Performance bottleneck at _L_unlock_16 - c++

I am trying to use google perf tools CPU profiler for debugging performance issues on a multi-threaded program. With single thread it take 250 ms while 4 threads take around 900ms.
My program has a mmap'ed file which is shared across threads and all operations are read only. Also my program creates large number of objects which are not shared across threads. (Specifically my program uses CRF++ library to do some querying). I am trying to figure out how to make my program perform better with multi threads. Call graph produced by CPU profiler of gperf tools shows that my program spends a lot of time (around 50%) of time in _L_unlock_16.
Searching web for _L_unlock_16 pointed to some bug reports with canonical suggesting that its associated with libpthread. But other than that I was not able to find any useful information for debugging.
A brief description of what my program does. I have few words in a file (4). In my program I have a processWord() which processes a single word using CRF++. This processWord() is what each thread executes. My main() reads words from the file and each threads runs processWord() in parallel. If I process a single word(hence only 1 thread) it takes 250ms and so if I process all 4 words(and hence 4 threads) I expected it to finish by same time 250 ms, however as I mentioned above it's taking around 900ms.
This is the callgraph of the execution - https://www.dropbox.com/s/o1mkh477i7e9s4m/cgout_n2.png
I want to understand why my program is spending lot of time at _L_unlock_16 and what I can do to mitigate it.

Yet again the _L_unlock_16 is not a function of your code. Have you looked at the stracktraces above that function? What are the callers of it when the program waits? You've said that the program wastes 50% waiting inside. But, which part of the program ordered that operation? Is it again from memory alloc/dealloc ops?
The function seems to come from libpthread. Does CRF+ handle threads/libpthread in any way? If yes, then maybe the library is illconfigured? Or maybe it implements some 'basic threadsafety' by adding locks everywhere and simply is not built well for multithreading? What does the docs say about that?
Personally, I'd guess that it ignores threads and that you have added all the threading. I may be wrong, but if that's true, then the CRF++ probably will not call that 'unlock' function at all, and the 'unlock' is somwhow called from your code that orchestrates the threads/locks/queues/messages etc? Halt the program a few times and look at who called the unlock. If it really spends 50% sitting in the unlock, you will very quickly know who causes the lock to be used and you will be able to either eliminate it or at least perform a more refined research..
EDIT #1:
Eh.. when I said "stacktrace" I meant stacktrace, not callgraph. Callgraph may look nice in trivial cases, but in more complex ones, it will be mangled and unreadable and will hide the precious details into "compacted" form.. But, fortunatelly, here the case looks simple enough.
Please observe the beginning: "Process word, 99x". I assume that the "99x" is the call count. Then, look at "tagger-parse": 97x. From that:
61x into rebuildFeatures from which 41x goes right into unlock and 20(13) indirectly into it
23x goes to buildLattice fro which 21x goes into unlock
I'd guess that it was the CRF++ uses locking quite heavily. For me, it seems that you simply observe the effects of CRF's internal locking. It certainly is not lockless internally.
It seems to lock at least once per "processWord". It's hard to say without looking at code (is it opensource? I've not checked..), from stacktraces it would be more obvious, but IF it really locks once per "processWord" that it could even be a sort of a "global lock" that protects "everything" from "all threads" and causes all jobs to serialize. Whatever. Anyways, clearly, it's the CRF++'s internals that lock and wait.
If your CRF objects are really (really) not shared across threads, then remove threading configuration flags from CRF, pray that they were sane enough to not use any static variables nor global objects, add some own locking (if needed) at the topmost job/result level and retry. You should have it now much faster.
If the CRF objects are shared, unshare them and see above.
But, if they are shared behind the scenes, then there's little doable. Change your library to a one that has a better threading support, OR fix the library, OR ignore and use it with current performance.
The last advice may sound strange (it works slowly, right? so why to ignore it?), but in fact is the most important one, and you should try it first. If the parallel tasks have similar "data profile", then there is very probable that they will try to hit the same locks in the same approximate moment of time. Imagine a medium-sized cache that holds words sorted by its first letter. At the toplevel there's array of, say, 26 entries. Each entry has a lock and a list of words inside. If you run 100 threads that will each first check "mom" then "dad" then "son" - then all of that 100 threads will first hit and wait for each other at "M", then at "D" then at "S". Well, approximately/probably of course. But you get the idea. If the data profile were more random then they'd block each other far less. Mind that processing ONE word is a .. small task and that you try to process the same word(s). Even if the internal CRF's locking is smart, it is just bound to hit the same areas. Try again with a more dispersed data.
