Convert const std::vector<std::string> to const char ** - c++

I have a function with signature like this:
void foo(const std::vector<std::string>& args)
{
...
}
I want convert vector args to const char ** (just like argv in main). How this can be done? We can't actually make a char ** array because then it (obviously) fails to convert args[i].c_str() that is of type const char * to char *.
The only (ugly) way I can think of is to use const_cast to cast from const char * to char *.
Would anyone suggest more elegant way of doing this? I should note I can use only c++03 features.
Thanks in advance.

It can't be done without an extra array. A const char** means "a pointer to a pointer to const char" - so you need a place where there are actual pointers to char to point to.
So you need to create that array.
struct c_str { const char* operator ()(const std::string& s) { return s.c_str(); } };
std::vector<const char*> pointers(args.size());
std::transform(args.begin(), args.end(), pointers.begin(), c_str());
// If you really want to be compatible with argv:
pointers.push_back(0);
// &pointers[0] is what you want now

Related

How to declare a variable as char* const*?

I have a bluez header file get_opt.h where argv is an argument:
extern int getopt_long (int ___argc, char *__getopt_argv_const *___argv,.....
which requires char* const* for argv. Because the unit is called from a different file I was trying to emulate argv but whatever permutation of declaring char, const and * is used I get unqualified-id or the compiler moans about not converting to char* const*. I can get const char * easily, of course. char const * argv = "0"; compiles OK in Netbeans with C++14 but
char * const * argv = "0";
produces
"error: cannot convert 'const char *' to 'char * const *'" in initialisation (sic).
How do you declare char* const* or am I mixing C with C++ so I'm up the wrong tree?
Let's review the pointer declarations:
char * -- mutable pointer to mutable data.
char const * -- mutable pointer to constant data.
char * const -- constant pointer to mutable data.
char const * const -- constant pointer to constant data.
Read pointer declarations from right to left.
Looking at the descriptions, which kind of pointer do you want?
Because void main(void) is in a different file I was trying to emulate
argv
void main(void) is not the correct main function declaration. The main function has to have int return value.
Simply change the void main(void) to int main(int argc, char **argv) in that "other" file.
It does not require char const * to be passed to. Do not change the type of the main function arguments.
int getopt_long (int ___argc, char * const *___argv);
int main(int argc, char **argv)
{
printf("%d\n", getopt_long(argc, argv));
}
Both language compile fine:
https://godbolt.org/z/5To5T931j
Credit #JaMiT above
[I don't know how to accept a commment]
Also, you might want to notice how you can remove the call to getopt_long() from that example while retaining the error (it's motivation for your declaration, but not the source of your issue). If you think about your presentation enough, you might realize that your question is not how to declare a char* const* but how to initialize it. Due to arrays decaying to a pointer, you could declare an array of pointers (char* const argv[]) instead of a pointer to pointer (char* const * argv). See The 1D array of pointers way portion of A: 2D Pointer initialization for how to initialize such a beast. Beware: given your setup, the "2D array way" from that answer is not an option. Reminder: The last pointer in the argument vector is null; argv[argc] == nullptr when those values are provided by the system to main().

How to declare a pointer to pointer to constant in C++?

I'm trying to write a function to parse command line arguments. This is the function declaration:
void parse(int, char const **);
Just in case, I have also tried (const char)**, const char **, and cchar ** using a typedef const char cchar. However, all of these (as expected, since they should all be identical) result in an error if I pass a char ** into the function, as in:
void main(int argc, char **argv) {
parse(argc, argv);
The error I get from GNU's compiler is error: invalid conversion from 'char**' to 'const char**' and the one from Clang is candidate function not viable: no known conversion from 'char **' to 'const char **' for 2nd argument.
I have seen such solutions suggested as declaring a pointer to a const pointer to char (const char * const *), but I don't want either pointer to be const because I want to be able to modify the pointer so I can iterate over an argument using for(; **argv; ++*argv). How can I declare a "non-const pointer to non-const pointer to const char"?
The function should be declared as:
void parse(int, char const * const *);
In C++, char ** can implicitly add const at all pointer depths, so you can call it as parse(argc, argv).
In C, const can only be added at the first pointer depth (this is a design defect in the language). Here is a dedicated thread. So you have to call the function as: parse(argc, (char const * const *)argv); unfortunately.
The safest signature that prevents modification of the arguments whilst allowing any other const combination to call the function is this:
parse(int argc, char const* const* argv);
That means that argv is a pointer to a const pointer to a const char
You can happily iterate over the parameters like this:
for(auto arg = argv + 1; *arg; ++arg)
{
if(!std::strcmp(*arg, "--help"))
return print_help();
else if(!std::strcmp(*arg, "-v") || !std::strcmp(*arg, "--verbose"))
verbose_flag = true;
// ... etc...
}
Notice there is no need to accept the variable int argc because the array of character arrays is null terminated.
So I normally use this:
struct config
{
// program options and switches
};
config parse_commandline(char const* const* argv);

why we use "const char* const* argv" instead of "char *"? [duplicate]

