std::generate - How do I use a random number generator? - c++

In my programming I need to create a user-defined number of ublas vectors. I would like to do this with std::generate. However I get compiler errors that make it impossible for me.
The code I'm using:
for (size_t a_= 0; a_ < p_; a_++)
{
ublas::vector<double> next_vhat(size_of_vec);
std::generate(next_vhat.begin(), next_vhat.end(), mygen.give_rnd);
v_hat_.push_back(next_vhat);
}
I had to create a class specifically for the function call, since std::generate won't allow me to use a function with an argument as the third argument ("gen", see here. I need the numbers to be normal distributed, so the function call to the distribution function must contain, as an argument, the random number generator. Since it didn't allow me to call it with the argument, I had to write a class to do this for me.
The class I have written:
class RandGen
{
public:
RandGen()
: generator()
, norm_dist(0.0,1.0)
, random_seed(static_cast<unsigned>(std::time(NULL)))
{}
double give_rnd() { return (double) norm_dist(generator); }
private:
base_gen_t generator;
boost::random::normal_distribution<double> norm_dist; //Standard normal distribution
unsigned random_seed;
};
The error I'm getting
When trying to compile the whole thing, I get the following error:
error: cannot convert ‘RandGen::give_rnd’ from type ‘double (RandGen::)()’ to type ‘double (RandGen::*)()’
I have no idea what the compiler wants me to do here, or why it has so much trouble with this at all. Any advice is very appreciated.

You need to pass a callable object. That is, either a function pointer (not a member function pointer, which is what mygen.give_rnd is) or an object of a class that overloads operator(). You can just change your function give_rnd to this:
double operator()() { return (double) norm_dist(generator); }
And then, just pass your object directly to std::generate
std::generate(..., ..., mygen);
If, for some reason, you wanted to keep your RandGen class as it is, you would need to wrap it in another functor or lambda:
std::generate(..., ..., [&mygen]() { return mygen.give_rnd(); });

Related

pass C++ random number distribution to a function

I have looked for similar questions but haven't found them. I want to generate normally distributed random numbers. I used to code C and some C++98 but am now trying to go back and learn C++11.
I have a function to return a seeded RNG
auto seeded_rng () {
.... //do seeding.
std::default_random_engine Eng(/*seeds*/);
return Eng;
}
In my main function I bind the RNG to say a gaussian distribution
auto binded = std::bind(std::normal_distribution<double>{0,1.0},seeded_rng);
This function works fine. I can call "binded()" directly in main and it generates the numbers
I want to have a simulation object that needs random numbers to be created. My question related to how to pass in the "RNG_PART" below.
class sim
{
public:
sim( RNG_PART & rng, int_number_of sims ){ /* Do whatever */}
}
So if in main, I then want to create a simulation object
sim A(binded, 100);
it complains.
I tried declaring
sim::sim(std::default_random_engine &rng, int number_of_sims){}
but it is complaining. What type should I use to pass in the "binded" distribution to the constructor? Or am I going about this completely incorrectly. Should I just declare the RNG engine globally? I'd prefer not to do that.
Apologies if this is very basic!
The type of the argument to sim is not matching the type of binded. When you create binded, you avoid the issue by using auto instead of declaring the type, but you're going to need it later. How about the following in class sim instead of trying to figure out the type ahead of time. This also allows you to change the RNG or the random distribution without changing the sim class:
template<typename T>
class sim
{
public:
sim(T& rng, int_number_of sims ){ /* Do whatever */}
Note that the template definition must be visible to the place you use it, so you can't put it into a cpp file unless the only code that uses it is in that file. Typically, the template definition is in the same h file as where it was declared.
Then, you'd create sim as:
sim<decltype(binded)> A(binded,100);
the decltype(binded) is a way to tell the sim function template the type of binded.
Since binded can return different types depending upon the chosen random number distribution, obtaining the return type in the sim class template could be done with
using rnd_return_type = typename std::result_of<T()>::type; //in C++11, C++14
or
using rnd_return_type = std::invoke_result_t<T>; //C++17 and later
std::result_of is deprecated in C++17 and will be removed in C++20

auto type deduction coercion for templated class?