Add to that the fact that threading costs. If something was guarded against races with use of locks, then every lock/unlock costs because at least they have to "halt and check if the lock is open" (sorry very imprecise wording). If the data-to-process is small in relation to the-amount-of-lockchecks, then adding more threads will not help and will just waste the time. For checking one word, it may even happen that the sole handling of a single lock takes longer than processing the word! But, if the amount of data to be processed were larger, then the cost of flipping a lock compared to processing the data might start being neglible.
Prepare a set of 100 or more words. Run and measure it on one thread. Then partition the words at random and run it on 2 and 4 threads. And measure. If not better, try at 1000 and 10000 words. The more the better, of course, keeping in mind that the test should not last till your next birthday ;)
If you notice that 10k words split over 4 threads (2500w per th) works about 40%-30%-or even 25% faster than on one thread - here you go! You simply gave it a too small job. It was tailored and optimized for bigger ones!
But, on the other hand, it may happen that 10k words split over 4 threads does not work faster, or worse, works slower - then it might indicate that the library handles multithreading very wrong. Now try the other things like stripping threading from it or repairing it.

Related

Are there some common techniques to profile coroutine based code?

It's pretty obvious how to visualize a regular call stack and count internal and external execution times. However, if one have dealt with coroutines, the call stack can look pretty messy. I mean, a coroutine may yield execution not to its parent but to another coroutine (eg. greenlet). Are there some common ways to make consistent profiling output for such scenarios?
Think about a single sample, of the stack for all threads at the same time.
What you need to know is - who's waiting for whom, and why.
Normally if function A is above B on a stack, it means A is waiting for B to return, and the reason is that A wanted B to do something.
If you look at a whole stack, for one thread, you get a chain of reasons why that particular nanosecond is being spent, by that thread.
If you're looking for speed, you're looking for chains of reasons that, altogether, you don't really need (because there is a weak link).
This works even if the chain ends in I/O.
If it is user input it's simply waiting for the user.
But if it's output, or disk I/O, or plain old CPU cranking, you might be able to do something to reduce it, and get a performance gain (if you see the same problem on 2 or more samples).
What if thread A is waiting for thread B?
Then what you see at the bottom of A's stack is a function that waits for the other thread.
You need to figure out which is thread B, and look at its stack, because the longer it takes, the longer A takes.
So this is more difficult, but surely you're not afraid of that.
I'm talking about manual profiling here, where you take samples yourself, in a debugger, and apply your full attention to each sample.
Profiling tools tend to assume you're lazy and only want numbers, and if nothing jumps out of those numbers you will be happy because you found nothing.
In fact, if some silly needless activity is taking 30% of time, then on average the number of samples you require to see it twice is 2/0.3 = 6.67 samples (not a big number), and it is quite likely that you will see it and the profiler will not.
That's random pausing.

Multithreading crowds out other processes

I have added multithreading to a raytracer I am writing, and while it does run much faster now, when it's running, my computer is almost unusably slow. Obviously I want to use all my PC's compute power, but I don't want it to prevent any other application from getting access to the CPUs.
I thought about having the threads sleep, but unless they all sleep at the same time, then the other threads would just eat up the extra time. Also, I don't necessarily want to give up a certain percentage of available compute power if I'm not going to use it.
Also, (This is not my official question) I've noticed that for some reason the first thread launched does more work than the second, and the second more than the third, and so on until like the last 5 threads (out of 32) won't actually get a crack at any work, despite the fact that there's plenty to go a around (there's at least 0.5M work items for them to chew through). If someone would like to venture a guess in the comments, it would be appreciated.
If you use the standard threads, you could try to use thread::hardware_concurrency to find out an estimate of the maximul number of threads that are really supported by hardware, in order not to overload your cpu.
If it returns 0 the information is not available. In other cases you could limit yourself to this number or a little bit below (thinking that other processes might use these as well).
If limiting the number of threads does not improve responsiveness, you can also consider calling from time to time this_thread::yield() to give opportunity to reschedule threads. But depending on the kind of job and synchronisation you use, this second alternative might decrease performance.
As requested, my comment as an answer:
It sounds like you've oversubscribed your poor CPU. Try reducing the number of threads?
If there's significantly more threads than hardware cores, a lot of time is going to be wasted switching between threads, scheduling them in the OS, and in contention over shared variables. It would also cause the general slowdown of the other running programs, because they have to contend with the high number of threads from your program (which by default all have the same priority as the other programs' threads in the eyes of the OS scheduler).

