I have trouble in opengl. I want to rotate my vehicle while moving forward/backward. Here's a picture which shows exactly my problem. Effects of current code are in blue - after moving the car rotates over the starting location and not the current one. I want to have situation in red - in which my vehicle will rotate over current position and later move forward/backward correctly.
My current code:
lxr=sin(angle);
lzr=cos(angle);
xr+=speed*lxr;
zr+=speed*lzr;
totalangle+=angle
glRotatef(totalangle,0.0,1.0,0.0);
glTranslatef(0.0,0.0,xr);
drawVehicle();
You can try to call translate before rotate. glRotatef rotate view matrix and it affects on current view and also matrix glTranslatef.
From the image, I thought you are translating and then rotating, but looking at the code, I see it is not true.
So, it is obvious that you are in the drawVehicle(); function not rendering your object in the center (0,0). You need to render it in the center, rotate and then translate.
Also, your translation is bogus. You are just translating in z direction, not in y :
glTranslatef(0.0,0.0,xr);
You need to do something like this :
glRotatef(totalangle,0.0,1.0,0.0);
glTranslatef(0.0,yOffset,0.0);
drawVehicle(); // render around [0,0]
you have to move the origin of the coordinate system too, in order to rotate your car as you wish.
Related
I have a problem, I need to draw a 3D object in such a way that I can move it along the screen plane and rotate so that the angle of view is as if I always looked at it fixedly from one point.
I use the GLM library for working with matrices. I tried to use glm::ortho, but I can not operate with the z coordinate, respectively, the model does not rotate. if i use glm::perspective, then the model looks like i need only in the center of the screen. I mean, for example, the character model is depicted in the window of a game. How would you not move the window at any point on the screen, you look at the model directly, and not as if looking out of the corner.
I apologize, I do not know how to explain it in normal language, I hope it is understandable.
Since I gogled for it without finding anything interesting, I would like to ask you for some suggestions regarding if it is better to scale/translate the render itself keeping the camera position fixed or maybe moving closer/further or rotate the camera keeping the render position fixed?
I need a zooming out/in, rotation in all the 3 axes and also this kind of rotation
http://www.reknow.de/downloads/opengl/video.mp4
that is, if I first translate my render and then I apply a rotation, this rotation should consider the center always the windows center, and not the translated one
I need a zooming out/in, rotation in all the 3 axes and also this kind of rotation
What you mean is probably not "zooming" but "panning". And in OpenGL you place the "camera" by moving the scene around, because there is no camera.
Zooming is a change in the focal length, and would be implemented by changeing the FOV of the perspective.
What I'm trying to do is draw a gun for a fps game I am making but it always seems to be off. I know I am supposed to draw it last with depth test disabled. But i just can't seem to get it to follow along with the view of the camera. Assume we are just drawing a triangle to represent the gun right now, with the base being at the players end. I have access to player position and the point where he is looking (used for gluLookAt) and I also have access pitch and yaw. And ideas on what to do?
I'm not an expert but I would try something akin to the following for drawing the gun:
#If not already in modelview mode
glMatrixMode(GL_MODELVIEW)
#Push the current modelview matrix onto the stack, leaving us working with a copy
glPushMatrix()
#Translate forward to where we want to draw the gun
glTranslatef(0,0,dist)
#Draw the gun starting from this position, translation may need to account for offset so that it is centered correctly
gun.draw()
#Get rid of our modified modelview matrix and return to the original so that the camera is in the correct positon
glPopMatrix()
The best guide I have found for understanding OpenGL geometry is http://www.songho.ca/opengl/gl_transform.html
Good luck! :)
I was trying to understand lesson 9 from NEHEs tutorial, which is about bitmaps being moved in 3d space.
the most interesting thing here is to move 2d bitmap texture on a simple quad through 3d space and keep it facing the screen (viewer) all the time. So the bitmap looks 3d but is 2d facing the viewer all the time no matter where it is in the 3d space.