I have 2 issues in a template class I'm building. I've included example code below. First question is whether I can coerce the auto type deducted for a templated class. i.e.:
auto p = myvar;
where myvar is T<...>, could I force auto to detect Q<...>? This is simplified. Read on for a more clear explanation.
Edited for clarity: Let me explain what I'm doing. And I'd also like to indicate that this style code is working on a large-scale project perfectly well. I am trying to add some features and functions and in addition to smooth out some of the more awkward behaviors.
The code uses templates to perform work on n-dimensional arrays. The template has a top-level class, and a storage class underneath. Passing the storage class into the top level class allows for a top level class which inherits the storage class. So I start with NDimVar, and I have NDimStor. I end up with
NDimVar<NDimStor>
The class contains NO DATA except for the buffer of data:
class NDimStor<size_t... dimensions> {
int buffer[Size<dimensions...>()]
}
This makes the address of the class == the address of the buffer. This is key to the whole implementation. Is this an incorrect assumption? (I can see this works on my system without any issues, but perhaps this isn't always the case.)
When I create NDimVar<NDimStor<10,10>> I end up with a 10x10 array.
I have functions for getting pieces of the array, for example:
NDimVar<NDimStor<dimensions...>>::RemoveDim & get(int index);
This creates a new 1d array of 10 elements out of the 2d 10x10 array:
NDimVar<NdimStor<10>>
In order to return this as a reference, I use a reinterpret_cast at the location of the data I want. So in this example, get(3) would perform:
return reinterpret_cast<NDimVar≤NDimStor<dimensions...>>::RemoveDim&>(buffer[index * DimensionSumBelow<0>()]);
DimensionSumBelow<0> returns the sum of elements at dimensions 1+, i.e. 10. So &buffer[30] is the address of the referenced 1d NDimVar.
All of this works very well.
The only issue I have is that I would like to add on overlays. For example, be able to return a reference to a new class:
NDimVar<NDimPermute<NDimStor<10,10>,1,0>>
that points to the same original location along with a permutation behavior (swapping dimensions). This also works well. But I would like for:
auto p = myvar.Permute<1,0>()
to create a new copy of myvar with permuted data. This would work if I said:
NDimVar<NDimStor<10,10>> p = myvar.Permute<1,0>().
I feel that there is some auto type deduction stuff I could do in order to coerce the auto type returned, but I'm not sure. I haven't been able to figure it out.
Thanks again,
Nachum
What I want is:
1. Create temporary overlay classes on my storage, e.g. A_top<A_storage> can return a type called A_top<A_overlay<A_storage>> without creating a new object, it just returns a reference to this type. This changes the way the storage is accessed. The problem is upon a call to auto. I don't want this type to be instantiated directly. Can I modify the return to auto to be an original A_top?
#include <iostream>
using namespace std;
class A_storage {
public:
float arr[10];
A_storage () {
}