Poor performance in multi-threaded C++ program

I have a C++ program running on Linux in which a new thread is created to do some computationally expensive work independent of the main thread (The computational work completes by writing the results to files, which end up being very large). However, I'm getting relatively poor performance.
If I implement the program straightforward (without introducing other threads), it completes the task in roughly 2 hours. With the multi-threaded program it takes around 12 hours to do the same task (this was tested with only one thread spawned).
I've tried a couple of things, including pthread_setaffinity_np to set the thread to a single CPU (out of the 24 available on the server I'm using), as well as pthread_setschedparam to set the scheduling policy (I've only tried SCHED_BATCH). But the effects of these have so far been negligible.
Are there any general causes for this kind of problem?
EDIT: I've added some example code that I'm using, which is hopefully the most relevant parts. The function process_job() is what actually does the computational work, but it would be too much to include here. Basically, it reads in two files of data, and uses these to perform queries on an in-memory graph database, in which the results are written to two large files over a period of hours.
EDIT part 2: Just to clarify, the problem is not that I want to use threads to increase the performance of an algorithm I have. But rather, I want to run many instances of my algorithm simultaneously. Therefore, I expect the algorithm would run at a similar speed when put in a thread as it would if I didn't use multi-threads at all.
EDIT part 3: Thanks for the suggestions all. I'm currently doing some unit tests (seeing which parts are slowing down) as some have suggested. As the program takes a while to load and execute, it is taking time to see any results from the tests and therefore I apologize for late responses. I think the main point I wanted to clarify is possible reasons why threading could cause a program to run slowly. From what I gather from the comments, it simply shouldn't be. I'll post when I can find a reasonable resolution, thanks again.
(FINAL) EDIT part 4: It turns out that the problem was not related to threading after all. Describing it would be too cumbersome at this point (including the use of compiler optimization levels), but the ideas posted here were very useful and appreciated.
struct sched_param sched_param = {
sched_get_priority_min(SCHED_BATCH)
};
int set_thread_to_core(const long tid, const int &core_id) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(core_id, &mask);
return pthread_setaffinity_np(tid, sizeof(mask), &mask);
}
void *worker_thread(void *arg) {
job_data *temp = (job_data *)arg; // get the information for the task passed in
...
long tid = pthread_self();
int set_thread = set_thread_to_core(tid, slot_id); // assume slot_id is 1 (it is in the test case I run)
sched_get_priority_min(SCHED_BATCH);
pthread_setschedparam(tid, SCHED_BATCH, &sched_param);
int success = process_job(...); // this is where all the work actually happens
pthread_exit(NULL);
}
int main(int argc, char* argv[]) {
...
pthread_t temp;
pthread_create(&temp, NULL, worker_thread, (void *) &jobs[i]); // jobs is a vector of a class type containing information for the task
...
return 0;
}
If you have plenty of CPU cores, and have plenty of work to do, it should not take longer to run in multithreaded than single threaded mode - the actual CPU time may be a fraction longer, but the "wall-clock time" should be shorter. I'm pretty sure that your code has some sort of bottleneck where one thread is blocking the other.
This is because of one or more of these things - I'll list them first, then go into detail below:
Some lock in a thread is blocking the second thread from running.
Sharing of data between threads (either true or "false" sharing)
Cache thrashing.
Competition for some external resource causing thrashing and/or blocking.
Badly designed code in general...
Some lock in a thread is blocking the second thread from running.
If there is a thread that takes a lock, and another thread wants to use the resource that is locked by this thread, it will have to wait. This obviously means the thread isn't doing anything useful. Locks should be kept to a minimum by only taking the lock for a short period. Using some code to identify if locks are holding your code, such as:
while (!tryLock(some_some_lock))
{
tried_locking_failed[lock_id][thread_id]++;
}
total_locks[some_lock]++;
Printing some stats of the locks would help to identify where the locking is contentious - or you can try the old trick of "Press break in the debugger and see where you are" - if a thread is constantly waiting for some lock, then that's what's preventing progress...
Sharing of data between threads (either true or "false" sharing)
If two threads use [and update the value of it frequently] the same variable, then the two threads will have to swap "I've updated this" messages, and the CPU's have to fetch the data from the other CPU before it can continue with it's use of the variable. Since "data" is shared on a "per cache-line" level, and a cache-line is typically 32-bytes, something like:
int var[NUM_THREADS];
...
var[thread_id]++;
would classify as something called "false sharing" - the ACTUAL data updated is unique per CPU, but since the data is within the same 32-byte region, the cores will still have updated the same are of memory.
Cache thrashing.
