Related
If I'm given a struct variable like:
struct Quaternion {
float x;
float y;
float z;
float w;
}
But I need to call a function expecting a
struct Vector {
float x;
float y;
float z;
float w;
}
Is there a way in C++ to cast a variable of type Quaternion to type Vector?
You can write a converting constructor:
struct Quaternion {
float x;
float y;
float z;
float w;
explicit Quaternion(const Vector& vec) : x(vec.x),y(vec.y),z(vec.z),w(vec.w) {}
}
And similar for the other way.
In case you are looking for a way that does not require to copy the members, then I am not aware of a portable way to do that, and members having the same name does not help for that.
On the other hand, having same named members helps to write generic code like this:
template <typename T>
void foo(const T& t) {
std::cout << t.x << t.y << t.z << t.w;
}
You can call this with either a Quaternion or a Vector without needing to convert between them.
In case you cannot modify any existing code (not the structs nor the function you want to call), you can write a simple function to do the conversion (as suggested by ShadowRanger in a comment):
Vector Quat2Vect(const Quaternion& q) {
return {q.x,q.y,q.z,q.w};
}
If, as you said in a comment, you can't change to the two types, you could possibly "solve" the problem by using yet another type:
struct MyVector {
float x;
float y;
float z;
float w;
operator Quaternion() { return Quaternion{x, y, z, w}; }
operator Vector() { return Vector{x, y, z, w}; }
};
My advice: It's probably better to pick one or the other as the main type in your code and use a separate conversion function.
What I think you're hoping for, given that you specifically asked about "cast", is to use a cast to go from one to the other.
Vector v = {1, 2, 3, 4};
Quaternion* q = reinterpret_cast<Quaternion*>(&v);
do_something_with_quart(*q); // Could modify v if pass by reference
Strictly speaking, this is undefined behaviour, although it is overwhelmingly likely to work in practice, but I still wouldn't recommend it. If you're really desparate to do something cast like, it's legal to use memcpy so long as the member variables are the same type in the same order (and there are no virtual methods):
Vector v = {1, 2, 3, 4};
Quaternion q;
memcpy(&q, &v, sizeof(v));
do_something_with_quart(q);
memcpy(&v, &q, sizeof(v)); // Copy back any change
Although the language and documentation describes memcpy as a copying function, it has certain magical properties that often in practice make it identical to the previous block of code. But I would also strongly advise against this. I mean, yuck! Just look at it!!
This is just an addition to largest_prime_is_463035818's answer to point out that the members don't have to have the same name in order to write a generic function to use them. So long as there are an equal number of members, all are publicly accessible, and they have the same types, you can decompose objects with a structured-binding and use that.
template <typename T>
void foo(const T& t) {
auto const & [x, y, z, w] = t;
std::cout << x << y << z << w;
}
I have a class Particle:
class Particle {
private:
float x, y, z;
// ...
public:
// ...
float* getPos() {
float p[3] = {x, y, z};
return p;
}
// ...
};
I would call this method like:
Particle a = Particle();
// ...
float* pos = a.getPos();
And then reference the position elements with pos[0] through pos[2].
g++ spouts warning message as stated in the title. But the functionality is exactly how I want it: returning an array. Why does the warning exist and is there a "proper" way to do it?
You can't return a C-array like that, return std::array instead:
std::array<float, 3> getPos() {
std::array<float, 3> p = {x, y, z};
return p;
}
You'll need to include <array> for that.
Personally, I'd skip std::array/std::vector here, because in your particular case, the position of each value imposes independent meaning. In general, sequence types have ordering, tuples have structure; if the element count is fixed (and often heterogeneous) and sorting (or otherwise reordering the values) is intrinsically nonsensical (e.g. in the case of a coordinate, swapping the x and y values changes the meaning), then a tuple makes more sense.
In this case, you could just declare:
std::tuple<float, float, float> getPos() {
// C++17 or higher allows list initialization
return {x, y, z};
// Pre-C++17 you use the std::make_tuple helper
return std::make_tuple(x, y, z);
}
The advantage here is that you can then unpack the result in the caller easily, either with std::tie:
float x, y, z;
std::tie(x, y, z) = a.getPos();
or on C++17 or higher with structured bindings, it's even nicer, since you can declare and initialize the variables with auto, rather than declaring with explicit types, then reassigning with tie:
auto [x, y, z] = a.getPos();
You can store the tuple itself and use std::get if you prefer, but unpacking to useful names rather than obscure std::get indices usually makes for much cleaner code.
You're not returning an array. It's impossible to return an array in C++. You're returning a pointer to an array which no longer exists. Hence the warning.