float & el (int index) {
return arr[index];
}
};
template <typename T> class A_overlay : T {
private:
A_overlay () {
cout << "A_overlay ()" << endl;
}
A_overlay (const A_overlay &) {
cout << "A_overlay (&)" << endl;
}
public:
using T::arr;
float & el (int index) {
return arr[10 - index];
}
};
template <typename T> class A_top;
template <typename T> class A_top : public T {
public:
A_top () {
}
A_top<A_overlay<A_storage>> & get () {
return reinterpret_cast<A_top<A_overlay<A_storage>>&>(*this);
}
};
using A = A_top<A_storage>;
int main (void) {
A a;
auto c = a.get(); // illegal - can i auto type deduce to A_top<A_storage>?
return 0;
}
If a function accepts (A_top<A_storage> &) as a parameter, how can I create a conversion function that can cast A_top<A_overlay<A_storage>>& to A_top<A_storage>& ?
Thanks,
Nachum
First, your design doesn't look right to me, and I'm not sure if the behaviour is actually well-defined or not. (Probably not.)
In any case, the problem is not with auto. The error is caused by the fact that the copy constructor of A_overlay is private, while you need it to copy A_top<A_overlay<A_storage>> returned by a.get() to auto c.
(Note that the auto in this case obviously gets deduced to A_top<A_overlay<A_storage>>, I assume you made a typo when said that it's A_top<A_storage>.)
Also note that A_storage in A_top::get() should be replaced with T, even if it doesn't change anything in your snippet because you only have T == A_storage.
If a function accepts (A_top &) as a parameter, how can I create a conversion function that can cast A_top> to A_top& ?
Ehm, isn't it just this:
return reinterpret_cast<A_top<A_storage>&>(obj);
reinterpret_cast should almost never be used. It essentially remove any compiler validation that the types are related. And doing unrelated cast is essentially undefined behavior as it essentially assume that derived classes are always at offset 0...
It does not make any sense to write such code. It is not maintainable and hard to understand what you are trying to achieve. It look like you want to pretend that your A_top<A_storage> object is a A_top<A_overlay<A_storage>> object instead. If this is what you want to do, then declare A alias as that type.
In your code, it look like you want to invert the indexing so that item at position 10 is returned when you ask item at position 0 and vice versa. Do you really think, that it is obvious from your obfuscated code? Never write such bad code.
Something like
class A_overlay {
public:
float & el (int index) { return arr[10 - index]; }
private:
A_storage arr;
};
would make much more sense than your current code.
No cast needed.
Easy to understand.
Well defined behavior.
You might keep your job.
And obviously, you would update the following line as appropriate:
using A = A_top<A_storage>;
Also, if A_top has no useful purpose, then why not using A_overlay directly? And why are you using template if A_storage is not a template? Do you really want to reuse such mess elsewhere in your code base.
Obviously, your code inheritance does not respect IS-A relationship if your write such code. So it is clearly a bad design!