If two threads do a lot of memory reading and writing, the cache of the CPU may be constantly throwing away good data to fill it with data for the other thread. There are some techniques available to ensure that two threads don't run in "lockstep" on which part of cache the CPU uses. If the data is 2^n (power of two) and fairly large (a multiple of the cache-size), it's a good idea to "add an offset" for each thread - for example 1KB or 2KB. That way, when the second thread reads the same distance into the data region, it will not overwrite exactly the same area of cache that the first thread is currently using.
Competition for some external resource causing thrashing and/or blocking.
If two threads are reading or writing from/to the hard-disk, network card, or some other shared resource, this can lead to one thread blocking another thread, which in turn means lower performance. It is also possible that the code detects different threads and does some extra flushing to ensure that data is written in the correct order or similar, before starting work with the other thread.
It is also possible that there are locks internally in the code that deals with the resource (user-mode library or kernel mode drivers) that block when more than one thread is using the same resource.
Generally bad design
This is a "catchall" for "lots of other things that can be wrong". If the result from one calculation in one thread is needed to progress the other, obviously, not a lot of work can be done in that thread.
Too small a work-unit, so all the time is spent starting and stopping the thread, and not enough work is being done. Say for example that you dole out small numbers to be "calculate if this is a prime" to each thread, one number at a time, it will probably take a lot longer to give the number to the thread than the calculation of "is this actually a prime-number" - the solution is to give a set of numbers (perhaps 10, 20, 32, 64 or such) to each thread, and then report back the result for the whole lot in one go.
There are plenty of other "bad design". Without understanding your code it's quite hard to say for sure.
It is entirely possible that your problem is none of the ones I've mentioned here, but most likely it is one of these. Hopefully this asnwer is helpful to identify the cause.
Read CPU Caches and Why You Care to understand why a naive port of an algorithm from one thread to multiple threads will more often than not result in greatly reduced performance and negative scalability. Algorithms that are specififcally designed for parallelism take care of overactive interlocked operations, false sharing and other causes of cache pollution.
Here are a few things you might wanna look into.
1°) Do you enter any critical section (locks, semaphores, etc.) between your worker thread and your main thread? (this should be the case if your queries modify the graph). If so, that could be one of the sources of the multithreading overhead : threads competing for a lock usually degrades performances.
2°) You're using a 24 cores machines, which I assume would be NUMA (Non-Uniform Memory Access). Since you set the threads affinities during your tests, you should pay close attention to the memory topology of your hardware. Looking at the files in /sys/devices/system/cpu/cpuX/ can help you with that (beware that cpu0 and cpu1 aren't necessarily close together, and thus does not necessarily share memory). Threads heavily using memory should use local memory (allocated in the same NUMA node as the core they're executing on).
3°) You are heavily using disk I/O. Which kind of I/O is that? if every thread perform every time some synchronous I/O, you might wanna consider asynchronous system calls, so that the OS stays in charge of scheduling those requests to the disk.
4°) Some caches issues have already been mentionned in other answers. From experience, false sharing can hurt performances as much as you're observing. My last recommendation (which should have been my first) is to use a profiler tool, such as Linux Perf, or OProfile. With such performance degradation you're experiencing, the cause will certainly appear quite clearly.
The other answers have all addressed the general guidelines that can cause your symptoms. I will give my own, hopefully not excessively redundant version. Then I will talk a bit about how you can get to the bottom of the problem with everything discussed in mind.
In general, there's a few reasons you'd expect multiple threads to perform better:
A piece of work is dependent on some resources (disk, memory, cache, etc.) while other pieces can proceed independently of these resources or said workload.
You have multiple CPU cores that can process your workload in parallel.
The main reasons, enumerated above, you'd expect multiple threads to perform less well are all based on resource contention:
Disk contention: already explained in detail and can be a possible issue, especially if you are writing small buffers at a time instead of batching
CPU time contention if the threads are scheduled onto the same core: probably not your issue if you're setting affinity. However, you should still double check
Cache thrashing: similarly probably not your problem if you have affinity, though this can be very expensive if it is your problem.
Shared memory: again talked about in detail and doesn't seem to be your issue, but it wouldn't hurt to audit the code to check it out.
NUMA: again talked about. If your worker thread is pinned to a different core, you will want to check whether the work it needs to access is local to the main core.
Ok so far not much new. It can be any or none of the above. The question is, for your case, how can you detect where the extra time is coming from. There's a few strategies:
Audit the code and look for obvious areas. Don't spend too much time doing this as it's generally unfruitful if you wrote the program to begin with.
Refactor the single threaded code and the multi-threaded code to isolate one process() function, then profile at key checkpoints to try to account for the difference. Then narrow it down.
