Extracting specific lines of data from a log file - regex

I'm looking to extract and print a specific line from a table I have in a long log file. It looks something like this:
******************************************************************************
XSCALE (VERSION July 4, 2012) 4-Jun-2013
******************************************************************************
Author: Wolfgang Kabsch
Copy licensed until 30-Jun-2013 to
academic users for non-commercial applications
No redistribution.
******************************************************************************
CONTROL CARDS
******************************************************************************
MAXIMUM_NUMBER_OF_PROCESSORS=16
RESOLUTION_SHELLS= 20 10 6 4 3 2.5 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
MINIMUM_I/SIGMA=4.0
OUTPUT_FILE=fae-ip.ahkl
INPUT_FILE= /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL
THE DATA COLLECTION STATISTICS REPORTED BELOW ASSUMES:
SPACE_GROUP_NUMBER= 97
UNIT_CELL_CONSTANTS= 128.28 128.28 181.47 90.000 90.000 90.000
***** 16 EQUIVALENT POSITIONS IN SPACE GROUP # 97 *****
If x',y',z' is an equivalent position to x,y,z, then
x'=x*ML(1)+y*ML( 2)+z*ML( 3)+ML( 4)/12.0
y'=x*ML(5)+y*ML( 6)+z*ML( 7)+ML( 8)/12.0
z'=x*ML(9)+y*ML(10)+z*ML(11)+ML(12)/12.0
# 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 0 0 1 0 0 0 0 1 0
2 -1 0 0 0 0 -1 0 0 0 0 1 0
3 -1 0 0 0 0 1 0 0 0 0 -1 0
4 1 0 0 0 0 -1 0 0 0 0 -1 0
5 0 1 0 0 1 0 0 0 0 0 -1 0
6 0 -1 0 0 -1 0 0 0 0 0 -1 0
7 0 -1 0 0 1 0 0 0 0 0 1 0
8 0 1 0 0 -1 0 0 0 0 0 1 0
9 1 0 0 6 0 1 0 6 0 0 1 6
10 -1 0 0 6 0 -1 0 6 0 0 1 6
11 -1 0 0 6 0 1 0 6 0 0 -1 6
12 1 0 0 6 0 -1 0 6 0 0 -1 6
13 0 1 0 6 1 0 0 6 0 0 -1 6
14 0 -1 0 6 -1 0 0 6 0 0 -1 6
15 0 -1 0 6 1 0 0 6 0 0 1 6
16 0 1 0 6 -1 0 0 6 0 0 1 6
ALL DATA SETS WILL BE SCALED TO /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL
******************************************************************************
READING INPUT REFLECTION DATA FILES
******************************************************************************
DATA MEAN REFLECTIONS INPUT FILE NAME
SET# INTENSITY ACCEPTED REJECTED
1 0.1358E+03 1579957 0 /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL
******************************************************************************
CORRECTION FACTORS AS FUNCTION OF IMAGE NUMBER & RESOLUTION
******************************************************************************
RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
OUTPUT FILE: fae-ip.ahkl
THE CALCULATIONS ASSUME FRIEDEL'S_LAW= TRUE
TOTAL NUMBER OF CORRECTION FACTORS DEFINED 720
DEGREES OF FREEDOM OF CHI^2 FIT 357222.9
CHI^2-VALUE OF FIT OF CORRECTION FACTORS 1.024
NUMBER OF CYCLES CARRIED OUT 4
CORRECTION FACTORS for visual inspection by XDS-Viewer DECAY_001.cbf
XMIN= 0.6 XMAX= 1799.3 NXBIN= 36
YMIN= 0.00049 YMAX= 0.44483 NYBIN= 20
NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS 396046
******************************************************************************
CORRECTION FACTORS AS FUNCTION OF X (fast) & Y(slow) IN THE DETECTOR PLANE
******************************************************************************
RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
OUTPUT FILE: fae-ip.ahkl
THE CALCULATIONS ASSUME FRIEDEL'S_LAW= TRUE
TOTAL NUMBER OF CORRECTION FACTORS DEFINED 7921
DEGREES OF FREEDOM OF CHI^2 FIT 356720.6
CHI^2-VALUE OF FIT OF CORRECTION FACTORS 1.023
NUMBER OF CYCLES CARRIED OUT 3
CORRECTION FACTORS for visual inspection by XDS-Viewer MODPIX_001.cbf
XMIN= 5.4 XMAX= 2457.6 NXBIN= 89
YMIN= 40.0 YMAX= 2516.7 NYBIN= 89
NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS 396046
******************************************************************************
CORRECTION FACTORS AS FUNCTION OF IMAGE NUMBER & DETECTOR SURFACE POSITION
******************************************************************************
RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
OUTPUT FILE: fae-ip.ahkl
THE CALCULATIONS ASSUME FRIEDEL'S_LAW= TRUE
TOTAL NUMBER OF CORRECTION FACTORS DEFINED 468
DEGREES OF FREEDOM OF CHI^2 FIT 357286.9
CHI^2-VALUE OF FIT OF CORRECTION FACTORS 1.022
NUMBER OF CYCLES CARRIED OUT 3
CORRECTION FACTORS for visual inspection by XDS-Viewer ABSORP_001.cbf
XMIN= 0.6 XMAX= 1799.3 NXBIN= 36
DETECTOR_SURFACE_POSITION= 1232 1278
DETECTOR_SURFACE_POSITION= 1648 1699
DETECTOR_SURFACE_POSITION= 815 1699
DETECTOR_SURFACE_POSITION= 815 858
DETECTOR_SURFACE_POSITION= 1648 858
DETECTOR_SURFACE_POSITION= 2174 1673
DETECTOR_SURFACE_POSITION= 1622 2230
DETECTOR_SURFACE_POSITION= 841 2230
DETECTOR_SURFACE_POSITION= 289 1673
DETECTOR_SURFACE_POSITION= 289 884
DETECTOR_SURFACE_POSITION= 841 326
DETECTOR_SURFACE_POSITION= 1622 326
DETECTOR_SURFACE_POSITION= 2174 884
NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS 396046
******************************************************************************
CORRECTION PARAMETERS FOR THE STANDARD ERROR OF REFLECTION INTENSITIES
******************************************************************************
The variance v0(I) of the intensity I obtained from counting statistics is
replaced by v(I)=a*(v0(I)+b*I^2). The model parameters a, b are chosen to
minimize the discrepancies between v(I) and the variance estimated from
sample statistics of symmetry related reflections. This model implicates
an asymptotic limit ISa=1/SQRT(a*b) for the highest I/Sigma(I) that the
experimental setup can produce (Diederichs (2010) Acta Cryst D66, 733-740).
Often the value of ISa is reduced from the initial value ISa0 due to systematic
errors showing up by comparison with other data sets in the scaling procedure.
(ISa=ISa0=-1 if v0 is unknown for a data set.)
a b ISa ISa0 INPUT DATA SET
1.086E+00 1.420E-03 25.46 29.00 /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL
FACTOR TO PLACE ALL DATA SETS TO AN APPROXIMATE ABSOLUTE SCALE 0.4178E+04
(ASSUMING A PROTEIN WITH 50% SOLVENT)
******************************************************************************
STATISTICS OF SCALED OUTPUT DATA SET : fae-ip.ahkl
FILE TYPE: XDS_ASCII MERGE=FALSE FRIEDEL'S_LAW=TRUE
186 OUT OF 1579957 REFLECTIONS REJECTED
1579771 REFLECTIONS ON OUTPUT FILE
******************************************************************************
DEFINITIONS:
R-FACTOR
observed = (SUM(ABS(I(h,i)-I(h))))/(SUM(I(h,i)))
expected = expected R-FACTOR derived from Sigma(I)
COMPARED = number of reflections used for calculating R-FACTOR
I/SIGMA = mean of intensity/Sigma(I) of unique reflections
(after merging symmetry-related observations)
Sigma(I) = standard deviation of reflection intensity I
estimated from sample statistics
R-meas = redundancy independent R-factor (intensities)
Diederichs & Karplus (1997), Nature Struct. Biol. 4, 269-275.
CC(1/2) = percentage of correlation between intensities from
random half-datasets. Correlation significant at
the 0.1% level is marked by an asterisk.
Karplus & Diederichs (2012), Science 336, 1030-33
Anomal = percentage of correlation between random half-sets
Corr of anomalous intensity differences. Correlation
significant at the 0.1% level is marked.