Create a function from another one

more than a general case, I have a very specific example in mind : in GSL (GNU Scientific Library), the main function type used (in order to perform integration, root finding,...) is gsl_function , which have an attribute function whose type is double(*)(double, void *)
Say I want to create a gsl_function from double a_squared(double a) {return a*a};. a__squared 's type is double(*)(double) I would like to create a convert function taking in argument (double(*)(double) f) and returning an object of type double(*)(double, void *) which would satisfy convert(f)(double a, NULL) == f(a)
But after some research, it seems like I can't define another function in my convert function. How to proceed ?
The need to pass a raw function pointer to the GSL API limits your options considerably - you can't use anything based on std::function because there's no way to obtain a function pointer from a std::function (and this rules out lambdas using captures, which would have offered a neat solution).
Given these constraints, here's a possible solution making use of a static wrapper class. You could just as well have put the contents of this class in a namespace, but using the class at least gives some semblance of encapsulation.
typedef double gsl_function_type(double, void*); // typedef to make things a bit more readable...
// static class to wrap single-parameter function in GSL-compatible interface
// this really just serves as a namespace - there are no non-static members,
// but using a class lets us keep the details private
class Convert
{
Convert() = delete; // don't allow construction of this class
// pointer to the function to be invoked
static double (*m_target)(double);
// this is the function we'll actually pass to GSL - it has the required signature
static double target(double x, void*) {
return m_target(x); // invoke the currently wrapped function
}
public:
// here's your "convert" function
static gsl_function_type* convert(double (*fn)(double)) {
m_target = fn;
return &target;
}
};
There's a live example here: http://coliru.stacked-crooked.com/a/8accb5db47a0c51d
You're trapped by gsl's (poor) design choice of using C (instead of C++) to provide a C-style function pointer. Thus, you cannot use (C++ style) function-objects (functor), but must provide the pointer to a real function and one cannot generate a function in the same way one can genarate functors.
(Not recommended) You can use a global variable to store the actual function (a_squared) and then define a particular gsl_function that actually calls that global variable:
// from some gsl header:
extern "C" {
typedef double gsl_function(double, void*);
// calls func(arg,data_passed_to_func)
double gsl_api_function(gsl_function*func, void*data_passed_to_func);
}
// in your source code
double(*target_func)(double); // global variable can be hidden in some namespace
extern "C" {
double funtion_calling_target(double, void*)
}
double funtion_calling_target(double arg, void*)
{
return target_func(arg);
}
bool test(double x, double(*func)(double))
{
target_func = func;
return x < gsl_api_function(function_calling_target,0);
}
(hiding target_func as static member of some class as in atkins's answer still requires a global variable). This works, but is poor, since 1) this mechanism requires a global variable and 2) only allows one target function to be used a any time (which may be hard to ensure).
(Recommended) However, you can define a special function that takes another function pointer as argument and passes it as data element. This was in fact the idea behind the design of gsl_function: the void* can point to any auxiliary data that may be required by the function. Such data can be another function.
// your header
extern "C" {
double function_of_double(double, void*);
}
inline double function_of_double(double arg, void*func)
{
typedef double(*func_of_double)(double);
return reinterpret_cast<func_of_double>(func)(arg);
}
// your application
bool test(double x, double(*func)(double))
{
return x < gsl_api_function(function_of_double, (void*)(func));
}
This does not require a global variable and works with as many different simultaneous functions as you want. Of course, here you are messing around with void*, the very thing that every sensible C++ programmer abhors, but then you're using a horrible C library which is based on void* manipulations.
Thought I would add my lambda-based attempts at this.
It works fine in principle:
// function we want to pass to GSL
double a_squared(double a) { return a*a; }
typedef double gsl_function_type(double, void*); // convenient typedef
// lambda wrapping a_squared in the required interface: we can pass f directly to GSL
gsl_function_type* f = [](double x, void*) { return a_squared(x); };
But we'd really like to write a method to apply this to any given function. Something like this:
gsl_function_type* convert(double (*fn)(double))
{
// The lambda has to capture the function pointer, fn.
return [fn](double x, void*) { return fn(x); };
}
However, the lambda now has to capture the pointer fn, because fn has automatic storage duration (in contrast to the static function a_squared in the first example). This doesn't compile because a lambda which uses a capture cannot be converted to a simple function pointer, as required by the return value of our function. In order to be able to return this lambda we'd have to use a std::function, but there's no way to get a raw function pointer from that, so it's no use here.
So the only way I've managed to get this to work is by using a preprocessor macro:
#define convert(f) [](double x, void*) { return f(x); }
This then lets me write something like this:
#include <iostream>
using namespace std;
typedef double gsl_function_type(double, void*); // convenient typedef
// example GSL function call
double some_gsl_function(gsl_function_type* function)
{
return function(5.0, nullptr);
}
// function we want to pass to GSL
double a_squared(double a) { return a*a; }
// macro to define an inline lambda wrapping f(double) in GSL signature
#define convert(f) [](double x, void*) { return f(x); }
int main()
{
cout << some_gsl_function(convert(a_squared)) << endl;
}
Personally, as much as I dislike using macros, I would prefer this over my other suggestion. In particular, it solves the problems #Walter pointed out with that idea.
Previous answers - including the accepted one - seem correct, but they are not general enough in case you need to convert other types of function to gsl_function (including member functions for example). So, let me add a more powerful alternative.
If you use the wrapper described here, then you can convert any C++ lambdas to gsl_functions in two simple lines
// Example
gsl_function_pp Fp([&](double x){return a_squared(x);});
gsl_function *F = static_cast<gsl_function*>(&Fp);
This solves any related conversion problems. You can also use std::bind and any std::functions.