Refactor the resource access into batches, then profile each batch on both the control and the experiment to account for the difference. Not only will this tell you which areas (disk access vs memory access vs spending time in some tight loop) you need to focus your efforts on, doing this refactor might even improve your running time overall. Example:
First copy the graph structure to thread-local memory (perform a straight-up copy in the single-threaded case)
Then perform the query
Then setup an asynchronous write to disk
Try to find a minimally reproducible workload with the same symptoms. This means changing your algorithm to do a subset of what it already does.
Make sure there's no other noise in the system that could've caused the difference (if some other user is running a similar system on the work core).
My own intuition for your case:
Your graph structure is not NUMA friendly for your worker core.
The kernel can actually scheduled your worker thread off the affinity core. This can happen if you don't have isolcpu on for the core you're pinning to.
I can't tell you what's wrong with your program because you haven't shared enough of it to do a detailed analysis.
What I can tell you is if this was my problem the first thing I would try is to run two profiler sessions on my application, one on the single threaded version and another on the dual thread configuration. The profiler report should give you a pretty good idea of where the extra time is going. Note that you may not need to profile the entire application run, depending on the problem the time difference may become obvious after you profile for a few seconds or minutes.
As far as profiler choices for Linux you may want to consider oprofile or as a second choice gprof.
If you find you need help interpreting the profiler output feel free to add that to your question.
It can be a right pain in the rear to track down why threads aren't working as planned. One can do so analytically, or one can use tool to show what's going on. I've had very good mileage out of ftrace, Linux's clone of Solaris's dtrace (which in turn is based on what VxWorks, Greenhill's Integrity OS and Mercury Computer Systems Inc have been doing for a looong time.)
In particular I found this page very useful: http://www.omappedia.com/wiki/Installing_and_Using_Ftrace, particularly this and this section. Don't worry about it being an OMAP orientated website; I've used it on X86 Linuxes just fine (though you may have to build a kernel to include it). Also remember that the GTKWave viewer is primarily intended for looking at log traces from VHDL developments, which is why it looks 'odd'. It's just that someone realised that it would be a usable viewer for sched_switch data too, and that saved them writing one.
Using the sched_switch tracer you can see when (but not necessarily why) your threads are running, and that might be enough to give you a clue. The 'why' can be revealed by careful examination of some of the other tracers.
If you are getting slowdown from using 1 thread, it is likely due to overhead from using thread safe library functions, or from thread setup. Creating a thread for each job will cause significant overhead, but probably not as much as you refer to.
In other words, it is probably some overhead from some thread safe library function.
The best thing to do, is to profile your code to find out where time is spent. If it is in a library call, try to find a replacement library or implement it yourself. If the bottleneck is thread creation/destruction try reusing threads, for instance using OpenMP tasks or std::async in C++11.
Some libraries are really nasty wrt thread safe overhead. For instance, many rand() implementations use a global lock, rather than using thread local prgn's. Such locking overhead is much larger than generating a number, and is hard to track without a profiler.
The slowdown could also stem from small changes you have made, for instance declaring variables volatile, which generally should not be necessary.
I suspect you're running on a machine with one single-core processor. This problem is not parallelizable on that kind of system. Your code is constantly using the processor, which has a fixed number of cycles to offer to it. It actually runs more slowly because the additional thread adds expensive context switching to the problem.
The only kinds of problems that parallelize well on a single-processor machine are those that allow one path of execution to run while another is blocked waiting for I/O, and situations (such as keeping a responsive GUI) where allowing one thread to get some processor time is more important than executing your code as quickly as possible.
If you only want to run many independent instances of your algorithm can you just submit multiple jobs (with different parameters, can be handled by a single script) to your cluster? That would eliminate the need to profile and debug your multithreaded program. I don't have much experience with multithreaded programming but if you use MPI or OpenMP then you'd have to write less code for the book keeping too. For example, if some common initialization routine is needed and the processes can run independently thereafter you can just do that by initializing in one thread and doing a broadcast. No need for maintaining locks and such.

C++ Boost Multithread is slower than single thread because of CPU type?

I had posted some boost multithreads before. This time I just curious and disappointed because I thought multithreads suppose to be faster than single one.
Two threads are FILE I/O read/parse the CSV data. When I used multithreads, it took about 40 seconds average per machine PENTIUM D CPU from DELL DESKTOP OPTILEX 745.
With single thread, it took about 8-10 seconds average same PC.