SigAno = mean anomalous difference in units of its estimated
standard deviation (|F(+)-F(-)|/Sigma). F(+), F(-)
are structure factor estimates obtained from the
merged intensity observations in each parity class.
Nano = Number of unique reflections used to calculate
Anomal_Corr & SigAno. At least two observations
for each (+ and -) parity are required.
SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION
RESOLUTION NUMBER OF REFLECTIONS COMPLETENESS R-FACTOR R-FACTOR COMPARED I/SIGMA R-meas CC(1/2) Anomal SigAno Nano
LIMIT OBSERVED UNIQUE POSSIBLE OF DATA observed expected Corr
20.00 557 66 74 89.2% 2.7% 3.0% 557 58.75 2.9% 100.0* 45 1.674 25
10.00 5018 417 417 100.0% 2.4% 3.1% 5018 75.34 2.6% 100.0* 2 0.812 276
6.00 18352 1583 1584 99.9% 2.8% 3.3% 18351 65.55 2.9% 100.0* 11* 0.914 1248
4.00 59691 4640 4640 100.0% 3.2% 3.5% 59690 64.96 3.4% 100.0* 4 0.857 3987
3.00 112106 8821 8822 100.0% 4.4% 4.4% 112102 50.31 4.6% 99.9* -3 0.844 7906
2.50 147954 11023 11023 100.0% 8.7% 8.6% 147954 29.91 9.1% 99.8* 0 0.829 10096
2.00 332952 24698 24698 100.0% 21.4% 21.6% 332949 14.32 22.3% 99.2* 1 0.804 22992
1.90 106645 8382 8384 100.0% 56.5% 57.1% 106645 5.63 58.8% 94.7* -2 0.767 7886
1.80 138516 10342 10343 100.0% 86.8% 87.0% 138516 3.64 90.2% 87.9* -2 0.762 9741
1.70 175117 12897 12899 100.0% 140.0% 140.1% 175116 2.15 145.4% 69.6* -2 0.732 12188
1.60 209398 16298 16304 100.0% 206.1% 208.5% 209397 1.35 214.6% 48.9* -2 0.693 15466
1.50 273432 20770 20893 99.4% 333.4% 342.1% 273340 0.80 346.9% 23.2* -1 0.644 19495
1.40 33 27 27248 0.1% 42.6% 112.7% 12 0.40 60.3% 88.2 0 0.000 0
1.30 0 0 36205 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
1.20 0 0 49238 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
1.10 0 0 68746 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
1.00 0 0 98884 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
0.90 0 0 147505 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
0.80 0 0 230396 0.0% -99.9% -99.9% 0 -99.00 -99.9% 0.0 0 0.000 0
total 1579771 119964 778303 15.4% 12.8% 13.1% 1579647 14.33 13.4% 99.9* -1 0.755 111306
========== STATISTICS OF INPUT DATA SET ==========
R-FACTORS FOR INTENSITIES OF DATA SET /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL
RESOLUTION R-FACTOR R-FACTOR COMPARED
LIMIT observed expected
20.00 2.7% 3.0% 557
10.00 2.4% 3.1% 5018
6.00 2.8% 3.3% 18351
4.00 3.2% 3.5% 59690
3.00 4.4% 4.4% 112102
2.50 8.7% 8.6% 147954
2.00 21.4% 21.6% 332949
1.90 56.5% 57.1% 106645
1.80 86.8% 87.0% 138516
1.70 140.0% 140.1% 175116
1.60 206.1% 208.5% 209397
1.50 333.4% 342.1% 273340
1.40 42.6% 112.7% 12
1.30 -99.9% -99.9% 0
1.20 -99.9% -99.9% 0
1.10 -99.9% -99.9% 0
1.00 -99.9% -99.9% 0
0.90 -99.9% -99.9% 0
0.80 -99.9% -99.9% 0
total 12.8% 13.1% 1579647
******************************************************************************
WILSON STATISTICS OF SCALED DATA SET: fae-ip.ahkl
******************************************************************************
Data is divided into resolution shells and a straight line
A - 2*B*SS is fitted to log<I>, where
RES = mean resolution (Angstrom) in shell
SS = mean of (sin(THETA)/LAMBDA)**2 in shell
<I> = mean reflection intensity in shell
BO = (A - log<I>)/(2*SS)
# = number of reflections in resolution shell
WILSON LINE (using all data) : A= 14.997 B= 29.252 CORRELATION= 0.99
# RES SS <I> log(<I>) BO
1667 8.445 0.004 2.3084E+06 14.652 49.2
2798 5.260 0.009 1.5365E+06 14.245 41.6
3547 4.106 0.015 2.0110E+06 14.514 16.3
4147 3.480 0.021 1.2910E+06 14.071 22.4
4688 3.073 0.026 7.3586E+05 13.509 28.1
5154 2.781 0.032 4.6124E+05 13.042 30.3
5568 2.560 0.038 3.1507E+05 12.661 30.6
5966 2.384 0.044 2.4858E+05 12.424 29.2
6324 2.240 0.050 1.8968E+05 12.153 28.5
6707 2.119 0.056 1.3930E+05 11.844 28.3
7030 2.016 0.062 9.1378E+04 11.423 29.0
7331 1.926 0.067 5.4413E+04 10.904 30.4
7664 1.848 0.073 3.5484E+04 10.477 30.9
7934 1.778 0.079 2.4332E+04 10.100 31.0
8193 1.716 0.085 1.8373E+04 9.819 30.5
8466 1.660 0.091 1.4992E+04 9.615 29.7
8743 1.609 0.097 1.1894E+04 9.384 29.1
9037 1.562 0.102 9.4284E+03 9.151 28.5
9001 1.520 0.108 8.3217E+03 9.027 27.6
HIGHER ORDER MOMENTS OF WILSON DISTRIBUTION OF CENTRIC DATA
AS COMPARED WITH THEORETICAL VALUES. (EXPECTED: 1.00)
# RES <I**2>/ <I**3>/ <I**4>/
3<I>**2 15<I>**3 105<I>**4
440 8.445 0.740 0.505 0.294
442 5.260 0.762 0.733 0.735
442 4.106 0.888 0.788 0.717
439 3.480 1.339 1.733 2.278
438 3.073 1.168 1.259 1.400
440 2.781 1.215 1.681 2.269
438 2.560 1.192 1.603 2.405
450 2.384 1.117 1.031 0.891
432 2.240 1.214 1.567 2.173
438 2.119 0.972 0.992 0.933
445 2.016 1.029 1.019 0.986
441 1.926 1.603 1.701 1.554
440 1.848 1.544 1.871 2.076
436 1.778 0.927 0.661 0.435
444 1.716 1.134 1.115 1.197
440 1.660 1.271 1.618 2.890
436 1.609 1.424 1.045 0.941
448 1.562 1.794 1.447 1.423
426 1.520 2.517 1.496 2.099
8355 overall 1.253 1.255 1.455
HIGHER ORDER MOMENTS OF WILSON DISTRIBUTION OF ACENTRIC DATA
AS COMPARED WITH THEORETICAL VALUES. (EXPECTED: 1.00)
# RES <I**2>/ <I**3>/ <I**4>/
2<I>**2 6<I>**3 24<I>**4
1227 8.445 1.322 1.803 2.340
2356 5.260 1.167 1.420 1.789
3105 4.106 1.010 1.046 1.100
3708 3.480 1.055 1.262 1.592
4250 3.073 0.999 1.083 1.375
4714 2.781 1.061 1.232 1.591
5130 2.560 1.049 1.178 1.440
5516 2.384 1.025 1.117 1.290
5892 2.240 1.001 1.058 1.230
6269 2.119 1.060 1.140 1.233
6585 2.016 1.109 1.344 1.709
6890 1.926 1.028 1.100 1.222
7224 1.848 1.060 1.150 1.348
7498 1.778 1.143 1.309 1.655
7749 1.716 1.182 1.299 1.549
8026 1.660 1.286 1.376 1.538
8307 1.609 1.419 1.481 1.707
8589 1.562 1.663 1.750 2.119
8575 1.520 2.271 2.172 5.088
111610 overall 1.253 1.354 1.804
======= CUMULATIVE INTENSITY DISTRIBUTION =======
DEFINITIONS:
<I> = mean reflection intensity
Na(Z)exp = expected number of acentric reflections with I <= Z*<I>
Na(Z)obs = observed number of acentric reflections with I <= Z*<I>
Nc(Z)exp = expected number of centric reflections with I <= Z*<I>
Nc(Z)obs = observed number of centric reflections with I <= Z*<I>
Nc(Z)obs/Nc(Z)exp versus resolution and Z (0.1-1.0)
# RES 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
440 8.445 0.75 0.95 0.98 1.00 0.98 0.99 1.00 1.00 1.02 1.02