You could make the array a part of your class and return a pointer to that. In general I wouldn't call that good design
class Particle {
private:
float pos[3];
// ...
public:
// ...
float* getPos() {
return pos;
}
// ...
};
You could return a vector<float> instead. You could return an array<float,3> instead. You could ask yourself why you need this.
p[3] will be destroyed when it goes out of scope so you shouldn't return a pointer to it.
Either return a std::array<float, 3> by value or consider making a class for positions too, and return a Position object, or a reference to it. Example:
struct Position {
float x, y, z;
};
class Particle {
private:
Position m_pos;
// ...
public:
// ...
Position const& getPos() const { return m_pos; }
// ...
};
I'd suggest that you're function is indicative of poor design. Provide getter methods an allow the user of your class to access member variables:
class Particle {
private:
float x, y, z;
public:
float GetX() const { return x; }
float GetY() const { return y; }
float GetZ() const { return z; }
};
Given const Particle a this will let you initialize an array as follows: const float pos[] = { a.GetX(), a.GetY(), a.GetZ() }
Creating a Particle method to allow the user to populate a float[] will encourage the user toward one of the following bad practices:
float* Particle::GetPos() const { return new[3]{ x, y, z }; } creates dynamic memory without clearly informing the caller that the memory needs to be released
array<float, 3U> Particle::GetPos() const { return { x, y, z }; } requires the allocation and creation of a temporary to populate a float[]
void Particle::GetPos(float* param) const { param[0] = x; param[1] = y; param[2] = z; } misses the opportunity for constant arrays and incurs potential caller misuse, as it's not clear that param must have room for at least 3 floats
Is there an equivalent to Delphi's absolute in C++? I want to do the following:
// Structure A
struct A
{
double X;
double Y;
double Z;
}
// Structure B
struct B : A
{
double U absolute X;
double V absolute Y;
double W absolute Z;
}
I can use double & U = X in structure B but this will generate an additional pointer and change the size of the structure. Union is - I think - also not a solution, because structure B inherits structure A.
What I really want is to have access to the same memory by accessing for example X or U.
I like the idea of user2079303's answers, but want to inverse it.
Note - the question is named wrong and is violating "what is your real goal" or "show me your Z" rule. We do not need to mimic absolute keyword - it is total nonsense! we want to make pseudonyms for the record properties and use them interchangeably.
What I really want is to have access to the same memory by accessing for example X or U.
The quoted line is the ONLY line in the question that talks about the problem essence - making full pseudonyms.
So, let's start where user2079303 stopped and use the fact that C's unions do not have to be named, like it was used in https://stackoverflow.com/a/13624921/976391
So we just inverse the scopes.
/*union*/ struct coordinates {
/*struct*/ union {
double X;
double U;
};
/*struct*/ union {
double Y;
double V;
};
/*struct*/ union {
double Z;
double W;
};
};
Short version: There is no equivalent of the described language feature.
Long version C++:
There isn't an equivalent in C++. The member reference that you suggest gives you the same syntax, but indeed increases the size of the object.
Another close alternative is a member function, that returns a reference. That has no overhead (assuming inline expansion). A function call has different syntax than referencing a member though. But perhaps having identical syntax with member access is not important so this is what I suggest.
Long version C:
There is no inheritance in C at all, so there is nothing like the described "absolute" in it either.
we have several kinds of coordinates. Some of them are named x, y, z others (in another system) are named u, v, w.
Given this context, I would suggest a union (EDIT: It's better to swap the union and struct relation, see https://stackoverflow.com/a/41148089/2079303):
union coordinates {
struct {
float x, y, z;
} xyz;
struct {
float u, v, w;
} uvw;
};
If you want to interchangeably use XYZ and UVW, you can let each convert to the other.
// forward declare
struct B;
struct A
{
double X;
double Y;
double Z;
operator B() const;
}
struct B
{
double U;
double V;
double W;
operator A() const;
}
A::operator B() const { B b; b.U = X; b.V = Y; b.W = Z; return b; }
B::operator A() const { A a; a.X = U; a.Y = V; a.Z = W; return a; }
I have this code:
class Vector3
{
public:
Vector3() : x(values[0]), y(values[1]), z(values[2])
{ x = y = z = 0; }
float& x;
float& y;
float& z;
private:
float[3] values;
};
class Model
{
public:
Vector3 vertices[64];
};
I'm doing this vector class because I want to deal with the values as X, Y, Z in the code, but for some operations I need a contiguous array of values to be passed to a function.