In lesson 9 a list of stars is generated moving in a circle, which looks really nice. To avoid seeing the star from its side the coder is doing some tricky coding to keep the star facing the viewer all the time.
the code for this is as follows: ( the following code is called for each star in a loop)
glLoadIdentity();
glTranslatef(0.0f,0.0f,zoom);
glRotatef(tilt,1.0f,0.0f,0.0f);
glRotatef(star[loop].angle,0.0f,1.0f,0.0f);
glTranslatef(star[loop].dist,0.0f,0.0f);
glRotatef(-star[loop].angle,0.0f,1.0f,0.0f);
glRotatef(-tilt,1.0f,0.0f,0.0f);
After the lines above, the drawing of the star begins. If you check the last two lines, you see that the transformations from line 3 and 4 are just cancelled (like undo). These two lines at the end give us the possibility to get the star facing the viewer all the time. But i dont know why this is working.
And i think this comes from my misunderstanding of how OpenGL really does the transformations.
For me the last two lines are just like undoing what is done before, which for me, doesnt make sense. But its working.
So when i call glTranslatef, i know that the current matrix of the view gets multiplied with the translation values provided with glTranslatef.
In other words "glTranslatef(0.0f,0.0f,zoom);" would move the place where im going to draw my stars into the scene if zoom is negative. OK.
but WHAT exactly is moved here? Is the viewer moved "away" or is there some sort of object coordinate system which gets moved into scene with glTranslatef? Whats happening here?
Then glRotatef, what is rotated here? Again a coordinate system, the viewer itself?
In a real world. I would place the star somewhere in the 3d space, then rotate it in the world space around my worlds origin, then do the moving as the star is moving to the origin and starts at the edge again, then i would do a rotate for the star itself so its facing to the viewer. And i guess this is done here. But how do i rotate first around the worlds origin, then around the star itself? for me it looks like opengl is switching between a world coord system and a object coord system which doesnt really happen as you see.
I dont need to add the rest of the code, because its pretty standard. Simple GL initializing for 3d drawings, the rotating stuff, and then the simple drawing of QUADS with the star texture using blending. Thats it.
Could somebody explain what im misunderstanding here?
Another way of thinking about the gl matrix stack is to walk up it, backwards, from your draw call. In your case, since your draw is the last line, let's step up the code:
1) First, the star is rotated by -tilt around the X axis, with respect to the origin.
2) The star is rotated by -star[loop].angle around the Y axis, with respect to the origin.
3) The star is moved by star[loop].dist down the X axis.
4) The star is rotated by star[loop].angle around the Y axis, with respect to the origin. Since the star is not at the origin any more due to step 3, this rotation both moves the center of the star, AND rotates it locally.
5) The star is rotated by tilt around the X axis, with respect to the origin. (Same note as 4)
6) The star is moved down the Z axis by zoom units.
The trick here is difficult to type in text, but try and picture the sequence of moves. While steps 2 and 4 may seem like they invert each other, the move in between them changes the nature of the rotation. The key phrase is that the rotations are defined around the Origin. Moving the star changes the effect of the rotation.
This leads to a typical use of stacking matrices when you want to rotate something in-place. First you move it to the origin, then you rotate it, then you move it back. What you have here is pretty much the same concept.
I find that using two hands to visualize matrices is useful. Keep one hand to represent the origin, and the second (usually the right, if you're in a right-handed coordinate system like OpenGL), represents the object. I splay my fingers like the XYZ axes to I can visualize the rotation locally as well as around the origin. Starting like this, the sequence of rotations around the origin, and linear moves, should be easier to picture.
The second question you asked pertains to how the camera matrix behaves in a typical OpenGL setup. First, understand the concept of screen-space coordinates (similarly, device-coordinates). This is the space that is actually displayed. X and Y are the vectors of your screen, and Z is depth. The space is usually in the range -1 to 1. Moving an object down Z effectively moves the object away.
The Camera (or Perspective Matrix) is typically responsible for converting 'World' space into this screen space. This matrix defines the 'viewer', but in the end it is just another matrix. The matrix is always applied 'last', so if you are reading the transforms upward as I described before, the camera is usually at the very top, just as you are seeing. In this case you could think of that last transform (translate by zoom) as a very simple camera matrix, that moves the camera back by zoom units.