442 5.260 1.18 1.11 1.09 1.09 1.07 1.08 1.08 1.08 1.07 1.06
442 4.106 0.97 1.01 0.98 0.97 0.96 0.94 0.92 0.91 0.92 0.94
439 3.480 0.91 0.88 0.91 0.91 0.89 0.90 0.90 0.89 0.89 0.93
438 3.073 0.92 0.92 0.90 0.93 0.94 0.99 1.02 0.99 0.96 0.96
440 2.781 0.98 1.01 1.02 1.05 1.04 1.03 1.04 1.02 1.01 1.01
438 2.560 1.02 1.10 1.05 1.03 1.01 1.03 1.04 1.01 1.04 1.02
450 2.384 0.78 0.93 0.92 0.93 0.89 0.89 0.92 0.95 0.96 0.95
432 2.240 0.69 0.82 0.84 0.86 0.91 0.92 0.93 0.94 0.95 0.95
438 2.119 0.75 0.87 0.95 1.02 1.09 1.09 1.12 1.12 1.10 1.08
445 2.016 0.86 0.86 0.87 0.90 0.91 0.93 0.98 0.99 1.00 1.00
441 1.926 0.88 0.79 0.79 0.81 0.82 0.84 0.85 0.85 0.86 0.86
440 1.848 1.00 0.89 0.85 0.83 0.85 0.85 0.88 0.90 0.90 0.92
436 1.778 1.03 0.87 0.79 0.79 0.80 0.84 0.85 0.87 0.90 0.92
444 1.716 1.09 0.85 0.81 0.78 0.80 0.80 0.81 0.81 0.84 0.85
440 1.660 1.27 1.01 0.93 0.88 0.85 0.84 0.84 0.85 0.88 0.91
436 1.609 1.34 1.00 0.89 0.83 0.80 0.80 0.80 0.81 0.80 0.83
448 1.562 1.39 1.09 0.93 0.86 0.81 0.78 0.77 0.79 0.78 0.78
426 1.520 1.38 1.03 0.88 0.83 0.82 0.80 0.78 0.76 0.75 0.74
8355 overall 1.01 0.95 0.92 0.91 0.91 0.91 0.92 0.92 0.93 0.93
Na(Z)obs/Na(Z)exp versus resolution and Z (0.1-1.0)
# RES 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1227 8.445 1.10 1.22 1.21 1.21 1.14 1.10 1.12 1.10 1.11 1.09
2356 5.260 1.15 1.10 1.09 1.03 1.03 1.03 1.01 1.01 1.01 1.00
3105 4.106 0.91 0.96 0.99 1.01 1.02 1.00 1.00 0.99 0.99 1.00
3708 3.480 0.93 0.97 1.00 1.06 1.05 1.04 1.04 1.04 1.04 1.05
4250 3.073 0.94 1.02 1.01 1.00 1.01 1.00 1.00 1.01 1.02 1.02
4714 2.781 1.11 1.04 1.02 1.02 1.02 1.01 1.01 1.01 1.00 1.00
5130 2.560 1.00 1.10 1.06 1.03 1.01 1.02 1.01 1.01 1.01 1.02
5516 2.384 1.09 1.08 1.05 1.04 1.04 1.02 1.01 1.01 1.01 1.01
5892 2.240 0.98 0.99 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00
6269 2.119 1.14 1.04 1.02 1.00 1.00 1.00 1.01 1.02 1.02 1.01
6585 2.016 1.17 1.02 1.01 1.02 1.02 1.03 1.02 1.02 1.02 1.02
6890 1.926 1.35 1.07 1.00 0.99 1.00 1.01 1.01 1.00 1.00 1.01
7224 1.848 1.52 1.11 1.01 0.97 0.96 0.98 0.98 0.98 0.98 0.99
7498 1.778 1.80 1.22 1.03 0.97 0.95 0.94 0.95 0.95 0.95 0.96
7749 1.716 2.01 1.28 1.07 0.99 0.94 0.92 0.92 0.92 0.93 0.93
8026 1.660 2.31 1.41 1.13 1.01 0.95 0.92 0.90 0.89 0.89 0.89
8307 1.609 2.62 1.54 1.19 1.04 0.95 0.90 0.88 0.87 0.86 0.87
8589 1.562 2.94 1.69 1.29 1.10 1.00 0.93 0.89 0.86 0.85 0.85
8575 1.520 3.14 1.78 1.34 1.13 1.01 0.93 0.88 0.85 0.83 0.83
111610 overall 1.73 1.24 1.09 1.03 0.99 0.97 0.96 0.96 0.96 0.96
List of 33 reflections *NOT* obeying Wilson distribution (Z> 10.0)
h k l RES Z Intensity Sigma
72 11 61 1.52 17.34 0.2886E+06 0.2367E+05 "alien"
67 53 6 1.50 15.85 0.2638E+06 0.1128E+06 "alien"
35 10 25 3.17 14.39 0.2118E+08 0.2364E+06 "alien"
46 17 99 1.50 14.16 0.2357E+06 0.9588E+05 "alien"
34 32 2 2.75 13.44 0.1239E+08 0.1279E+06 "alien"
79 6 15 1.60 13.10 0.3117E+06 0.2477E+05 "alien"
61 20 33 1.88 12.54 0.8900E+06 0.3054E+05 "alien"
44 4 48 2.30 12.38 0.4695E+07 0.6072E+05 "alien"
66 25 19 1.79 11.89 0.5788E+06 0.2739E+05 "alien"
66 25 11 1.81 11.88 0.5781E+06 0.2771E+05 "alien"
60 43 61 1.50 11.77 0.1959E+06 0.9769E+05 "alien"
72 11 17 1.74 11.64 0.4278E+06 0.2619E+05 "alien"
80 24 26 1.50 11.41 0.1899E+06 0.9793E+05 "alien"
41 21 26 2.59 11.09 0.6988E+07 0.7945E+05 "alien"
44 18 20 2.59 11.08 0.6982E+07 0.7839E+05 "alien"
23 3 62 2.59 11.06 0.6971E+07 0.9154E+05 "alien"
69 7 22 1.80 11.06 0.5383E+06 0.2564E+05 "alien"
73 10 15 1.72 10.98 0.4036E+06 0.2356E+05 "alien"
70 17 35 1.68 10.96 0.3286E+06 0.2415E+05 "alien"
57 24 41 1.88 10.91 0.7746E+06 0.2842E+05 "alien"
82 24 6 1.50 10.74 0.1787E+06 0.1019E+06 "alien"
69 25 62 1.50 10.67 0.1775E+06 0.8689E+05 "alien"
24 20 44 2.91 10.45 0.9641E+07 0.1017E+06 "alien"
66 43 5 1.63 10.37 0.2468E+06 0.2294E+05 "alien"
81 4 29 1.53 10.36 0.1725E+06 0.2364E+05 "alien"
60 40 26 1.72 10.32 0.3792E+06 0.2578E+05 "alien"
39 18 57 2.18 10.24 0.3885E+07 0.5573E+05 "alien"
70 41 15 1.57 10.19 0.1922E+06 0.2281E+05 "alien"
55 36 41 1.79 10.16 0.4942E+06 0.2967E+05 "alien"
37 4 81 1.88 10.15 0.7202E+06 0.3357E+05 "alien"
56 27 5 2.06 10.14 0.1854E+07 0.3569E+05 "alien"
44 39 29 2.06 10.09 0.1844E+07 0.3805E+05 "alien"
65 46 29 1.56 10.06 0.1898E+06 0.2270E+05 "alien"
List of 33 reflections *NOT* obeying Wilson distribution (sorted by resolution)
Ice rings could occur at (Angstrom):
3.897,3.669,3.441, 2.671,2.249,2.072, 1.948,1.918,1.883,1.721
h k l RES Z Intensity Sigma
82 24 6 1.50 10.74 0.1787E+06 0.1019E+06
67 53 6 1.50 15.85 0.2638E+06 0.1128E+06
80 24 26 1.50 11.41 0.1899E+06 0.9793E+05
60 43 61 1.50 11.77 0.1959E+06 0.9769E+05
69 25 62 1.50 10.67 0.1775E+06 0.8689E+05
46 17 99 1.50 14.16 0.2357E+06 0.9588E+05
72 11 61 1.52 17.34 0.2886E+06 0.2367E+05
81 4 29 1.53 10.36 0.1725E+06 0.2364E+05
65 46 29 1.56 10.06 0.1898E+06 0.2270E+05
70 41 15 1.57 10.19 0.1922E+06 0.2281E+05
79 6 15 1.60 13.10 0.3117E+06 0.2477E+05
66 43 5 1.63 10.37 0.2468E+06 0.2294E+05
70 17 35 1.68 10.96 0.3286E+06 0.2415E+05
73 10 15 1.72 10.98 0.4036E+06 0.2356E+05
60 40 26 1.72 10.32 0.3792E+06 0.2578E+05
72 11 17 1.74 11.64 0.4278E+06 0.2619E+05
66 25 19 1.79 11.89 0.5788E+06 0.2739E+05
55 36 41 1.79 10.16 0.4942E+06 0.2967E+05
69 7 22 1.80 11.06 0.5383E+06 0.2564E+05
66 25 11 1.81 11.88 0.5781E+06 0.2771E+05
61 20 33 1.88 12.54 0.8900E+06 0.3054E+05
57 24 41 1.88 10.91 0.7746E+06 0.2842E+05
37 4 81 1.88 10.15 0.7202E+06 0.3357E+05
56 27 5 2.06 10.14 0.1854E+07 0.3569E+05
44 39 29 2.06 10.09 0.1844E+07 0.3805E+05
39 18 57 2.18 10.24 0.3885E+07 0.5573E+05
44 4 48 2.30 12.38 0.4695E+07 0.6072E+05
44 18 20 2.59 11.08 0.6982E+07 0.7839E+05
41 21 26 2.59 11.09 0.6988E+07 0.7945E+05
23 3 62 2.59 11.06 0.6971E+07 0.9154E+05
34 32 2 2.75 13.44 0.1239E+08 0.1279E+06
24 20 44 2.91 10.45 0.9641E+07 0.1017E+06
35 10 25 3.17 14.39 0.2118E+08 0.2364E+06
cpu time used by XSCALE 25.9 sec
elapsed wall-clock time 28.1 sec
I would like to extract the second last line where the 11th column has a number followed by an asterisk (xy.z*) and the lines above and below that. That is from the table with SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION Above it.