I had tried to use completely different parameters name from these two threads, the result is no different. If someone had been used c++ boost multi-threads for reading big data file and parsing before, I would love to hear your opinions. Thanks.
Andrew
Two threads are FILE I/O read/parse the CSV data.
If they're reading the same file with the same file handle, then they might be spending most of their time blocked waiting for the other thread to get done. If they're using different file handles to read the same file, they're forcing the disk to keep seeking back and forth, which isn't as efficient an operation as a straight sequential read.
Threading doesn't speed up big file reading and parsing. What it does is let you do something else entirely while the file is being read and parsed.
You've created an I/O bottleneck, which threading does not help with. Threading is intended for reducing CPU bottlenecks when the algorithm can be broken into independent threads of execution; algorithms that have a lot of dependency on previous output (file parsing is one case) generally don't thread well.
If you can split up the parsing problem and have each thread parse a different part of the file, you might get a little improvement, but probably not since the seeking will be wasting your time. If you can have one thread doing bulk reading and some preprocessing, then handing off chunks to a thread pool for the real heavy processing (is ther any?), then you might see some noticeable improvement over single threading.
This is all general and a bit stream-of-consciousness, but it's hard to do much more with what you're giving. I hope it helps.
Without seeing your code it's hard to say exactly what's going on, but in general, multiple threads don't necessarily get you better performance, and in fact can very often lead to obvious performance degradation.
In your situation, if you are having both threads read and parse, then they could be contending for I/O, and possibly the locks surrounding any shared read/write memory areas, both of which would introduce a slow-down where the single-threaded version would have no issue.
To do this properly, you would probably want a single thread reading from the file, and another thread parsing the data as it came in on a producer/consumer queue. This would minimize the lock contention (since it can be implemented with waiters only), and would ensure that you were acutally taking advantage of the parralellization available in your problem.
That being said, a single-threaded version might still be faster; it's often the case.

Multithreaded image processing in C++

I am working on a program which manipulates images of different sizes. Many of these manipulations read pixel data from an input and write to a separate output (e.g. blur). This is done on a per-pixel basis.
Such image mapulations are very stressful on the CPU. I would like to use multithreading to speed things up. How would I do this? I was thinking of creating one thread per row of pixels.
I have several requirements:
Executable size must be minimized. In other words, I can't use massive libraries. What's the most light-weight, portable threading library for C/C++?
Executable size must be minimized. I was thinking of having a function forEachRow(fp* ) which runs a thread for each row, or even a forEachPixel(fp* ) where fp operates on a single pixel in its own thread. Which is best?
Should I use normal functions or functors or functionoids or some lambda functions or ... something else?
Some operations use optimizations which require information from the previous pixel processed. This makes forEachRow favorable. Would using forEachPixel be better even considering this?
Would I need to lock my read-only and write-only arrays?
The input is only read from, but many operations require input from more than one pixel in the array.
The ouput is only written once per pixel.
Speed is also important (of course), but optimize executable size takes precedence.
Thanks.
More information on this topic for the curious: C++ Parallelization Libraries: OpenMP vs. Thread Building Blocks
Don't embark on threading lightly! The race conditions can be a major pain in the arse to figure out. Especially if you don't have a lot of experience with threads! (You've been warned: Here be dragons! Big hairy non-deterministic impossible-to-reliably-reproduce dragons!)
Do you know what deadlock is? How about Livelock?
That said...
As ckarmann and others have already suggested: Use a work-queue model. One thread per CPU core. Break the work up into N chunks. Make the chunks reasonably large, like many rows. As each thread becomes free, it snags the next work chunk off the queue.
In the simplest IDEAL version, you have N cores, N threads, and N subparts of the problem with each thread knowing from the start exactly what it's going to do.
But that doesn't usually happen in practice due to the overhead of starting/stopping threads. You really want the threads to already be spawned and waiting for action. (E.g. Through a semaphore.)
The work-queue model itself is quite powerful. It lets you parallelize things like quick-sort, which normally doesn't parallelize across N threads/cores gracefully.
More threads than cores? You're just wasting overhead. Each thread has overhead. Even at #threads=#cores, you will never achieve a perfect Nx speedup factor.
One thread per row would be very inefficient! One thread per pixel? I don't even want to think about it. (That per-pixel approach makes a lot more sense when playing with vectorized processor units like they had on the old Crays. But not with threads!)
Libraries? What's your platform? Under Unix/Linux/g++ I'd suggest pthreads & semaphores. (Pthreads is also available under windows with a microsoft compatibility layer. But, uhgg. I don't really trust it! Cygwin might be a better choice there.)
Under Unix/Linux, man:
* pthread_create, pthread_detach.