So the whole array of vertices[64] need to be [x0][y0][z0][x1][y1][z1][x2][y2][z2] etc.
But if I do this:
//Get first address:
void* firstAddress = &vertices[0];
//Or
void* firstAddress = vertices;
I don't have the contiguous array as I need it (the data is all messed up), and I'm guessing it's because of the pointers I have in the Vector3 class.
Is there any way I can do get this functionality that I want? (Having a single array of float but dealing with values as x,y,z)
Firstly, the Standard doesn't define how references should be implemented, but they'll almost certainly occupy actual memory in your class much a pointer members would, ruining the contiguous data packing you're hoping for....
If your focus is more on the vertices container, and you just want x/y/z member access to elements in it, then you could try something like:
template <size_t N>
class Vertices
{
public:
class Proxy
{
public:
Proxy(float* p) : x(p[0]), y(p[1]), z(p[2]) { }
float& x;
float& y;
float& z;
};
Proxy operator[](size_t n) { return Proxy(&d_[n * 3]); }
const Proxy operator[](size_t n) const { return Proxy(&d_[n * 3]); }
private:
float d_[N * 3];
};
You could have member functions instead:
class V3
{
float data[3];
public:
V3() : data{0,0,0} {}
float & x() { return data[0]; }
float & y() { return data[1]; }
float & z() { return data[2]; }
};
You could also omit the constructor and have an aggregate, if that's more suitable.
What you have and array of values pointers (pointing to arrays of 3 floats) with 3 float references (x, y, z). You probably ant something more like:
float & x() { return values[0]; }
float & y() { return values[1]; }
float & z() { return values[2]; }
If I understand your requirement for continuous data in the Model, then your Vector is really an alias to a specific triple of data in the model. No float storage required.
class Model
class Vector
Vector(Model *model_, size_t idx_) : model(model_),idx(idx_) { };
Model *model;
size_t idx;
float & x() { return model->data[3*idx]; }
float & y() { return model->data[3*idx+1]; }
float & z() { return model->data[3*idx+2]; }
float data[64 * 3];
Vector vectors[64];
Model() {
...
for( size_t ii = 0; ii < 64; ii++ ) {
vectors[ii] = new Vector(this,ii);
}
Vector & vector(size_t idx) { return vectors[ii]; }
For a guaranteed contiguous array you need to either copy the data into the array, or use compiler-specific guarantees about memory layout, in particular that
there will be no padding,
and if you want to also access triplets of the array as Vector3 instances, that
accessing a Vector3 at arbitrary address will not cause a trap or inefficiency (we're into alignment here).
It so happens that some common libraries such as OpenCV do make such assumptions for their internal image buffers.
But I'm not entirely sure that the code I've seen has not been platform-adapted. So, in practice you have these choices:
copy the data contiguously to an array (or from it), and/or
use an existing library that provides this kind of functionality, such as OpenCV.
Note that using member functions instead of references buys you nothing wrt. to the contiguous array problem, but it does make the Vector3 potentially assignable.
On further reflection, i was maybe too trigger-happy writing the above. For if you can guarantee total size 3*sizeof(float), and that's almost a given (just get rid of those references), then you are guaranteed that you can access a Vector3 at any address that can hold a float, since C++ guarantees arrays with no padding, and since in such an array a Vector3 can end up at any address that can hold a float. So the in-practice problem reduces to making a decision about supporting compilers or compiler configurations that are unable to make Vector3 of size 3*sizeof(float).
I.e.
struct Vector3
{
float x, y, z;
auto operator[]( int i ) -> float& { return (&x)[i]; }
auto operator[]( int i ) const -> float const& { return (&x)[i]; }
};
static_assert( sizeof( Vector3 ) == 3*sizeof( float ), "Ungood Vector3 size" );
using the fact that members with no intervening access specifier are guaranteed to be in increasing address order.
Disclaimer: off the cuff code, not touched by compiler's hands.
If you keep your Vector3 class a POD you should be able to simply cast your vertices to a float array:
struct Vector3 {
float x;
float y;
float z;
};
class Model
{
public:
Vector3 vertices[64];
float* data() {
return reinterpret_cast<float*>(vertices);
}
};
int main() {
Model m;
for(int i = 0; i < 64; ++i) {
m.vertices[i] = {10+i,100+i,1000+i};
}
float *data = m.data();
for(int i= 0; i < 64*3; ++i) {
std::cout << data[i] << ", ";
}
}
Only problem could be the Allignment of the structure, but should you use c++11, there is a standard way of alligning the structure, using allignasalignas(alignof(float[3])). I don't know if this is really required.