For example in this table the line I'm looking for would contain "23.2*" from the 11th column (CC(1/2)). I would like the second last with an asterisk because the last would be the line that starts with total, and this was a lot easier to extract with a simple grep command.
So the expected output for the code in this case would be to print the lines:
1.60 209398 16298 16304 100.0% 206.1% 208.5% 209397 1.35 214.6% 48.9* -2 0.693 15466
1.50 273432 20770 20893 99.4% 333.4% 342.1% 273340 0.80 346.9% 23.2* -1 0.644 19495
1.40 33 27 27248 0.1% 42.6% 112.7% 12 0.40 60.3% 88.2 0 0.000 0
And so on for all the different possible positions of the asterisk in the table.
In my previous question I recieved the answer
sed -n '/LIMIT/,/=/{/^\s*\(\S*\s*\)\{10\}[0-9.-]*\*/H;x;s/^.*\n\(.*\n.*\)$/\1/;x;/=/{x;P;q}}' file
Which worked really well (thanks Endoro) for extracting just the second last line in the 11th column with the asterisk, (which is what i asked for) but now I just need that editing slightly, or if you would rather make a whole new line, to include the lines above and below.
Here is a link to the previous question Extracting the second last line from a table using a specific number followed by an asterisk (e.g. xy.z*)
Any help would be greatly appreciated.
Sam

Code for GNU sed
sed -rn '/LIMIT/,/total/{//!H};/total/{x;s/^.*\n(.*\n)((\s+\S+){10}\s+[0-9.]+\*(\s+\S+){3}\n(\s+\S+){14}).*/\1\2/;p;q}' file
$sed -rn '/LIMIT/,/total/{//!H};/total/{x;s/^.*\n(.*\n)((\s+\S+){10}\s+[0-9.]+\*(\s+\S+){3}\n(\s+\S+){14}).*/\1\2/;p;q}' file
1.60 209398 16298 16304 100.0% 206.1% 208.5% 209397 1.35 214.6% 48.9* -2 0.693 15466
1.50 273432 20770 20893 99.4% 333.4% 342.1% 273340 0.80 346.9% 23.2* -1 0.644 19495
1.40 33 27 27248 0.1% 42.6% 112.7% 12 0.40 60.3% 88.2 0 0.000 0

A bit dirty but should work:
awk '
/^ *SUBSET OF INTENSITY/,/^ *total/ {
a[++i]=$0;
b[i]=$11
}
END {
for(o=i-1;o>=0;o--)
if (b[o]~/\*/) {
print a[o-1]"\n"a[o]"\n"a[o+1]
break
}
}' log

Related

Why does the c++ clock return smaller values after sleeping?

I am trying to measure the performance of parts of my code in order to compare different statistical methods. I noticed that the measured cpu time is significantly lower if I let the thread sleep for some time beforehand. What is going on there? Am I using clock() wrong?
I am on an ubuntu system and using mpic++.
#include <ctime>
#include <chrono>
#include <cmath>
#include <random>
#include <iostream>
#include <thread>
int main(){
//If I include this line then the measured time is 10 times smaller
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::default_random_engine generator;
std::normal_distribution<double> distribution = std::normal_distribution<double>(0.0,1.0);
int M= 100000;
double test = 0;
clock_t start = clock();
for(int counter=0;counter<M;counter++){
test+=distribution(generator);
}
clock_t end = clock();
std::cout << "Generated "<<M<<" values in "<<((double) (end - start)) / CLOCKS_PER_SEC<<std::endl;
std::cout<<test;
return 0;
}
If I let the thread sleep then I get:
Generated 100000 values in 0.01637
Otherwise the result is:
Generated 100000 values in 0.134786
Strace results with std::this_thread::sleep_for(std::chrono::milliseconds(1000));:
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.21 0.455606 455606 1 nanosleep
0.51 0.002321 18 130 read
0.06 0.000272 27 10 brk
0.04 0.000203 1 241 mmap
0.04 0.000176 2 101 11 openat
0.03 0.000117 1 178 mprotect
0.03 0.000115 1 90 close
0.02 0.000112 19 6 sched_getaffinity
0.02 0.000111 1 93 fstat
0.02 0.000072 8 9 clone
0.01 0.000053 27 2 prlimit64
0.01 0.000039 20 2 clock_gettime
0.01 0.000028 28 1 getpid
0.01 0.000028 1 24 1 futex
0.00 0.000000 0 2 write
0.00 0.000000 0 8 8 stat
0.00 0.000000 0 15 munmap
0.00 0.000000 0 2 rt_sigaction
0.00 0.000000 0 1 rt_sigprocmask
0.00 0.000000 0 78 78 access
0.00 0.000000 0 1 execve
0.00 0.000000 0 4 getdents
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 1 set_robust_list
0.00 0.000000 0 1 getrandom
------ ----------- ----------- --------- --------- ----------------
100.00 0.459253 1003 98 total
Result without std::this_thread::sleep_for(std::chrono::milliseconds(1000));:
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
32.00 0.002080 16 130 read
20.23 0.001315 5 241 mmap
14.00 0.000910 5 178 mprotect
10.15 0.000660 7 101 11 openat
5.41 0.000352 5 78 78 access
4.66 0.000303 3 93 fstat
4.43 0.000288 3 90 close
2.81 0.000183 20 9 clone
1.82 0.000118 10 12 1 futex
1.08 0.000070 5 15 munmap
0.80 0.000052 5 10 brk
0.62 0.000040 7 6 sched_getaffinity
0.57 0.000037 19 2 write
0.43 0.000028 4 8 8 stat
0.38 0.000025 13 2 clock_gettime
0.18 0.000012 3 4 getdents
0.15 0.000010 5 2 prlimit64
0.14 0.000009 9 1 getpid
0.03 0.000002 1 2 rt_sigaction
0.03 0.000002 2 1 arch_prctl
0.03 0.000002 2 1 getrandom
0.02 0.000001 1 1 rt_sigprocmask
0.02 0.000001 1 1 set_tid_address
0.02 0.000001 1 1 set_robust_list
0.00 0.000000 0 1 execve
------ ----------- ----------- --------- --------- ----------------
100.00 0.006501 990 98 total
I found the culprit. I am working in eclipse and had a header with corresponding cpp file still in the same project. TIL that eclipse links files even if I do not include them. This file contains a class with a variable of type dealii::FullMatrix:
//Coefficients.h
#ifndef COEFFICIENTS_H_
#define COEFFICIENTS_H_
#include <deal.II/lac/full_matrix.h>
class Coefficients{
public:
Coefficients(int dim);
protected:
dealii::FullMatrix<double> values;
};
#endif /* COEFFICIENTS_H_ */
In the cpp file the constructor initializes the matrix:
//Coefficients.cpp
#include "Coefficients.h"
Coefficients::Coefficients(int dim):values(dim,dim){};
This somehow resulted in the time difference. For now I just put the constructor in my header file and that seems to solve the issue. I would be very interested if any of you know whats going on there.
