Skewed volumetric data with OpenGL glTexture3D with different texture dimensions - c++

I have a problem to figure out how to correctly use glTexImage3D when width, height and depth are different values.
I've thought that in order to avoid 3 new on triple pointers and then be very careful to delete everything, boost::multiarray could have been very useful, so I've used.
boost::multi_array<GLubyte, 3> texture3DVolume;
texture3DVolume.resize(boost::extents[textureSizeX][textureSizeY][textureSizeZ]);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(1, &(this->textureID));
glBindTexture(GL_TEXTURE_3D, this->textureID);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glEnable(GL_TEXTURE_3D);
glTexImage3D(GL_TEXTURE_3D, 0, GL_LUMINANCE, this->textureSizeX,this->textureSizeY, this->textureSizeZ, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, texture3DVolume.data());
int textureSizeX=512;
int textureSizeY=512
int textureSizeZ=511;
with 511 I get a skewed texture. The texture coordinates are made with a very simple shader, for every vertex (the vertices of a [-0.5,0.5]x[-0.5,0.5]x[-0.5,0.5] cube) I use:
// vertex shader...
texture_coordinate = (v.xyz+vec3(1.0))*0.5;
// then in the fragment shader
gl_FragColor = texture(my_color_texture, texture_coordinate);
but my result is skewed. I really don't know if I have a problem on how the data are laid out with boost::multiarray or what...
My result is the following:
As you see the spheres are skewed and this is because the width==height but they are !=depth. I would like to better understand if this is a problem of how the data are laid out and/or strides.
If I set depth=512 I get the correctly proportioned cube.

I've thought that in order to avoid 3 new on triple pointers and then be very careful to delete everything, boost::multiarray could have been very useful, so I've used.
Either is wrong. A 3 stage new-ed array is actually a tree. It's an array of pointers to arrays of pointers to values. What you want is a flat region of data. Don't bother with multidimensional arrays, because you don't know how those arrange the data internally.
Use a simple 1-dimensional array of length width * height * depth. Also make sure you set the right GL_UNPACK_ALIGNMENT, usually 1.

Related

OpenGL, render to texture with floating point color without clipping value

I am not really sure what the English name for what I am trying to do is, please tell me if you know.
In order to run some physically based lighting calculations. I need to write floating point data to a texture using one OpenGL shader, and read this data again in another OpenGL shader, but the data I want to store may be less than 0 or above 1.
To do this, I set up a render buffer to render to this texture as follows (This is C++):
//Set up the light map we will use for lighting calculation
glGenFramebuffers(1, &light_Framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, light_Framebuffer);
glBlendFunc(GL_SRC_ALPHA, GL_DST_ALPHA);//Needed for light blending (true additive)
glGenTextures(1, &light_texture);
glBindTexture(GL_TEXTURE_2D, light_texture);
//Initialize empty, and at the size of the internal screen
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_FLOAT, 0);
//No interpolation, I want pixelation
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//Now the light framebuffer renders to the texture we will use to calculate dynamic lighting
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, light_texture, 0);
GLenum DrawBuffers[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, DrawBuffers);//Color attachment 0 as before
Notice that I use type GL_FLOAT and not GL_UNSIGNED_BYTE, according to this discussion Floating point type texture should not be clipped between 0 and 1.
Now, just to test that this is true, I simply set the color somewhere outside this range in the fragment shader which creates this texture:
#version 400 core
void main()
{
gl_FragColor = vec4(2.0,-2.0,2.0,2.0);
}
After rendering to this texture, I send this texture to the program which should use it like any other texture:
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, light_texture );//This is the texture I rendered too
glUniform1i(surf_lightTex_ID , 1);//This is the ID in the main display program
Again, just to check that this is working I have replaced the fragment shader with one which tests that the colors have been saved.
#version 400 core
uniform sampler2D lightSampler;
void main()
{
color = vec4(0,0,0,1);
if (texture(lightSampler,fragment_pos_uv).r>1.0)
color.r=1;
if (texture(lightSampler,fragment_pos_uv).g<0.0)
color.g=1;
}
If everything worked, everything should turn yellow, but needless to say this only gives me a black screen. So I tried the following:
#version 400 core
uniform sampler2D lightSampler;
void main()
{
color = vec4(0,0,0,1);
if (texture(lightSampler,fragment_pos_uv).r==1.0)
color.r=1;
if (texture(lightSampler,fragment_pos_uv).g==0.0)
color.g=1;
}
And I got
The parts which are green are in shadow in the testing scene, nevermind them; the main point is that all the channels of light_texture get clipped to between 0 and 1, which they should not do. I am not sure if the data is saved correctly and only clipped when I read it, or if the data is clipped to 0 to 1 when saving.
So, my question is, is there some way to read and write to an OpenGL texture, such that the data stored may be above 1 or below 0.
Also, No can not fix the problem by using 32 bit integer per channel and by applying a Sigmoid function before saving and its inverse after reading the data, that would break alpha blending.
The type and format arguments glTexImage2D only specify the format of the source image data, but do not affect the internal format of the texture. You must use a specific internal format. e.g.: GL_RGBA32F:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);