Good luck. :)
The glTranslatef in the middle is affected by the rotation : it moves the star along axis x' to distance dist, and axis x' is at that time rotated by ( tilt + angle ) compared to the original x axis.
In opengl you have object coordinates which are multiplied by a (a stack of) projection matrix. So you are moving the objects. If you want to "move a camera" you have to mutiply by the inverse matrix of the camera position and axis :
ProjectedCoords = CameraMatrix^-1 . ObjectMatrix . ObjectCoord
I also found this very confusing but I just played around with some of the NeHe code to get a better understanding of glTranslatef() and glRotatef().
My current understanding is that glRotatef() actually rotates the coordinate system, such that glRotatef(90.0f, 0.0f, 0.0f, 1.0f) will cause the x-axis to be where the y-axis was previously. After this rotation, glTranslatef(1.0f, 0.0f, 0.0f) will move an object upwards on the screen.
Thus, glTranslatef() moves objects in accordance with the current rotation of the coordinate system. Therefore, the order of glTranslatef and glRotatef are important in tutorial 9.
In technical terms my description might not be perfect, but it works for me.
Using OpenGL I'm attempting to draw a primitive map of my campus.
Can anyone explain to me how panning, zooming and rotating is usually implemented?
For example, with panning and zooming, is that simply me adjusting my viewport? So I plot and draw all my lines that compose my map, and then as the user clicks and drags it adjusts my viewport?
For panning, does it shift the x/y values of my viewport and for zooming does it increase/decrease my viewport by some amount? What about for rotation?
For rotation, do I have to do affine transforms for each polyline that represents my campus map? Won't this be expensive to do on the fly on a decent sized map?
Or, is the viewport left the same and panning/zooming/rotation is done in some otherway?
For example, if you go to this link you'll see him describe panning and zooming exactly how I have above, by modifying the viewport.
Is this not correct?
They're achieved by applying a series of glTranslate, glRotate commands (that represent camera position and orientation) before drawing the scene. (technically, you're rotating the whole scene!)
There are utility functions like gluLookAt which sorta abstract some details about this.
To simplyify things, assume you have two vectors representing your camera: position and direction.
gluLookAt takes the position, destination, and up vector.
If you implement a vector class, destinaion = position + direction should give you a destination point.
Again to make things simple, you can assume the up vector to always be (0,1,0)
Then, before rendering anything in your scene, load the identity matrix and call gluLookAt
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt( source.x, source.y, source.z, destination.x, destination.y, destination.z, 0, 1, 0 );
Then start drawing your objects
You can let the user span by changing the position slightly to the right or to the left. Rotation is a bit more complicated as you have to rotate the direction vector. Assuming that what you're rotating is the camera, not some object in the scene.
One problem is, if you only have a direction vector "forward" how do you move it? where is the right and left?
My approach in this case is to just take the cross product of "direction" and (0,1,0).
Now you can move the camera to the left and to the right using something like:
position = position + right * amount; //amount < 0 moves to the left
You can move forward using the "direction vector", but IMO it's better to restrict movement to a horizontal plane, so get the forward vector the same way we got the right vector:
forward = cross( up, right )
To be honest, this is somewhat of a hackish approach.
The proper approach is to use a more "sophisticated" data structure to represent the "orientation" of the camera, not just the forward direction. However, since you're just starting out, it's good to take things one step at a time.
All of these "actions" can be achieved using model-view matrix transformation functions. You should read about glTranslatef (panning), glScalef (zoom), glRotatef (rotation). You also should need to read some basic tutorial about OpenGL, you might find this link useful.
Generally there are three steps that are applied whenever you reference any point in 3d space within opengl.
Given a Local point
Local -> World Transform
World -> Camera Transform
Camera -> Screen Transform (usually a projection. depends on if you're using perspective or orthogonal)
Each of these transforms is taking your 3d point, and multiplying by a matrix.
When you are rotating the camera, it is generally changing the world -> camera transform by multiplying the transform matrix by your rotation/pan/zoom affine transformation. Since all of your points are re-rendered each frame, the new matrix gets applied to your points, and it gives the appearance of a rotation.