Thank you for the discussion and all the interesting answers. A special thanks to n.m. for testing my program.

Sequential READ or WRITE not allowed after EOF marker

I have this code:
SUBROUTINE FNDKEY
1( FOUND ,IWBEG ,IWEND ,KEYWRD ,INLINE ,
2 NFILE ,NWRD )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL FOUND
CHARACTER*80 INLINE
CHARACTER*(*) KEYWRD
DIMENSION
1 IWBEG(40), IWEND(40)
C***********************************************************************
C FINDS AND READS A LINE CONTAINING A SPECIFIED KEYWORD FROM A FILE.
C THIS ROUTINE SEARCHES FOR A GIVEN KEYWORD POSITIONED AS THE FIRST
C WORD OF A LINE IN A FILE.
C IF THE GIVEN KEYWORD IS FOUND THEN THE CORRESPONDING LINE IS READ AND
C RETURNED TOGETHER WITH THE NUMBER OF WORDS IN THE LINE AND TWO INTEGER
C ARRAYS CONTAINING THE POSITION OF THE BEGINNING AND END OF EACH WORD.
C***********************************************************************
1000 FORMAT(A80)
C
FOUND=.TRUE.
IEND=0
10 READ(NFILE,1000,END=20)INLINE
NWRD=NWORD(INLINE,IWBEG,IWEND)
IF(NWRD.NE.0)THEN
IF(INLINE(IWBEG(1):IWEND(1)).EQ.KEYWRD)THEN
GOTO 999
ENDIF
ENDIF
GOTO 10
20 IF(IEND.EQ.0)THEN
IEND=1
REWIND NFILE
GOTO 10
ELSE
FOUND=.FALSE.
ENDIF
999 RETURN
END
And the following file named "2.dat" that I am trying to read:
TITLE
Example 7.5.3 - Simply supported uniformly loaded circular plate
ANALYSIS_TYPE 3 (Axisymmetric)
AXIS_OF_SYMMETRY Y
LARGE_STRAIN_FORMULATION OFF
SOLUTION_ALGORITHM 2
ELEMENT_GROUPS 1
1 1 1
ELEMENT_TYPES 1
1 QUAD_8
4 GP
ELEMENTS 10
1 1 1 19 11 20 16 21 13 22
2 1 13 21 16 23 10 24 2 25
3 1 3 26 18 27 17 28 4 29
4 1 18 30 7 31 12 32 17 27
5 1 3 33 5 34 14 35 18 26
6 1 18 35 14 36 6 37 7 30
7 1 5 38 8 39 15 40 14 34
8 1 14 40 15 41 9 42 6 36
9 1 10 23 16 43 17 32 12 44
10 1 16 20 11 45 4 28 17 43
NODE_COORDINATES 45 CARTESIAN
1 0.0000000000e+00 0.0000000000e+00
2 0.0000000000e+00 1.0000000000e+00
3 6.0000000000e+00 0.0000000000e+00
4 4.0000000000e+00 0.0000000000e+00
5 8.0000000000e+00 0.0000000000e+00
6 8.0000000000e+00 1.0000000000e+00
7 6.0000000000e+00 1.0000000000e+00
8 1.0000000000e+01 0.0000000000e+00
9 1.0000000000e+01 1.0000000000e+00
10 2.0000000000e+00 1.0000000000e+00
11 2.0000000000e+00 0.0000000000e+00
12 4.0000000000e+00 1.0000000000e+00
13 0.0000000000e+00 5.0000000000e-01
14 8.0000000000e+00 5.0000000000e-01
15 1.0000000000e+01 5.0000000000e-01
16 2.0000000000e+00 5.0000000000e-01
17 4.0000000000e+00 5.0000000000e-01
18 6.0000000000e+00 5.0000000000e-01
19 1.0000000000e+00 0.0000000000e+00
20 2.0000000000e+00 2.5000000000e-01
21 1.0000000000e+00 5.0000000000e-01
22 0.0000000000e+00 2.5000000000e-01
23 2.0000000000e+00 7.5000000000e-01
24 1.0000000000e+00 1.0000000000e+00
25 0.0000000000e+00 7.5000000000e-01
26 6.0000000000e+00 2.5000000000e-01
27 5.0000000000e+00 5.0000000000e-01
28 4.0000000000e+00 2.5000000000e-01
29 5.0000000000e+00 0.0000000000e+00
30 6.0000000000e+00 7.5000000000e-01
31 5.0000000000e+00 1.0000000000e+00
32 4.0000000000e+00 7.5000000000e-01
33 7.0000000000e+00 0.0000000000e+00
34 8.0000000000e+00 2.5000000000e-01
35 7.0000000000e+00 5.0000000000e-01
36 8.0000000000e+00 7.5000000000e-01
37 7.0000000000e+00 1.0000000000e+00
38 9.0000000000e+00 0.0000000000e+00
39 1.0000000000e+01 2.5000000000e-01
40 9.0000000000e+00 5.0000000000e-01
41 1.0000000000e+01 7.5000000000e-01
42 9.0000000000e+00 1.0000000000e+00
43 3.0000000000e+00 5.0000000000e-01
44 3.0000000000e+00 1.0000000000e+00
45 3.0000000000e+00 0.0000000000e+00
NODES_WITH_PRESCRIBED_DISPLACEMENTS 6
1 10 0.000 0.000 0.000
2 10 0.000 0.000 0.000
8 01 0.000 0.000 0.000
13 10 0.000 0.000 0.000
22 10 0.000 0.000 0.000
25 10 0.000 0.000 0.000
MATERIALS 1
1 VON_MISES
0.0
1.E+07 0.240
2
0.000 16000.0
1.000 16000.0
LOADINGS EDGE
EDGE_LOADS 5
2 3 10 24 2
1.000 1.000 1.000 0.000 0.000 0.000
4 3 7 31 12
1.000 1.000 1.000 0.000 0.000 0.000
6 3 6 37 7
1.000 1.000 1.000 0.000 0.000 0.000
8 3 9 42 6
1.000 1.000 1.000 0.000 0.000 0.000
9 3 10 12 44
1.000 1.000 1.000 0.000 0.000 0.000
*
* Monotonic loading to collapse
*
INCREMENTS 12
100.0 0.10000E-06 11 1 1 0 1 0
100.0 0.10000E-06 11 1 1 0 1 0
20.0 0.10000E-06 11 1 1 0 1 0
10.0 0.10000E-06 11 1 1 0 0 0
10.0 0.10000E-06 11 1 1 0 1 0
10.0 0.10000E-06 11 1 1 0 0 0
5.0 0.10000E-06 11 1 1 1 1 0
2.0 0.10000E-06 11 1 1 0 0 0
2.0 0.10000E-06 11 1 1 0 0 0
0.5 0.10000E-06 11 1 1 1 1 0
0.25 0.10000E-06 11 1 1 0 0 0
0.02 0.10000E-06 11 1 1 0 0 0
And I am getting the following error:
At line 22 of file GENERAL/fndkey.f (unit = 15, file = './2.dat')
Fortran runtime error: Sequential READ or WRITE not allowed after EOF marker, possibly use REWIND or BACKSPACE
The following file is the one that call's FNDKEY. When it calls FNDKWYm it passes to KEYWRD the string "RESTART".
