boost::smatch what;
if( boost::regex_match(version, what, rex) ) {
if(visitor_->GetModel()->GetName() != what[1].str() )
LCDInfo("Crystalfontz: Model mismatch");
visitor_->SetHardwareVersion(what[2]);
visitor_->SetFirmwareVersion(what[3]);
}
}
};
GetVersion(new InitiateVersionCB(this, 1));
}
GetVersion(CFCallback *) is provided to the script engine.
I want to be able to do the same thing as seen in InitiateVersion, but on the javascript side of things. Is that possible?
I know I need to register meta type info for CFCallback. But I don't know if it's possible to use a pointer to a CFCallback. What I tried initially didn't work.
Also, seeing as CFCallback is a functor, I'm not sure how I translate that over to javascript. I imagine I can make CFCallback a QObject and provide a signal emitted from operator(). If you have any tips, please share.
I'm afraid it won't work the way you've set it up.
If you want to be able to create the callback in javascript, you need a QObject with an accessible GetVersion(QScriptValue) which the script will the use to pass a script-based implementation of the callback. Note, though, that the callback will not be able to work with untyped (void*) data - you need to pass either a valid QtScript object or QObject with a proper interface (like the Packet one in your example!)
You could then wrap it up like this:
QtScript:
function mycb(packet) {
var pkt_data = packet.getData(); // pkt_data is probably a String or custom object with proper interface so to simplify things get the version as string
var version = pkt_data.toString();
pkt_data.release(); // to simulate delete [] pkt_data; this is part of custom interface
// proceed further with the regex checks
}
GetVersion(mycb); // implies that you define the GetVersion() as a property of the global object
C++:
QScriptValue getVersion(QScriptContext *ctx, QScriptEngine *engine)
{
void *data = ...;
Packet pkt_data = wrapPacketData(data);
// Packet is interface registered with QtScript or inherits QObject
// it has methods getData(), toString() and release()
QScriptValueList args;
QScriptValue pkt_data_param = engine->newQObject(&pkt_data);
args << pkt_data_param;
QScriptValue cb = ctx->argument(0);
Q_ASSERT(cb.isFunction()); // we expect a function object!
cb.call(QScriptValue(), args);
}
QScriptValue getVersionFun = engine->newFunction(getVersion);
engine->globalObject().setProperty(QLatin1String("GetVersion"), getVersionFun);