Import large CSV file into TileMill for use in MapBox - shapefile

I am beginning to experiment with using MapBox and TileMill, and what I would like to do is map 400,000 addresses in a CSV file which have been pre-geocoded. When I try to add this 100mb CSV file as a layer into MapBox, I receive an error telling me that the CSV file is greater than 20mb and apparently this is a problem.
Can someone point me in the right direction in terms of what is the best way to get these 400k records into TileMill? Eventually, I want to publish the map to the web, and I was planning to do that using MapBox. I saw a program for converting CSV to a shapefile, and wondering whether this is the best approach.

Hundreds of thousands of markers is a lot. In the free tier of Mapbox, there is a limit of two thousand features. Such a limit would not stop you from displaying those in Tilemill, but it would stop you from uploading them to mapbox.com.
For discussion of that limit, see here.
A simple strategy for reducing the markers is to restrict to the subset of features that lies within a smaller bounding box.
I don't think it will matter whether your features are expressed in geojson, shapefiles, csv, or other formats. The number of features is what's stopping you.

I have the same problem. I had to import a 22MB csv file into tilemill and got the same error.
Although I don't have a working answer for you, but I would think either:
Convert csv to SQLite export files http://www.mapbox.com/tilemill/docs/tutorials/sqlite-work/
Configure the buffer for tilemill (however I doubt this would be the best because my tilemill cant take 5 GB of memory when doing points/markers rendering, increasing the buffer would make things worse)
I will keep experimenting with the ideas, and update this thread as soon as I found something. Also, I am looking forward to the tillmill pros out here for the best working answer~!
Best

Related

Concatenate 1000 CSV file directly in Google Cloud Storage? Without duplicated headers?

Is it possible to concatenate 1000 CSV file that have header into one file with no duplicated header directly in Google Cloud Storage? I could easily do this by downloading the file into my local hard drive but I would prefer to do it natively in Cloud Storage.
They all have same columns, and have header row.
I wrote an article to handle CSV files with BigQuery. To avoid several files, and if the volume is less than 1Gb, the recommended way is the following
Create a temporary table in BigQuery with all your CSV.
Use the Export API (not the export function)
Let me know if you need more guidance.
The problem with most solutions is that you still end up with a large number of split files where you have to then strip the headers and join them, etc...
Any method of avoiding multiple files tends to be also quite a lot of extra work.
It gets to be quite a hassle especially when big query spits out 3500 split gzipped csv files.
I needed a simple and batch file automatable method for achieving this.
Therefore wrote a CSV Merge (Sorry windows only though) to solve exactly this problem.
https://github.com/tcwicks/DataUtilities
Download latest release, unzip and use.
Also wrote an article on with scenario and usage examples:
https://medium.com/#TCWicks/merge-multiple-csv-flat-files-exported-from-bigquery-redshift-etc-d10aa0a36826
Hope it is of use to someone.
p.s. Recommend tab delimited over CSV as it tends to have less data issues.

Reduce a Caffe network model

I'd like to use Caffe to extract image features. However, it takes too long to process an image, so I'm looking for ways to optimize for speed.
One thing I noticed is that the network definition I'm using has four extra layers on top the one from which I'm reading a result (and there are no feedback signals, so they should be safe to delete).
I tried to delete them from the definition file but it had no effect at all. I guess I might need to remove the corresponding part of the file that contains pre-trained weights, too. That is, however, a binary file (a protobuffer) so editing it is not that easy.
Do you think that removing the four layers might have a profound effect of the net performance?
If so then how do I get familiar with the file contents so that I could edit it and how do I know which parts to remove?
first, I don't think removing the binary weights will have any effect.
Second, you can do it easily using the python interface: see this tutorial.
Last but not least, have you tried running caffe time to measure the performance of your net? this may help you identify the bottlenecks of your computations.
PS,
You might find this thread relevant as well.
Caffemodel stores data as key-value pair. Caffe only copies weight for those layers (in train.prototxt) having exactly same name as caffemodel. Hence I don't think removing binary weights will work. If you want to change network structure, just modify train.prototxt and deploy.txt.
If you insist to remove weights from binary file, follow this caffe example.
And to make sure you delete right part, this visualizing tool should help.
I would retrain on a smaller input size, change strides, etc. However if you want to reduce file size, I'd suggest quantizing the weights https://github.com/yuanyuanli85/CaffeModelCompression and then using something like lzma compression (xz for unix). We do this so we can deploy to mobile devices. 8 bit weights compress nicely.