QOpenGLWidget optimal texture buffer allocation

My question is possiibly not related with Qt and/or QOpenGLWidget itself, but rather with OpenGL buffers in general. Anyway, I'm trying to implement a crossplatform renderer of YUV video frames, which requires converting YUV to RGB and rendering the result on a widget afterwards.
So far, I succeeded in the following:
Found two proper shaders (1 fragment & 1 vertex) to improve YUV 2 RGB conversion (Our project supports only Qt 5.6 so far, no better way for me to do it)
Used QOpenGLWidget to obtain a properly-behaving widget
Did my best with QOpenGLTexture to make the drawing
Here is my very sketchy code, which displays video frames from a raw YUV file and most of the job is done by GPU. I would be happy if it were not for the trouble of buffer allocations. The point is, frames are received from some legacy code, which provides me with custom wrappers around something like unsigned char *data, that is why I have to copy it like this:
//-----------------------------------------
GLvoid* mBufYuv; // buffer somewhere
int mFrameSize;
//-------------------------
void OpenGLDisplay::DisplayVideoFrame(unsigned char *data, int frameWidth, int frameHeight)
{
impl->mVideoW = frameWidth;
impl->mVideoH = frameHeight;
memcpy(impl->mBufYuv, data, impl->mFrameSize);
update();
}
While testing the concept, frame and buffer sizes were hardcoded like:
// Called from the outside, assuming video frame height/width are constant
void OpenGLDisplay::InitDrawBuffer(unsigned bsize)
{
impl->mFrameSize = bsize;
impl->mBufYuv = new unsigned char[bsize];
}
Qt texture classes served well for the pupose, so...
// Create y, u, v texture objects respectively
impl->mTextureY = new QOpenGLTexture(QOpenGLTexture::Target2D);
impl->mTextureU = new QOpenGLTexture(QOpenGLTexture::Target2D);
impl->mTextureV = new QOpenGLTexture(QOpenGLTexture::Target2D);
impl->mTextureY->create();
impl->mTextureU->create();
impl->mTextureV->create();
// Get the texture index value of the return y component
impl->id_y = impl->mTextureY->textureId();
// Get the texture index value of the returned u component
impl->id_u = impl->mTextureU->textureId();
// Get the texture index value of the returned v component
impl->id_v = impl->mTextureV->textureId();
And after all the rendering itself looks like:
void OpenGLDisplay::paintGL()
{
// Load y data texture
// Activate the texture unit GL_TEXTURE0
glActiveTexture(GL_TEXTURE0);
// Use the texture generated from y to generate texture
glBindTexture(GL_TEXTURE_2D, impl->id_y);
// Use the memory mBufYuv data to create a real y data texture
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, impl->mVideoW, impl->mVideoH, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, impl->mBufYuv);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Load u data texture
glActiveTexture(GL_TEXTURE1);//Activate texture unit GL_TEXTURE1
glBindTexture(GL_TEXTURE_2D, impl->id_u);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, impl->mVideoW/2, impl->mVideoH/2
, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (char*)impl->mBufYuv + impl->mVideoW * impl->mVideoH);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Load v data texture
glActiveTexture(GL_TEXTURE2);//Activate texture unit GL_TEXTURE2
glBindTexture(GL_TEXTURE_2D, impl->id_v);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, impl->mVideoW / 2, impl->mVideoH / 2
, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (char*)impl->mBufYuv + impl->mVideoW * impl->mVideoH * 5/4);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Specify y texture to use the new value can only use 0, 1, 2, etc. to represent
// the index of the texture unit, this is the place where opengl is not humanized
//0 corresponds to the texture unit GL_TEXTURE0 1 corresponds to the
// texture unit GL_TEXTURE1 2 corresponds to the texture unit GL_TEXTURE2
glUniform1i(impl->textureUniformY, 0);
// Specify the u texture to use the new value
glUniform1i(impl->textureUniformU, 1);
// Specify v texture to use the new value
glUniform1i(impl->textureUniformV, 2);
// Use the vertex array way to draw graphics
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
As I've mentioned above, it works fine, but it's only a demo sketch, the goal was to implement generic video renderer, which means aspect ratio, resolution and frame fize may change dynamically; thus, the buffer (GLvoid* mBufYuv; in the code above) has to be reallocated and, even worse, I'll have to memcpy data to it 25 times per second. Looks definitely like something, that wouldn't work way too fast with Full HD video, for example.
Of course, several trivial optimizations are possible, leading to reduction of data copying, but Google told me that there are different ways to allocate buffers in OpenGL directly, those PBO/PUBO things and QOpenGLBuffer at least.
Now, there is a problem -- I'm quite confused with all those many ways to handle textures and don't know neither the best/optimal, nor the one best fitting my case.
Any piece of advice is appreciated.