* pthread_mutexattr_init, pthread_mutexattr_settype, pthread_mutex_init,
* pthread_mutexattr_destroy, pthread_mutex_destroy, pthread_mutex_lock,
* pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_timedlock.
* sem_init, sem_destroy, sem_post, sem_wait, sem_trywait, sem_timedwait.
Some folks like pthreads' condition variables. But I always preferred POSIX 1003.1b semaphores. They handle the situation where you want to signal another thread BEFORE it starts waiting somewhat better. Or where another thread is signaled multiple times.
Oh, and do yourself a favor: Wrap your thread/mutex/semaphore pthread calls into a couple of C++ classes. That will simplify matters a lot!
Would I need to lock my read-only and write-only arrays?
It depends on your precise hardware & software. Usually read-only arrays can be freely shared between threads. But there are cases where that is not so.
Writing is much the same. Usually, as long as only one thread is writing to each particular memory spot, you are ok. But there are cases where that is not so!
Writing is more troublesome than reading as you can get into these weird fencepost situations. Memory is often written as words not bytes. When one thread writes part of the word, and another writes a different part, depending on the exact timing of which thread does what when (e.g. nondeterministic), you can get some very unpredictable results!
I'd play it safe: Give each thread its own copy of the read and write areas. After they are done, copy the data back. All under mutex, of course.
Unless you are talking about gigabytes of data, memory blits are very fast. That couple of microseconds of performance time just isn't worth the debugging nightmare.
If you were to share one common data area between threads using mutexes, the collision/waiting mutex inefficiencies would pile up and devastate your efficiency!
Look, clean data boundaries are the essence of good multi-threaded code. When your boundaries aren't clear, that's when you get into trouble.
Similarly, it's essential to keep everything on the boundary mutexed! And to keep the mutexed areas short!
Try to avoid locking more than one mutex at the same time. If you do lock more than one mutex, always lock them in the same order!
Where possible use ERROR-CHECKING or RECURSIVE mutexes. FAST mutexes are just asking for trouble, with very little actual (measured) speed gain.
If you get into a deadlock situation, run it in gdb, hit ctrl-c, visit each thread and backtrace. You can find the problem quite quickly that way. (Livelock is much harder!)
One final suggestion: Build it single-threaded, then start optimizing. On a single-core system, you may find yourself gaining more speed from things like foo[i++]=bar ==> *(foo++)=bar than from threading.
Addendum: What I said about keeping mutexed areas short up above? Consider two threads: (Given a global shared mutex object of a Mutex class.)
/*ThreadA:*/ while(1){ mutex.lock(); printf("a\n"); usleep(100000); mutex.unlock(); }
/*ThreadB:*/ while(1){ mutex.lock(); printf("b\n"); usleep(100000); mutex.unlock(); }
What will happen?
Under my version of Linux, one thread will run continuously and the other will starve. Very very rarely they will change places when a context swap occurs between mutex.unlock() and mutex.lock().
Addendum: In your case, this is unlikely to be an issue. But with other problems one may not know in advance how long a particular work-chunk will take to complete. Breaking a problem down into 100 parts (instead of 4 parts) and using a work-queue to split it up across 4 cores smooths out such discrepancies.
If one work-chunk takes 5 times longer to complete than another, well, it all evens out in the end. Though with too many chunks, the overhead of acquiring new work-chunks creates noticeable delays. It's a problem-specific balancing act.
If your compiler supports OpenMP (I know VC++ 8.0 and 9.0 do, as does gcc), it can make things like this much easier to do.
You don't just want to make a lot of threads - there's a point of diminishing returns where adding new threads slows things down as you start getting more and more context switches. At some point, using too many threads can actually make the parallel version slower than just using a linear algorithm. The optimal number of threads is a function of the number of cpus/cores available, and the percentage of time each thread spends blocked on things like I/O. Take a look at this article by Herb Sutter for some discussion on parallel performance gains.
OpenMP lets you easily adapt the number of threads created to the number of CPUs available. Using it (especially in data-processing cases) often involves simply putting in a few #pragma omps in existing code, and letting the compiler handle creating threads and synchronization.
In general - as long as data isn't changing, you won't have to lock read-only data. If you can be sure that each pixel slot will only be written once and you can guarantee that all the writing has been completed before you start reading from the result, you won't have to lock that either.
For OpenMP, there's no need to do anything special as far as functors / function objects. Write it whichever way makes the most sense to you. Here's an image-processing example from Intel (converts rgb to grayscale):
#pragma omp parallel for
for (i=0; i < numPixels; i++)
{
pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);
}
This automatically splits up into as many threads as you have CPUs, and assigns a section of the array to each thread.