How to read/restore big data file (SEGY format) with C/C++?

I am working on a project which needs to deal with large seismic data of SEGY format (from several GB to TB). This data represents the 3D underground structure.
Data structure is like:
1st tract, 2,3,5,3,5,....,6
2nd tract, 5,6,5,3,2,....,3
3rd tract, 7,4,5,3,1,....,8
...
What I want to ask is, in order to read and deal with the data fast, do I have to convert the data into another form? Or it's better to read from the original SEGY file? And is there any existing C package to do that?
If you need to access it multiple times and
if you need to access it randomly and
if you need to access it fast
then load it to a database once.
Do not reinvent the wheel.
When dealing of data of that size, you may not want to convert it into another form unless you have to - though some software does do just that. I found a list of free geophysics software on Wikipedia that look promising; many are open source and read/write SEGY files.
Since you are a newbie to programming, you may want to consider if the Python library segpy suits your needs rather than a C/C++ option.
Several GB is rathe medium, if we are toking about poststack.
You may use segy and convert on the fly, you may invent your own format. It depends whot you needed to do. Without changing segy format it's enough to createing indexes to traces. If segy is saved as inlines - it's faster access throug inlines, although crossline access is not very bad.
If it is 3d seismic, the best way to have the same quick access to all inlines/crosslines is to have own format - based od beans, e.g 8x8 traces - loading all beans and selecting tarces access time may be very quick - 2-3 secends. Or you may use SSD disk, or 2,5x RAM as your SEGY.
To quickly access timeslices you have 2 ways - 3D beans or second file stored as timeslices (the quickes way). I did same kind of that 10 years ago - access time to 12 GB SEGY was acceptable - 2-3 seconds in all 3 directions.
SEGY in database? Wow ... ;)
The answer depends upon the type of data you need to extract from the SEG-Y file.
If you need to extract only the headers (Text header, Binary header, Extended Textual File headers and Trace headers) then they can be easily extracted from the SEG-Y file by opening the file as binary and extracting relevant information from the respective locations as mentioned in the data exchange formats (rev2). The extraction might depend upon the type of data (Post-stack or Pre-stack). Also some headers might require conversions from one format to another (e.g Text Headers are mostly encoded in EBCDIC format). The complete details about the byte locations and encoding formats can be read from the above documentation
The extraction of trace data is a bit tricky and depends upon various factors like the encoding, whether the no. of trace samples is mentioned in the trace headers, etc. A careful reading of the documentation and getting to know about the type of SEG data you are working on will surely make this task a lot easier.
Since you are working with the extracted data, I would recommend to use already existing libraries (segpy: one of the best python library I came across). There are also numerous free available SEG-Y readers, a very nice list has already been mentioned by Daniel Waechter; you can choose any one of them that suits your requirements and the type file format supported.
I recently tried to do something same using C++ (Although it has only been tested on post-stack data). The project can be found here.

Looking for Ideas: How would you start to write a geo-coder?