SUBROUTINE RSTCHK( RSTINP ,RSTRT )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL RSTRT
CHARACTER*256 RSTINP
C
LOGICAL AVAIL,FOUND
CHARACTER*80 INLINE
DIMENSION IWBEG(40),IWEND(40)
C***********************************************************************
C CHECKS WETHER MAIN DATA IS TO BE READ FROM INPUT RE-START FILE
C AND SET INPUT RE-START FILE NAME IF REQUIRED
C***********************************************************************
1000 FORMAT(////,
1' Main input data read from re-start file'/
2' ======================================='///
3' Input re-start file name ------> ',A)
C
C Checks whether the input data file contains the keyword RESTART
C
CALL FNDKEY
1( FOUND ,IWBEG ,IWEND ,'RESTART',
2 INLINE ,15 ,NWRD )
IF(FOUND)THEN
C sets re-start flag and name of input re-start file
RSTRT=.TRUE.
RSTINP=INLINE(IWBEG(2):IWEND(2))//'.rst'
WRITE(16,1000)INLINE(IWBEG(2):IWEND(2))//'.rst'
C checks existence of the input re-start file
INQUIRE(FILE=RSTINP,EXIST=AVAIL)
IF(.NOT.AVAIL)CALL ERRPRT('ED0096')
ELSE
RSTRT=.FALSE.
ENDIF
C
RETURN
END
I solved the problem adding the comand BACKSPACE(NFILE) above the RETURN:
SUBROUTINE FNDKEY
1( FOUND ,IWBEG ,IWEND ,KEYWRD ,INLINE ,
2 NFILE ,NWRD )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL FOUND
CHARACTER*80 INLINE
CHARACTER*(*) KEYWRD
DIMENSION
1 IWBEG(40), IWEND(40)
C***********************************************************************
C FINDS AND READS A LINE CONTAINING A SPECIFIED KEYWORD FROM A FILE.
C THIS ROUTINE SEARCHES FOR A GIVEN KEYWORD POSITIONED AS THE FIRST
C WORD OF A LINE IN A FILE.
C IF THE GIVEN KEYWORD IS FOUND THEN THE CORRESPONDING LINE IS READ AND
C RETURNED TOGETHER WITH THE NUMBER OF WORDS IN THE LINE AND TWO INTEGER
C ARRAYS CONTAINING THE POSITION OF THE BEGINNING AND END OF EACH WORD.
C***********************************************************************
1000 FORMAT(A80)
C
FOUND=.TRUE.
IEND=0
10 READ(NFILE,1000,END=20)INLINE
NWRD=NWORD(INLINE,IWBEG,IWEND)
PRINT *,KEYWRD
IF(NWRD.NE.0)THEN
IF(INLINE(IWBEG(1):IWEND(1)).EQ.KEYWRD)THEN
GOTO 999
ENDIF
ENDIF
GOTO 10
20 IF(IEND.EQ.0)THEN
IEND=1
REWIND NFILE
GOTO 10
ELSE
FOUND=.FALSE.
ENDIF
BACKSPACE(NFILE)
999 RETURN
END

GLSL: pow vs multiplication for integer exponent

Which is faster in GLSL:
pow(x, 3.0f);
or
x*x*x;
?
Does exponentiation performance depend on hardware vendor or exponent value?
I wrote a small benchmark, because I was interested in the results.
In my personal case, I was most interested in exponent = 5.
Benchmark code (running in Rem's Studio / LWJGL):
package me.anno.utils.bench
import me.anno.gpu.GFX
import me.anno.gpu.GFX.flat01
import me.anno.gpu.RenderState
import me.anno.gpu.RenderState.useFrame
import me.anno.gpu.framebuffer.Frame
import me.anno.gpu.framebuffer.Framebuffer
import me.anno.gpu.hidden.HiddenOpenGLContext
import me.anno.gpu.shader.Renderer
import me.anno.gpu.shader.Shader
import me.anno.utils.types.Floats.f2
import org.lwjgl.opengl.GL11.*
import java.nio.ByteBuffer
import kotlin.math.roundToInt
fun main() {
fun createShader(code: String) = Shader(
"", null, "" +
"attribute vec2 attr0;\n" +
"void main(){\n" +
" gl_Position = vec4(attr0*2.0-1.0, 0.0, 1.0);\n" +
" uv = attr0;\n" +
"}", "varying vec2 uv;\n", "" +
"void main(){" +
code +
"}"
)
fun repeat(code: String, times: Int): String {
return Array(times) { code }.joinToString("\n")
}
val size = 512
val warmup = 50
val benchmark = 1000
HiddenOpenGLContext.setSize(size, size)
HiddenOpenGLContext.createOpenGL()
val buffer = Framebuffer("", size, size, 1, 1, true, Framebuffer.DepthBufferType.NONE)
println("Power,Multiplications,GFlops-multiplication,GFlops-floats,GFlops-ints,GFlops-power,Speedup")
useFrame(buffer, Renderer.colorRenderer) {
RenderState.blendMode.use(me.anno.gpu.blending.BlendMode.ADD) {
for (power in 2 until 100) {
// to reduce the overhead of other stuff
val repeats = 100
val init = "float x1 = dot(uv, vec2(1.0)),x2,x4,x8,x16,x32,x64;\n"
val end = "gl_FragColor = vec4(x1,x1,x1,x1);\n"
val manualCode = StringBuilder()
for (bit in 1 until 32) {
val p = 1.shl(bit)
val h = 1.shl(bit - 1)
if (power == p) {
manualCode.append("x1=x$h*x$h;")
break
} else if (power > p) {
manualCode.append("x$p=x$h*x$h;")
} else break
}
if (power.and(power - 1) != 0) {
// not a power of two, so the result isn't finished yet
manualCode.append("x1=")
var first = true
for (bit in 0 until 32) {
val p = 1.shl(bit)
if (power.and(p) != 0) {
if (!first) {
manualCode.append('*')
} else first = false
manualCode.append("x$p")
}
}
manualCode.append(";\n")
}
val multiplications = manualCode.count { it == '*' }
// println("$power: $manualCode")
val shaders = listOf(
// manually optimized
createShader(init + repeat(manualCode.toString(), repeats) + end),
// can be optimized
createShader(init + repeat("x1=pow(x1,$power.0);", repeats) + end),
// can be optimized, int as power
createShader(init + repeat("x1=pow(x1,$power);", repeats) + end),
// slightly different, so it can't be optimized
createShader(init + repeat("x1=pow(x1,${power}.01);", repeats) + end),
)
for (shader in shaders) {
shader.use()
}
val pixels = ByteBuffer.allocateDirect(4)
Frame.bind()
glClearColor(0f, 0f, 0f, 1f)
glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT)
for (i in 0 until warmup) {
for (shader in shaders) {
shader.use()
flat01.draw(shader)
}
}
val flops = DoubleArray(shaders.size)
val avg = 10 // for more stability between runs
for (j in 0 until avg) {
for (index in shaders.indices) {
val shader = shaders[index]
GFX.check()
val t0 = System.nanoTime()
for (i in 0 until benchmark) {
shader.use()
flat01.draw(shader)
}
// synchronize
glReadPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixels)
GFX.check()
val t1 = System.nanoTime()
// the first one may be an outlier
if (j > 0) flops[index] += multiplications * repeats.toDouble() * benchmark.toDouble() * size * size / (t1 - t0)
GFX.check()
}
}
for (i in flops.indices) {
flops[i] /= (avg - 1.0)
}
println(
"" +
"$power,$multiplications," +
"${flops[0].roundToInt()}," +
"${flops[1].roundToInt()}," +
"${flops[2].roundToInt()}," +
"${flops[3].roundToInt()}," +
(flops[0] / flops[3]).f2()
)
}
}
}
}
The sampler function is run 9x 512² pixels * 1000 times, and evaluates the function 100 times each.