I would recommend boost::thread and boost::gil (generic image libray). Because there are quite much templates involved, I'm not sure whether the code-size will still be acceptable for you. But it's part of boost, so it is probably worth a look.
As a bit of a left-field idea...
What systems are you running this on? Have you thought of using the GPU in your PCs?
Nvidia have the CUDA APIs for this sort of thing
I don't think you want to have one thread per row. There can be a lot of rows, and you will spend lot of memory/CPU resources just launching/destroying the threads and for the CPU to switch from one to the other. Moreover, if you have P processors with C core, you probably won't have a lot of gain with more than C*P threads.
I would advise you to use a defined number of client threads, for example N threads, and use the main thread of your application to distribute the rows to each thread, or they can simply get instruction from a "job queue". When a thread has finished with a row, it can check in this queue for another row to do.
As for libraries, you can use boost::thread, which is quite portable and not too heavyweight.
Can I ask which platform you're writing this for? I'm guessing that because executable size is an issue you're not targetting on a desktop machine. In which case does the platform have multiple cores or hyperthreaded? If not then adding threads to your application could have the opposite effect and slow it down...
To optimize simple image transformations, you are far better off using SIMD vector math than trying to multi-thread your program.
Your compiler doesn't support OpenMP. Another option is to use a library approach, both Intel's Threading Building Blocks and Microsoft Concurrency Runtime are available (VS 2010).
There is also a set of interfaces called the Parallel Pattern Library which are supported by both libraries and in these have a templated parallel_for library call.
so instead of:
#pragma omp parallel for
for (i=0; i < numPixels; i++)
{ ...}
you would write:
parallel_for(0,numPixels,1,ToGrayScale());
where ToGrayScale is a functor or pointer to function. (Note if your compiler supports lambda expressions which it likely doesn't you can inline the functor as a lambda expression).
parallel_for(0,numPixels,1,[&](int i)
{
pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);
});
-Rick
Check the Creating an Image-Processing Network walkthrough on MSDN, which explains how to use Parallel Patterns Library to compose a concurrent image processing pipeline.
I'd also suggest Boost.GIL, which generates highly efficient code. For simple multi-threaded example, check gil_threaded by Victor Bogado. The An image processing network using Dataflow.Signals and Boost.GIL explains an interestnig dataflow model too.
One thread per pixel row is insane, best have around n-1 to 2n threads (for n cpu's), and make each one loop fetching one jobunit (may be one row, or other kind of partition)
on unix-like, use pthreads it's simple and lightweight.
Maybe write your own tiny library which implements a few standard threading functions using #ifdef's for every platform? There really isn't much to it, and that would reduce the executable size way more than any library you could use.
Update: And for work distribution - split your image into pieces and give each thread a piece. So that when it's done with the piece, it's done. This way you avoid implementing job queues that will further increase your executable's size.
I think regardless of the threading model you choose (boost, pthread, native threads, etc). I think you should consider a thread pool as opposed to a thread per row. Threads in a thread pool are very cheap to "start" since they are already created as far as the OS is concerned, it's just a matter of giving it something to do.
Basically, you could have say 4 threads in your pool. Then in a serial fashion, for each pixel, tell the next thread in the thread pool to process the pixel. This way you are effectively processing no more than 4 pixels at a time. You could make the size of the pool based either on user preference or on the number of CPUs the system reports.
This is by far the simplest way IMHO to add threading to a SIMD task.
I think map/reduce framework will be the ideal thing to use in this situation. You can use Hadoop streaming to use your existing C++ application.
Just implement the map and reduce jobs.
As you said, you can use row-level maniputations as a map task and combine the row level manipulations to the final image in the reduce task.
Hope this is useful.
It is very possible, that bottleneck is not CPU but memory bandwidth, so multi-threading WON'T help a lot. Try to minimize memory access and work on limited memory blocks, so that more data can be cached. I had a similar problem a while ago and I decided to optimize my code to use SSE instructions. Speed increase was almost 4x per single thread!
You also could use libraries like IPP or the Cassandra Vision C++ API that are mostly much more optimized than you own code.
There's another option of using assembly for optimization. Now, one exciting project for dynamic code generation is softwire (which dates back awhile - here is the original project's site). It has been developed by Nick Capens and grew into now commercially available swiftshader. But the spin-off of the original softwire is still available on gna.org.
This could serve as an introduction to his solution.
Personally, I don't believe you can gain significant performance by utilizing multiple threads for your problem.