Because the open source geo-coders cannot begin to compare to Google's or even Yahoo's, I would like to start a project to create a good open source geo-coder. Just to clarify, a geo-coder takes some text (usually with some constraints) and returns one or more lat/lon pairs.
I realize that this is a difficult and garguntuan task, so I am wondering how you might get started. What would you read? What algorithms would you familiarize yourself with? What code would you review?
And also, assuming you were going to develop this very agilely, what would you want the first prototype to be able to do?
EDIT: Let's set aside the data question for now. I am going to use OpenStreetMap data, along with a database of waypoints that I have. I would later plan to include other data sets as well, and I realize the geo-coder would be inherently limited by the quality of the original data.
The first (and probably blocking) problem would be: where do you get your data from? (unless you are willing to pay thousands of dollars for proprietary sets).
You could build a geocoding-api on top of OpenStreetMap (they publish their data in dumps on a regular basis) I guess, but that one was still very incomplete last time I checked.
Algorithms are easy. Good mapping data, however, is expensive. Very expensive.
Google drove their cars all over the world, collecting this data among other things.
From a .NET point of view these articles might be interesting for you:
Writing Your Own GPS Applications: Part I
Writing Your Own GPS Applications: Part 2
Writing GIS and Mapping Software for .NET
I've only glanced at the articles but they've been on CodeProject's 'Most Popular' list for a long time.
And maybe this CodePlex project which the author of the articles above made available.
I would start at the absolute beginning by figuring out how you're going to get the data that matches a street address with a geocode. Either Google had people going around with GPS units, OR they got the information from some existing source. That existing source may have been... (all guesses)
The Postal Service
Some existing maps(printed)
A bunch of enthusiastic users that were early adopters of GPS technology who ere more than willing to enter in street addresses and GPS coordinates
Some government entity (or entities)
Their own satellites
etc
I guess what I'm getting at is the information was either imported from somewhere or was input by someone via some interface. As my starting point I would look at how to get that information. In an open source situation, you may be able to get a bunch of enthusiastic people to enter information.
So for my first prototype, boring as it would be, I would create a form for entering information.
Then you need to know the math for figuring out the closest distance (as the crow flies). From there, try to figure out how to include roads. (My guess is you would have to have data point for each and every curve, where you hold the geocode location of the curve, and the angle of the road on a north/south and east/west vector. You'd probably need to take incline into account, too to get accurate road measurements.)
That's just where I'd start.
But in all honesty, I wouldn't even start on this. Other programmers have done it already, I'm more interested in what hasn't already been done.
get my free raw data from somewhere like http://ipinfodb.com/ip_database.php
load it into a database, denormalizing for fast lookups
design my API
build it out as a RESTful web service
return results in varying formats: JSON, XML, CSV, raw text
The first prototype should accept a ZIP code and return lat/lon in raw text.

How would I get a subset of Wikipedia's pages?

How would I get a subset (say 100MB) of Wikipedia's pages? I've found you can get the whole dataset as XML but its more like 1 or 2 gigs; I don't need that much.
I want to experiment with implementing a map-reduce algorithm.
Having said that, if I could just find 100 megs worth of textual sample data from anywhere, that would also be good. E.g. the Stack Overflow database, if it's available, would possibly be a good size. I'm open to suggestions.
Edit: Any that aren't torrents? I can't get those at work.
The stackoverflow database is available for download.
Chris, you could just write a small program to hit the Wikipedia "Random Page" link until you get 100MB of web pages: http://en.wikipedia.org/wiki/Special:Random. You'll want to discard any duplicates you might get, and you might also want to limit the number of requests you make per minute (though some fraction of the articles will be served up by intermediate web caches, not Wikipedia servers). But it should be pretty easy.
One option is to download the entire Wikipedia dump, and then use only part of it. You can either decompress the entire thing and then use a simple script to split the file into smaller files (e.g. here), or if you are worried about disk space, you can write a something a script that decompresses and splits on the fly, and then you can stop the decompressing process at any stage you want. Wikipedia Dump Reader can by your inspiration for decompressing and processing on the fly, if you're comfortable with python (look at mparser.py).
If you don't want to download the entire thing, you're left with the option of scraping. The Export feature might be helpful for this, and the wikipediabot was also suggested in this context.
If you wanted to get a copy of the stackoverflow database, you could do that from the creative commons data dump.
Out of curiosity, what are you using all this data for?
You could use a web crawler and scrape 100MB of data?
There are a lot of wikipedia dumps available. Why do you want to choose the biggest (english wiki)? Wikinews archives are much smaller.
One smaller subset of Wikipedia articles comprises the 'meta' wiki articles. This is in the same XML format as the entire article dataset, but smaller (around 400MB as of March 2019), so it can be used for software validation (for example testing GenSim scripts).
https://dumps.wikimedia.org/metawiki/latest/
You want to look for any files with the -articles.xml.bz2 suffix.