Also, c++11 gives quite a few options on what to do with Vector3, while still considering it as a POD type.
There's no way to do something like this, in C++ is there?
union {
{
Scalar x, y;
}
Scalar v[2];
};
Where x == v[0] and y == v[1]?
Since you are using C++ and not C, and since they are of the same types, why not just make x a reference to v[0] and y a reference to v[1]
How about
union {
struct {
int x;
int y;
};
int v[2];
};
edit:
union a {
struct b { int first, second; } bee;
int v[2];
};
Ugly, but that's more accurate
Try this:
template<class T>
struct U1
{
U1();
T v[2];
T& x;
T& y;
};
template<class T>
U1<T>::U1()
:x(v[0])
,y(v[1])
{}
int main()
{
U1<int> data;
data.x = 1;
data.y = 2;
}
I've used something like this before. I'm not sure its 100% OK by the standard, but it seems to be OK with any compilers I've needed to use it on.
struct Vec2
{
float x;
float y;
float& operator[](int i) { return *(&x+i); }
};
You can add bounds checking etc to operator[] if you want ( you probably should want) and you can provide a const version of operator[] too.
If you're concerned about padding (and don't want to add the appropriate platform specific bits to force the struct to be unpadded) then you can use:
struct Vec2
{
float x;
float y;
float& operator[](int i) {
assert(i>=0);
assert(i<2);
return (i==0)?x:y;
}
const float& operator[](int i) const {
assert(i>=0);
assert(i<2);
return (i==0)?x:y;
}
};
I was looking for a similair thing and eventually came up with a solution.
I was looking to have a data storage object that I could use as both an array of values and as individual values (for end-user flexibility in writing Arduino libraries).
Here is what I came up with:
class data{
float _array[3];
public:
float& X = _array[0];
float& Y = _array[1];
float& Z = _array[2];
float& operator[](int index){
if (index >= 3) return _array[0]; //Make this action whatever you want...
return _array[index];
}
float* operator&(){return _array;}
};
int main(){
data Test_Vector;
Test_Vector[0] = 1.23; Test_Vector[1] = 2.34; Test_Vector[2] = 3.45;
cout<<"Member X = "<<Test_Vector.X;
cout<<"Member Y = "<<Test_Vector.Y;
cout<<"Member Z = "<<Test_Vector.Z;
float* vector_array = &Test_Vector;
cout<<"Array = {"<<vector_array[0]<<", "<<vector_array[1]<<", "<<vector_array[2]<<"}";
}
Thanks to Operator overloading, we can use the data object as if was an array and we can use it for pass-by-reference in function calls (just like an array)!
If someone with More C++ experience has a better way of applying this end product, I would love to see it!
EDIT: Changed up the code to be more cross-platform friendly
Given your example:
union
{
struct
{
Scalar x, y;
};
Scalar v[2];
};
As others have noted, in general, the standard does not guarantee that there will be no padding between x and y, and actually compilers inserting padding in structures is pretty common behavior.
On the other hand, with solutions like:
struct U
{
int v[2];
int& x;
int& y;
};
U::U()
: x(v[0])
, y(v[1])
{}
what I don't like mainly is the fact that I have to mention x, y twice. For cases where I have more than just a few elements (say 10), this becomes much less readable and harder to maintain - e.g. if you want to change the order of x,y then you have to change the indexes below too (well not mandatory but otherwise order in memory wouldn't match order of fields, which would not be recommended). Also, U can no longer be a POD since it needs a user-defined constructor. And finally, the x & y references consume additional memory.
Hence, the (acceptable for me) compromise I've come up with is:
struct Point
{
enum CoordType
{
X,
Y,
COUNT
};
int coords[CoordType::COUNT];
};
typedef Point::CoordType PtCoord;
With this you can then do:
Point p;
for ( int i = 0; i < PtCoord::COUNT; i++ )
p.coords[i] = 100;
std::cout << p.coords[PtCoord::X] << " " << p.coords[PtCoord::Y] << std::endl;
// 100 100
A bit sophisticated but I prefer this over the references suggestion.
Depending on what "Scalar" is, yes, you can do that in C++. The syntax is almost exactly (maybe even exactly exactly, but I'm rusty on unions) what you wrote in your example. It's the same as C, except there are restrictions on the types that can be in the unions (IIRC they must have a default constructor). Here's the relevant Wikipedia article.
With C++11 you have anonymous unions and structs which just export their definitions to the enclosing scope, so you can do this:
typedef int Scalar;
struct Vector
{
union
{
struct
{
Scalar x, y;
};
Scalar v[2];
};
};