I run this code on my RX 580, 8GB from Gigabyte, and collected the following results:
Power
#Mult
GFlops*
GFlopsFp
GFlopsInt
GFlopsPow
Speedup
2
1
1246
1429
1447
324
3.84
3
2
2663
2692
2708
651
4.09
4
2
2682
2679
2698
650
4.12
5
3
2766
972
974
973
2.84
6
3
2785
978
974
976
2.85
7
4
2830
1295
1303
1299
2.18
8
3
2783
2792
2809
960
2.90
9
4
2836
1298
1301
1302
2.18
10
4
2833
1291
1302
1298
2.18
11
5
2858
1623
1629
1623
1.76
12
4
2824
1302
1295
1303
2.17
13
5
2866
1628
1624
1626
1.76
14
5
2869
1614
1623
1611
1.78
15
6
2886
1945
1943
1953
1.48
16
4
2821
1305
1300
1305
2.16
17
5
2868
1615
1625
1619
1.77
18
5
2858
1620
1625
1624
1.76
19
6
2890
1949
1946
1949
1.48
20
5
2871
1618
1627
1625
1.77
21
6
2879
1945
1947
1943
1.48
22
6
2886
1944
1949
1952
1.48
23
7
2901
2271
2269
2268
1.28
24
5
2872
1621
1628
1624
1.77
25
6
2886
1942
1943
1942
1.49
26
6
2880
1949
1949
1953
1.47
27
7
2891
2273
2263
2266
1.28
28
6
2883
1949
1946
1953
1.48
29
7
2910
2279
2281
2279
1.28
30
7
2899
2272
2276
2277
1.27
31
8
2906
2598
2595
2596
1.12
32
5
2872
1621
1625
1622
1.77
33
6
2901
1953
1942
1949
1.49
34
6
2895
1948
1939
1944
1.49
35
7
2895
2274
2266
2268
1.28
36
6
2881
1937
1944
1948
1.48
37
7
2894
2277
2270
2280
1.27
38
7
2902
2275
2264
2273
1.28
39
8
2910
2602
2594
2603
1.12
40
6
2877
1945
1947
1945
1.48
41
7
2892
2276
2277
2282
1.27
42
7
2887
2271
2272
2273
1.27
43
8
2912
2599
2606
2599
1.12
44
7
2910
2278
2284
2276
1.28
45
8
2920
2597
2601
2600
1.12
46
8
2920
2600
2601
2590
1.13
47
9
2925
2921
2926
2927
1.00
48
6
2885
1935
1955
1956
1.47
49
7
2901
2271
2279
2288
1.27
50
7
2904
2281
2276
2278
1.27
51
8
2919
2608
2594
2607
1.12
52
7
2902
2282
2270
2273
1.28
53
8
2903
2598
2602
2598
1.12
54
8
2918
2602
2602
2604
1.12
55
9
2932
2927
2924
2936
1.00
56
7
2907
2284
2282
2281
1.27
57
8
2920
2606
2604
2610
1.12
58
8
2913
2593
2597
2587
1.13
59
9
2925
2923
2924
2920
1.00
60
8
2930
2614
2606
2613
1.12
61
9
2932
2946
2946
2947
1.00
62
9
2926
2935
2937
2947
0.99
63
10
2958
3258
3192
3266
0.91
64
6
2902
1957
1956
1959
1.48
65
7
2903
2274
2267
2273
1.28
66
7
2909
2277
2276
2286
1.27
67
8
2908
2602
2606
2599
1.12
68
7
2894
2272
2279
2276
1.27
69
8
2923
2597
2606
2606
1.12
70
8
2910
2596
2599
2600
1.12
71
9
2926
2921
2927
2924
1.00
72
7
2909
2283
2273
2273
1.28
73
8
2909
2602
2602
2599
1.12
74
8
2914
2602
2602
2603
1.12
75
9
2924
2925
2927
2933
1.00
76
8
2904
2608
2602
2601
1.12
77
9
2911
2919
2917
2909
1.00
78
9
2927
2921
2917
2935
1.00
79
10
2929
3241
3246
3246
0.90
80
7
2903
2273
2276
2275
1.28
81
8
2916
2596
2592
2589
1.13
82
8
2913
2600
2597
2598
1.12
83
9
2925
2931
2926
2913
1.00
84
8
2917
2598
2606
2597
1.12
85
9
2920
2916
2918
2927
1.00
86
9
2942
2922
2944
2936
1.00
87
10
2961
3254
3259
3268
0.91
88
8
2934
2607
2608
2612
1.12
89
9
2918
2939
2931
2916
1.00
90
9
2927
2928
2920
2924
1.00
91
10
2940
3253
3252
3246
0.91
92
9
2924
2933
2926
2928
1.00
93
10
2940
3259
3237
3251
0.90
94
10
2928
3247
3247
3264
0.90
95
11
2933
3599
3593
3594
0.82
96
7
2883
2282
2268
2269
1.27
97
8
2911
2602
2595
2600
1.12
98
8
2896
2588
2591
2587
1.12
99
9
2924
2939
2936
2938
1.00
As you can see, a power() call takes exactly as long as 9 multiplication instructions. Therefore every manual rewriting of a power with less than 9 multiplications is faster.
Only the cases 2, 3, 4, and 8 are optimized by my driver. The optimization is independent of whether you use the .0 suffix for the exponent.
In the case of exponent = 2, my implementation seems to have lower performance than the driver. I am not sure, why.
The speedup is the manual implementation compared to pow(x,exponent+0.01), which cannot be optimized by the compiler.
Because the multiplications and the speedup align so perfectly, I created a graph to show the relationship. This relationship kind of shows that my benchmark is trustworthy :).
Operating System: Windows 10 Personal
GPU: RX 580 8GB from Gigabyte
Processor: Ryzen 5 2600
Memory: 16 GB DDR4 3200
GPU Driver: 21.6.1 from 17th June 2021
LWJGL: Version 3.2.3 build 13
While this can definitely be hardware/vendor/compiler dependent, advanced mathematical functions like pow() tend to be considerably more expensive than basic operations.
The best approach is of course to try both, and benchmark. But if there is a simple replacement for an advanced mathematical functions, I don't think you can go very wrong by using it.
If you write pow(x, 3.0), the best you can probably hope for is that the compiler will recognize the special case, and expand it. But why take the risk, if the replacement is just as short and easy to read? C/C++ compilers don't always replace pow(x, 2.0) by a simple multiplication, so I wouldn't necessarily count on all GLSL compilers to do that.

Formatting MMSS in SAS

DATA USCFootballStatsProject;
INPUT OPPONENT $ 1-12 WINORLOSS 13-14 TIMEOFPOSSESSION 15-19 THIRDDOWNCONVERSIONPERCENTAGE 21-26 RUSHINGYARDS;
FORMAT TIMEOFPOSSESSION MMSS.;
CARDS;
UCF 1 24:30 0.125 32
GEORGIA 0 26:59 0.333 43
ALABAMA 0 22:53 0.333 71
TROY 1 31:47 0.333 116
AUBURN 0 28:51 0.167 70
KENTUCKY 1 29:11 0.636 139
VANDERBILT 1 24:50 0.333 132
TENNESSEE 1 32:08 0.353 65
ARKANSAS 1 27:53 0.429 45
FLORIDA 1 25:50 0.300 120
CLEMSON 0 28:12 0.250 167
MISSOURI 0 31:19 0.316 142
MISSSTATE 1 32:39 0.231 81
GEORGIA 0 29:08 0.364 35
WOFFORD 1 24:21 0.417 165
FLOATLANTIC 1 32:39 0.429 200
AUBURN 0 30:20 0.462 109
KENTUCKY 1 31:07 0.538 190
VANDERBILT 1 30:54 0.727 194
TENNESSEE 0 31:33 0.417 165
ARKANSAS 0 23:06 0.333 51
FLORIDA 0 30:31 0.500 135
MTENNESSEE 1 28:17 0.778 154
CLEMSON 1 32:57 0.600 208
HOUSTON 1 33:19 0.500 189
LOUISLFY 1 31:38 0.538 195
GEORGIA 1 30:34 0.091 140
SCSTATE 1 26:53 0.364 223
LSU 0 27:09 0.500 17
MISSSTATE 1 29:39 0.500 123
KENTUCKY 1 29:57 0.462 86
NCAROLINA 1 25:56 0.083 110
VANDERBILT 0 26:36 0.083 26
TENNESSEE 0 36:25 0.438 39
ARKANSAS 0 30:55 0.400 125
FLORIDA 0 25:39 0.167 68
CLEMSON 0 21:23 0.375 80
NCSTATE 1 34:15 0.357 171
VANDERBILT 0 29:58 0.400 92