vector of function pointers

I'm trying to code a Gameboy emulator and i would like to use a vector of function pointers to call the right function instead of doing a long switch statement.
For example if the program counter point to 0x00 (in memory), the first element of the vector is NOP so void NOP() is called;
but i can't figure how to call the functions.
Z80.h
#include <vector>
using namespace std;
class Z80;
typedef void (Z80::*function_t)();
class Z80
{
public:
vector<function_t> fmap;
...
...
};
Z80.cpp
Z80::Z80()
{
fmap = { &Z80::NOP, &Z80::LDBCnn, &Z80::LDBCmA};
}
void Z80::emulateCycle() {
opcode = memory.readByte(r.pc);
fmap[opcode](); <---ERROR
r.pc++;
}
void Z80::NOP() {
}
this is the error:
IntelliSense: expression preceding parentheses of apparent call must have (pointer-to-) function type
This expression:
fmap[opcode]
gives you a pointer to a member function. You can't just call that - it needs the class instance too. But you're actually calling it from a class method itself - so this is the instance you're looking for:
(this->*fmap[opcode])();
Note that if you want to avoid that bit of syntax and you're using C++11, you can change your fmap to instead be a vector of std::function<void()> and initialize it thusly:
fmap = { std::bind(&Z80::NOP, this), // or [this](){ this->NOP(); }
std::bind(&Z80::LDBCnn, this), // etc.
std::bind(&Z80::LDBCmA, this)};
That will let you actually do:
fmap[opcode]();
I'm not entirely sure that using function pointer in this case is particularly much better than for example a big switch statement.
However, the reason you can't call your member function is that you are not passing your object to the function.
You need this;
(this->*fmap[opcode])();
Another option is to use static/free function pointers, like this:
void (*function_t)(Z80& self);
and call it with:
fmap[opcode](this).
[Or use std::function and std::bind, which covers over the rather (intentionally, apparently) ugly syntax]

C++: Using a string parameter passed in to access something in a type

My goal is to access a class that is passed in as a parameter inside of myFunction.
Here's what I'm trying to do:
void myFunction(string myString)
{
callFunctionOn(OuterType::InnerType::myString);
}
I'm trying to call some function on something that's in a type. For example, my code in some other file might look like:
namespace OuterType {
namespace InnerType {
//stuff here
}
}
However, using myString in that way doesn't work. If myString holds the value "class1", then I want that callFunctionOn part to be interpreted as
callFunctionOn(OuterType::InnerType::class1);
I feel like this is super simple, but I've been programming all day and my mind grows tired...
SOLVED: It looks like in order to this in this way, I'd need a language with reflection. To solve this I took a different approach to the problem and passed in a pointer to the class instead.
C++ doesn't have reflection built in, but it does have pointers to data, functions, and class members. So you can use a std::map or unordered_set to find the pointer with a particular name (you have to add all the name/pointer pairs into the map beforehand).
Your solution is likely to look something like:
namespace Outer
{
namespace Inner
{
void funcA( void ) { std::cout << "called funcA" << std::endl; }
std::map< std::string, void (*)(void) > members;
}
}
// in some initialization function
Outer::Inner::members["funcA"] = &Outer::Inner::funcA;
// later
std::string myString = "funcA";
void (*f)(void) = Outer::Inner::members[myString]; // lookup function by name
(*f)(); // call function via its pointer
Of course the type of the pointer will probably need to change to meet your application requirements.
You're trying to access a variable based on a run-time string that contains its name? That's not possible; the names of variables disappear after compilation and linking. (Except insofar as they are kept around to facilitate debugging).
Do you mean :
OuterType::InnerType::callFunctionOn(myString);
maybe this idea: operator() can take parameters, wrapping it in a class ine can make calls that are resolved in the overloaded operator() based on its parameters.
template<typename TypeSig, class InstanceOf, typename NA,typename Args>
class FuncMap {
public:
typedef TypeSig (InstanceOf:: *cbMethod) ( NA, Args );
FuncMap( InstanceOf & cInst, cbMethod cbM ) : mcInst(cInst) {mcbM = cbM;}
TypeSig operator() ( NA na, Args args) {return (mcInst.*mcbM)(na, args);}
private:
InstanceOf & mcInst;
cbMethod mcbM;
};
you need to build a map of runtime string values as keys and pointers to instance methods as seen above. i used this for re-dispatch tracing and custom runtime dispatch with lesser than RTTI overhead.
this allows you to have default, if no key found, or other logic as you wish.