This question already has answers here:
C++ : Meaning of const char*const*
(5 answers)
Closed 6 years ago.
I'm working on simulating computer networks using "NS2 Simulator". I don't really understand why we should use const char* const* argv instead of char *?
Can I use char * instead of that? There are many QA about this subject but I've confused about that. Don't mark this question as "Duplicate", please .
why we use const char* const* argv in the function below? is this a rule in c++ standard? can i use either string or char ** instead of that?
Function Connector::command.
//~ns/common/connector.cc
int Connector::command(int argc, const char*const* argv)
{
Tcl& tcl = Tcl::instance();
...
if (argc == 3) {
if (strcmp(argv[1], "target") == 0) {
...
target_ = (NsObject*)TclObject::lookup(argv[2]);
...
}
...
}
return (NsObject::command(argc, argv));
}
const char*const* argv means "pointer to constant pointer to constant char". It's not the same as char*. There is a reason for the const modifier, as the argv pointer wont be reassigned, the elements will have to be accessed by subscript.
This makes it safe for the caller to dynamically allocate argv, pass it into command(), and free it later. Otherwise, if you point a pointer elsewhere before it is freed, then you've leaked the memory that it used to point to.
const char* const* argv creates two levels of indirection - first level is a const pointer to a const char, and second level is a pointer to the const pointer.
The programmer is allowed to const qualify arguments how they see fit. The benefit of this signature:
void func(const char* const* argv);
...is that it will accept argument arrays (of the type passed to main() or exec()), with any const qualification.
So all these are acceptable:
int main(int, char** argv)
{
func(argv);
}
int main(int, const char** argv)
{
func(argv);
}
int main(int, char* const* argv)
{
func(argv);
}
int main(int, const char* const* argv)
{
func(argv);
}
So if you are writing a function to accept argument array parameters (that your function will not modify) then its probably the best signature to select.
why we should use "const ... argv" instead of "char *" ?
The 'const' is from you, the programmer, commanding the compiler to inform you when the code you write tries to modify argv.
can i use char * instead of that?
Possibly, and sometimes it does not matter. But if you mistakenly modify argv (or whatever the const var name is), then the compiler won't let you know you made a mistake, and the result may be something you do not want, even UB.

g++ strstr says invalid conversion from const char * to char *

I am converting a project written in C++ for windows. Everything is going fine (meaning I clearly see what needs to be changed to make things proper C++) until I hit this, which is my own little routine to find a keyword in along string of keyword=value pairs:
bool GetParameter(const char * haystack, const char *needle) {
char *search, *start;
int len;
len = strlen(needle) + 4; // make my own copy so I can upper case it...
search = (char *) calloc(1,len);
if (search == NULL) return false;
strcpy(search,needle);
strupr(search);
strcat(search,"="); // now it is 'KEYWORD='
start = strstr(haystack,search); <---- ERROR from compiler
g++ is telling me "Invalid conversion from const char * to char * "
(the precise location of the complaint is the argument variable 'search' )
But it would appear that g++ is dyslexic. Because I am actually going the other way. I am passing in a char * to a const char *
(so the conversion is "from char * to const char *" )
The strstr prototype is char * strstr(const char *, const char *)
There is no danger here. Nothing in any const char * is being modified.
Why is it telling me this?
What can I do to fix it?
Thanks for any help.
The background to the problem is that C defines the function strstr as:
char* strstr(const char*, const char*);
This is because C doesn't allow overloaded functions, so to allow you to use strstr with both const and non-const strings it accepts const strings and returns non-const. This introduces a weakness in C's already fragile type-system, because it removes const-ness from a string. It is the C programmer's job to not attempt to write via a pointer returned from strstr if you pased in non-modifiable strings.
In C++ the function is replaced by a pair of overloaded functions, the standard says:
7. The function signature strstr(const char*, const char*) shall be replaced by the two declarations:
const char* strstr(const char* s1, const char* s2);
char* strstr( char* s1, const char* s2);
both of which shall have the same behavior as the original declaration.
This is type-safe, if you pass in a const string you get back a const string. Your code passes in a const string, so G++ is following the standard by returning a const string. You get what you asked for.
Your code compiles on Windows because apparently the standard library you were using on Windows doesn't provide the overloads and only provides the C version. That allows you to pass in const strings and get back a non-const string. G++ provides the C++ versions, as required by the standard. The error is telling you that you're trying to convert the const return value to a non-const char*. The solution is the assign the return value to a const char* instead, which is portable and compiles everywhere.
Error is not regarding the arguments to stsrtr. Compiler is complaining about the conversion of the 'const char *' returned by strstr. You can't assign it to *start which is just char *
You can try one of these:
const char *start;
or
string start(strstr(haystack,search));
Although declaring start as const char* might suffice, what seems more appropriate to me is to use std::string objects instead:
#include <string>
#include <cctype>
#include <algorithm>
bool GetParameter(const char * haystack, const char *needle) {
std::string hstr(haystack), nstr(needle);
std::transform(nstr.begin(), nstr.end(),nstr.begin(), ::toupper);
nstr += "=";
std::size_t found = hstr.find(nstr);
if (found != std::string::npos) {
... // "NEEDLE=" found
}
else {
...
}
...
}
The conversion it is complaining about is from strstr(...) to start. Change the declaration of start to const char* start;
you can use such like:
start = const_cast<char *>(strstr( haystack, static_cast<const char *>(search) ));