GEORGIA 0 24:47 0.417 18
WOFFORD 1 31:07 0.636 172
UAB 1 34:59 0.500 158
OLEMISS 1 31:21 0.538 78
KENTUCKY 1 30:43 0.471 74
LSU 0 25:28 0.111 39
TENNESSEE 1 32:30 0.500 101
ARKANSAS 1 29:06 0.417 132
FLORIDA 0 29:50 0.067 53
CLEMSON 0 27:13 0.471 92
IOWA 0 24:06 0.455 43
NCSTATE 1 32:25 0.333 108
GEORGIA 0 34:21 0.353 114
FLOATLANTIC 1 27:50 0.300 287
OLEMISS 1 33:35 0.375 65
SCSTATE 1 27:13 0.538 213
KENTUCKY 1 29:17 0.500 128
ALABAMA 0 31:43 0.474 64
VANDERBILT 1 32:22 0.375 119
TENNESSEE 0 26:35 0.267 65
ARKANSAS 0 27:37 0.500 53
FLORIDA 0 31:21 0.250 61
CLEMSON 1 36:31 0.375 223
CONN 0 24:32 0.200 76
SOUTHERMISS 1 28:52 0.400 224
GEORGIA 1 35:15 0.643 189
FURMAN 1 33:30 0.600 182
AUBURN 0 28:52 0.500 79
ALABAMA 1 27:33 0.545 110
KENTUCKY 0 25:13 0.500 90
VANDERBILT 1 37:21 0.529 129
TENNESSEE 1 28:28 0.538 212
ARKANSAS 0 25:40 0.417 105
FLORIDA 1 40:46 0.500 239
TROY 1 30:49 0.455 212
CLEMSON 1 34:43 0.333 95
AUBURN 0 28:59 0.417 156
FLORIDAST 0 26:32 0.500 139
ECU 1 30:02 0.500 220
GEORGIA 1 29:02 0.286 253
NAVY 1 31:15 0.556 254
VANDERBILT 1 34:08 0.526 131
AUBURN 0 24:13 0.200 129
KENTUCKY 1 38:37 0.500 288
MISSSTATE 1 32:34 0.200 110
TENNESSEE 1 36:18 0.556 231
ARKANSAS 0 29:05 0.667 79
FLORIDA 1 32:04 0.214 215
CITADEL 1 26:44 0.667 256
CLEMSON 1 37:17 0.444 210
NEBRASKA 1 29:11 0.308 121
VANDERBILT 1 31:36 0.250 205
ECU 1 28:42 0.533 131
UAB 1 23:47 0.500 179
MISSOURI 1 32:33 0.500 144
KENTUCKY 1 31:17 0.500 200
GEORGIA 1 33:13 0.417 230
LSU 0 23:03 0.231 34
FLORIDA 0 24:32 0.214 36
TENNESSEE 1 35:22 0.400 147
ARKANSAS 1 31:45 0.538 104
WOFFORD 1 29:11 0.538 171
CLEMSON 1 39:58 0.524 134
MICHIGAN 1 22:01 0.300 85
NCAROLINA 1 29:33 0.357 228
GEORGIA 0 24:58 0.455 226
VANDERBILT 1 37:10 0.647 220
UCF 1 30:49 0.556 225
KENTUCKY 1 29:45 0.556 178
ARKANSAS 1 43:25 0.563 277
TENNESSEE 0 27:38 0.286 218
MISSOURI 1 34:27 0.294 75
MISSSTATE 1 26:14 0.091 160
FLORIDA 1 28:59 0.313 164
CCAROLINA 1 34:31 0.556 352
CLEMSON 1 38:09 0.526 140
WISCONSIN 1 30:34 0.444 117
TAMU 0 22:22 0.222 67
ECU 1 36:19 0.538 175
GEORGIA 1 31:27 0.222 176
VANDERBILT 1 31:02 0.583 212
MISSOURI 0 35:55 0.381 119
KENTUCKY 0 34:20 0.600 282
FURMAN 1 29:37 0.333 267
AUBURN 0 33:31 0.429 119
TENNESSEE 0 30:13 0.462 248
FLORIDA 1 31:30 0.471 95
SALABAMA 1 24:12 0.400 210
CLEMSON 0 31:20 0.400 63
MIAMI 1 28:50 0.467 60
;
PROC PRINT DATA = USCFootballStatsProject;
RUN;
As it currently stands, it is not printing any of the times in the column for TIMEOFPOSSESSION, but it is printing everything else fine. Any ideas as to why it isn't printing that column? I'm using FORMAT TIMEOFPOSSESSION MMSS.;
I plan on doing a logistic regression with the WINORLOSS being the response variable, but I want to make sure that the data is being read in correctly.
Thanks.
Because you told it to read columns 15 to 19 as a number, but the value has a colon in it. You need to either use formatted input.
input ... #15 TIMEOFPOSSESSION STIMER5. ... ;
Or use list mode input with an attached INFORMAT.
informat TIMEOFPOSSESSION stimer5.;
input ... #15 TIMEOFPOSSESSION ... ;

estimator for the derivative of the local linear model (SAS)

I estimate a local linear model for the data with one continuous dependent variable and multiple explanatory variables (continuous and dichotomous).
Is it possible to estimate the derivatives of this function for each bundle of explanatory variables and save them for the further usage? How can one do it in SAS?
In principle, I would like to get some kind of analogue to the parameter estimates in a simple parametric regression. But now I would have not a one-point estimator but rather a distribution for each of the variable.
Thanks for any suggestions, comments, clarifications.
UPDATE:
For example, if I use the SAS datasample "ExperimentA" and run the local linear model, how can I get after the estimation the derivative for each indep.variable at each row of the data?
data ExperimentA;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield ##;
datalines;
80 0.005 6.039 80 0.010 4.719 80 0.015 6.301
80 0.020 4.558 80 0.025 5.917 80 0.030 4.365
80 0.035 6.540 80 0.040 5.063 80 0.045 4.668
80 0.050 7.641 80 0.055 6.736 80 0.060 7.255
80 0.065 5.515 80 0.070 5.260 80 0.075 4.813
80 0.080 4.465 90 0.005 4.540 90 0.010 3.553
90 0.015 5.611 90 0.020 4.586 90 0.025 6.503
90 0.030 4.671 90 0.035 4.919 90 0.040 6.536
90 0.045 4.799 90 0.050 6.002 90 0.055 6.988
90 0.060 6.206 90 0.065 5.193 90 0.070 5.783
90 0.075 6.482 90 0.080 5.222 100 0.005 5.042
100 0.010 5.551 100 0.015 4.804 100 0.020 5.313
100 0.025 4.957 100 0.030 6.177 100 0.035 5.433
100 0.040 6.139 100 0.045 6.217 100 0.050 6.498
100 0.055 7.037 100 0.060 5.589 100 0.065 5.593
100 0.070 7.438 100 0.075 4.794 100 0.080 3.692
110 0.005 6.005 110 0.010 5.493 110 0.015 5.107
110 0.020 5.511 110 0.025 5.692 110 0.030 5.969
110 0.035 6.244 110 0.040 7.364 110 0.045 6.412
110 0.050 6.928 110 0.055 6.814 110 0.060 8.071
110 0.065 6.038 110 0.070 6.295 110 0.075 4.308
110 0.080 7.020 120 0.005 5.409 120 0.010 7.009
120 0.015 6.160 120 0.020 7.408 120 0.025 7.123
120 0.030 7.009 120 0.035 7.708 120 0.040 5.278
120 0.045 8.111 120 0.050 8.547 120 0.055 8.279
120 0.060 8.736 120 0.065 6.988 120 0.070 6.283
120 0.075 7.367 120 0.080 6.579 130 0.005 7.629
130 0.010 7.171 130 0.015 5.997 130 0.020 6.587
130 0.025 7.335 130 0.030 7.209 130 0.035 8.259
130 0.040 6.530 130 0.045 8.400 130 0.050 7.218
130 0.055 9.167 130 0.060 9.082 130 0.065 7.680
130 0.070 7.139 130 0.075 7.275 130 0.080 7.544
140 0.005 4.860 140 0.010 5.932 140 0.015 3.685
140 0.020 5.581 140 0.025 4.935 140 0.030 5.197
140 0.035 5.559 140 0.040 4.836 140 0.045 5.795
140 0.050 5.524 140 0.055 7.736 140 0.060 5.628
140 0.065 6.644 140 0.070 3.785 140 0.075 4.853
140 0.080 6.006
;
run;
ods graphics on;
ods output ScoreResults=PredLOESS;
proc loess data=ExperimentA;
model Yield = Temperature Catalyst
/ scale=sd select=gcv degree=2;
score;
run;