Using GL_TEXTURE_2D_ARRAY as a draw target

I've created an array of 2D textures and initialized it with glTexImage3D. Then I attached separate textures to color attachments with glFramebufferTextureLayer, Framebuffer creation doesn't throw an error and everything seems fine until the draw call happens.
When shader tries to access color attachment the following message appears:
OpenGL Debug Output message : Source : API; Type : ERROR; Severity : HIGH;
GL_INVALID_OPERATION error generated. <location> is invalid.
Shaders are accessing layers of an array with location qualifier:
layout (location = 0) out vec3 WorldPosOut;
layout (location = 1) out vec3 DiffuseOut;
layout (location = 2) out vec3 NormalOut;
layout (location = 3) out vec3 TexCoordOut;
Documentation says that glFramebufferTextureLayer works just like glFramebufferTexture2D, except the layer parameter, so can I use location qualifiers with texture array, or some other way exsists?
I finally managed to bind texture array as a color buffer. It is hard to find useful information on the topic, so here is an instruction:
№1. You need to create a texture array and initialize it properly:
glGenTextures(1, &arrayBuffer);
glBindTexture(GL_TEXTURE_2D_ARRAY, arrayBuffer);
// we should initialize layers for each mipmap level
for (int mip = 0; mip < mipLevelCount; ++mip) {
glTexImage3D(GL_TEXTURE_2D_ARRAY, mip, internalFormat, ImageWidth, ImageHeight,
layerCount, 0, GL_RGB, GL_UNSIGNED_INT, 0);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, textureFilter);
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, textureFilter);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, mipLevelCount - 1);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
Keep in mind, that setting texture parameters like MIN/MAG filters and BASE/MAX mipmap level is important. OpenGL sets maximum mipmap level to 1000 and if you didn't provide the whole thousand of mipmaps you will get an incomplete texture, you won't get anything except the black screen.
№2. Don't forget to bind arrayBuffer to the GL_TEXTURE_2D_ARRAY target before attaching the layers to the color buffers:
glBindTexture(GL_TEXTURE_2D_ARRAY, arrayBuffer);
for (unsigned int i = 0; i < NUMBER_OF_TEXTURES; i++) {
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, arrayBuffer, 0, i);
}
Don't forget to set the GL_TEXTURE_2D_ARRAY target to 0 with glBindTexture or it can get modified outside of the initialization code.
№3. Since the internalFormat of each image in the array must stay the same, I recommend to create a separate texture for the depth/stencil buffer:
glGenTextures(1, &m_depthTexture);
...
glBindTexture(GL_TEXTURE_2D, m_depthTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH32F_STENCIL8, WindowWidth,
WindowHeight, 0, GL_DEPTH_STENCIL, GL_FLOAT_32_UNSIGNED_INT_24_8_REV, NULL);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_TEXTURE_2D, m_depthTexture, 0);
Don't forget to set up index for each color buffer:
for (int i = 0; i < GBUFFER_NUM_TEXTURES; ++i)
DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i; //Sets appropriate indices for each color buffer
glDrawBuffers(ARRAY_SIZE_IN_ELEMENTS(DrawBuffers), DrawBuffers);
In shaders you can use layout(location = n) qualifiers to specify the color buffer.
OpenGL 3 Note (NVIDIA): glFramebufferTextureLayer is available since OpenGL 3.2 (Core profile), but on NVIDIA GPU's drivers will force OpenGL version to 4.5, so you should specify the exact version of OpenGL if you care about compatibility. I use SDL2 in my application, so I use the following calls to set OpenGL version:
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
Results of the deferred shading:

DevIL image not rendering correctly

I am using OpenGL, I can load tga files properly, but for some reason when i render jpg files, i do not see them correctly.
This is what the image is supposed to look like--
And this is what it looks like.. why is it stretched? is it because of the coordinates?
Here is the code i am using for drawing.
void Renderer::DrawJpg(GLuint tex, int xi, int yq, int width, int height) const
{
glBindTexture(GL_TEXTURE_2D, tex);
glBegin(GL_QUADS);
glTexCoord2i(0, 0); glVertex2i(0+xi, 0+xi);
glTexCoord2i(0, 1); glVertex2i(0+xi, height+xi);
glTexCoord2i(1, 1); glVertex2i(width+xi, height+xi);
glTexCoord2i(1, 0); glVertex2i(width+xi, 0+xi);
glEnd();
}
This is how i am loading the image...
imagename=s;
ILboolean success;
ilInit();
ilGenImages(1, &id);
ilBindImage(id);
success = ilLoadImage((const ILstring)imagename.c_str());
if (success)
{
success = ilConvertImage(IL_RGB, IL_UNSIGNED_BYTE); /* Convert every colour component into
unsigned byte. If your image contains alpha channel you can replace IL_RGB with IL_RGBA */
if (!success)
{
printf("image conversion failed.");
}
glGenTextures(1, &id);
glBindTexture(GL_TEXTURE_2D, id);
width = ilGetInteger(IL_IMAGE_WIDTH);
height = ilGetInteger(IL_IMAGE_HEIGHT);
glTexImage2D(GL_TEXTURE_2D, 0, ilGetInteger(IL_IMAGE_BPP), ilGetInteger(IL_IMAGE_WIDTH),
ilGetInteger(IL_IMAGE_HEIGHT), 0, ilGetInteger(IL_IMAGE_FORMAT), GL_UNSIGNED_BYTE,
ilGetData());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Linear Filtered
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Linear Filtered
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
I probably should mention this, but some images did get rendered properly, I thought it was because width != height. But that is not the case, images with width != height also get loaded fine.
But for other images i still get this problem.
You probably need to call
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
before uploading the texture data with glTexImage2D.
From the reference pages:
GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row
in memory. The allowable values are 1 (byte-alignment), 2 (rows
aligned to even-numbered bytes), 4 (word-alignment), and 8 (rows start
on double-word boundaries).
The default value for the alignment is 4 and your image loading library probably returns pixel data with byte-aligned rows, which explains why some of your images look OK (when the width is a multiple of four).
Always try to have the images width and height of the power of two because some GPU support textures only in NPOT resolution. (for example 128x128, 512x512 but not 123x533, 128x532)
And i think that here instead of GL_REPEAT you should use GL_CLAMP_TO_EDGE :)
GL_REPEAT is used when your texture coordinates are > 1.0f, CLAMP_TO_EDGE too but guarantees the image will fill the polygon without unwanted lines on edges. (it's blocking your linear filtering on edges)
Remember to try out code where floats are used (sample from comment) :)
Here is good explanation http://open.gl/textures :)