How to convert const char* to char*

can any body tell me how to conver const char* to char*?
get_error_from_header(void *ptr, size_t size, size_t nmemb, void *data) {
ErrorMsg *error = (ErrorMsg *)data;
char* err = strstr((const char *)ptr,"550");
//error cannot convert const char** to char*
if(err) {
strncpy(error->data,(char*)ptr,LENGTH_ERROR_MESSAGE-1);
error->data[LENGTH_ERROR_MESSAGE-1] = '\0';
error->ret = true;
}
return size*nmemb;
}
There are a few things I don't understand here. I see that this is tagged for C++/CLI, but what I describe below should be the same as Standard C++.
Doesn't compile
The code you give doesn't compile; get_error_from_header does not specify a return type. In my experiments I made the return type size_t.
Signature of C++ strstr()
The signature for strstr() in the standard C library is:
char *
strstr(const char *s1, const char *s2);
but the signature for strstr() in the C++ library, depending on the overload, is one of:
const char * strstr ( const char * str1, const char * str2 );
char * strstr ( char * str1, const char * str2 );
I would choose the first overload, because you don't want to modify the string, you only want to read it. Therefore you can change your code to:
const char* err = strstr((const char *)ptr, "550");
if (err != NULL) {
...
}
Also, I'm assuming your comment reporting the error:
//error cannot convert const char** to char*
is a typo: there's no const char** to be seen.
Assignment to err unnecessary
As is pointed out in a previous answer, the use of err to store the result of strstr is unnecessary if all it's used for is checking NULL. Therefore you could use:
if (strstr((const char *)ptr, "550") != NULL) {
...
}
Use of reinterpret_cast<> encouraged
As is pointed out in another answer you should be using reinterpret_cast<> instead of C-style casts:
if (strstr(reinterpret_cast<const char *>(ptr), "550") != NULL) {
...
}
Use of const_cast<> to strip const
Given the example in the question, I don't see where this is necessary, but if you had a variable that you need to strip of const-ness, you should use the const_cast<> operator. As in:
const char * p1;
char * p2;
p2 = const_cast<char *>(p1);
As is pointed out in a comment, the reason to use const_cast<> operator is so that the author's intention is clear, and also to make it easy to search for the use of const_cast<>; usually stripping const is the source of bugs or a design flaw.
You don't appear to use err in the rest of that function, so why bother creating it?
if (NULL != strstr((const char *)ptr, "550"))
{
If you do need it, will you really need to modify whatever it points to? If not, then declare it as const also:
const char* err = strstr((const char *)ptr, "550");
Finally, as casts are such nasty things, it is best to use a specific modern-style cast for the operation you want to perform. In this case:
if (NULL != strstr(reinterpret_cast<const char *>(ptr), "550"))
{
Can't you just do:
char* err = strstr((char *)ptr,"550");
The error is because if you pass in a const char* to strstr you get one out (because of the overload).
//try this instead:
const char* mstr="";
char* str=const_cast<char*>(mstr);
Well is ptr (which you passed in as void*) actually const or not? (In other words, is the memory under your control?) If it's not, then cast it to char* instead of const char* when calling strstr. If it is, however, you'll get a const char* out (pointing to a location inside of the string pointed to by ptr), and will then need to strncpy out to another string which you are responsible for managing.
According to my deep research I have found numerous forums that have no direct solution or a reference answer to this question, I then delve into the GCC online documentation giving a brief read for their compiler properly docs and this is what I can provide.
In GNU C, pointers to arrays with qualifiers work similar to pointers to other qualified types. For example, a value of type int ()[5] can be used to initialize a variable of type const int ()[5]. These types however aren't compatible in ISO C because the const qualifier is formally attached to the element type of the array and not the array itself.
This description might be better understood if we take this
extern void
transpose (int N, int M, double out[M][N], const double in[N][M]);
double x[3][2];
double y[2][3];
…
transpose(3, 2, y, x);
Observing the above is that if you had an
s1=createStudent(s1, 123, "Poli");
s2=createStudent(s2, 456, "Rola);
Whereas the const char[5] for both "Poli" and "Rola" have correlation to a char a[]. It is strictly not permitted as each element has the qualifier attached and not the entire array as a const.