Setting GL_TEXTURE_MAX_ANISOTROPY_EXT causes crash on next frame

I am using OpenGL 3.3 and deferred shading.
When I am setting anisotropy values for my samplers between frames, the next frame causes a crash at the next frame at glClear.
Here's how I set my anisotropy values:
bool OpenGLRenderer::SetAnisotropicFiltering(const float newAnisoLevel)
{
if (newAnisoLevel < 0.0f || newAnisoLevel > GetMaxAnisotropicFiltering())
return false;
mCurrentAnisotropy = newAnisoLevel;
// the sampler used for geometry pass
GLCALL(glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy));
// the sampler used in shading pass
GLCALL(glSamplerParameterf(mGBuffer.mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy));
return true;
}
The geometry pass has the following diffuse / normal textures and are setup like this:
GLCALL(glUseProgram(mGeometryProgram.mProgramHandle));
GLCALL(glGenSamplers(1, &mTextureSampler));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT));
GLCALL(glUniform1i(glGetUniformLocation(mGeometryProgram.mProgramHandle, "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE));
GLCALL(glUniform1i(glGetUniformLocation(mGeometryProgram.mProgramHandle, "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL));
GLCALL(glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler));
GLCALL(glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler));
GLCALL(glUseProgram(0));
The shading pass has the following textures for lighting calculations:
GLCALL(glUseProgram(shadingProgramID));
GLCALL(glGenSamplers(1, &mTextureSampler));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLCALL(glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLCALL(glUniform1i(glGetUniformLocation(shadingProgramID, "unifPositionTexture"), GBuffer::GBUFFER_TEXTURE_POSITION));
GLCALL(glUniform1i(glGetUniformLocation(shadingProgramID, "unifNormalTexture"), GBuffer::GBUFFER_TEXTURE_NORMAL));
GLCALL(glUniform1i(glGetUniformLocation(shadingProgramID, "unifDiffuseTexture"), GBuffer::GBUFFER_TEXTURE_DIFFUSE));
GLCALL(glBindSampler(GBuffer::GBUFFER_TEXTURE_POSITION, mTextureSampler));
GLCALL(glBindSampler(GBuffer::GBUFFER_TEXTURE_NORMAL, mTextureSampler));
GLCALL(glBindSampler(GBuffer::GBUFFER_TEXTURE_DIFFUSE, mTextureSampler));
GLCALL(glUseProgram(0));
And then on the next frame it crashes immediately on the glClear function when doing the geometry pass
void OpenGLRenderer::GeometryPass(const RenderQueue& renderQueue)
{
GLCALL(glUseProgram(mGeometryProgram.mProgramHandle));
GLCALL(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mGBuffer.mFramebuffer));
GLCALL(glDepthMask(GL_TRUE));
GLCALL(glEnable(GL_DEPTH_TEST));
// clear GBuffer fbo
GLCALL(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); // <----- crash!
// both containers are assumed to be sorted by MeshID ascending
auto meshIterator = mMeshes.begin();
for (const Renderable& renderable : renderQueue)
{
// lots of draw code.....
}
GLCALL(glDisable(GL_DEPTH_TEST));
GLCALL(glDepthMask(GL_FALSE));
GLCALL(glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0));
GLCALL(glUseProgram(0));
}
What could be the issue here?
Your range validation is wrong. The minimum acceptable value for anisotropy is 1.0f. A value of 1.0f (the default) means off (isotropic).
To be honest, rather than returning false and doing nothing else when you set anisotropy above or below the acceptable range, I would consider clamping the values to [1.0, MAX]. You can always find out later on that your request was unacceptable by checking the value of mCurrentAnisotropy after the function returns. This is useful if you store the anisotropy level as an option in a configuration file and the hardware changes. Though 16.0 is almost universally the maximum these days, some really old hardware only supports 8.0. You can still return false, report a warning or whatever, but I personally always interpret a request for a level of anisotropy too high for the implementation to support to mean: "I want the highest anisotropy possible."