Related
Normally people write the main function like this:
int main( int argc, char** argv )
However, this came to my mind:
int main( const int argc, const char* const* const argv )
or maybe I should write it like this cause it seems more intuitive:
int main( const int argc, const char *const *const argv )
What does each of the consts mean in argv (I think I understand them all but am still not sure)?
Also is this a valid code? What issues/limitations can it cause when using argv inside main?
Now what's the difference between this one and the latter:
int main( const int argc, const char* const argv[] )
The prototype is defined as "int main( int argc, char** argv )"
There is really no point in using a const pointer to access the parameters later unless you don't want to get it changed, which is up to you
The purpose of const pointers is to make sure that they are not changed throughout the code. You can live without them, but it helps avoid other issues, bugs for example.
On the other side, there is no performance gain (Optimizing_compiler)
1 The function called at program startup is named main. The implementation declares no prototype for this function. It shall be defined with a return type of int and with no parameters:
int main(void) { /* ... */ }
or with two parameters (referred to here as argc and argv, though any names may be used, as they are local to the function in which they are declared):
int main(int argc, char *argv[]) { /* ... */ }
or equivalent;9) or in some other implementation-defined manner.
2 If they are declared, the parameters to the main function shall obey the following
constraints:
— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.
— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1] inclusive shall contain pointers to strings, which are given implementation-defined values by the host environment prior to program startup. The intent is to supply to the program information determined prior to program startup from elsewhere in the hosted environment. If the host environment is not capable of supplying strings with letters in both uppercase and lowercase, the implementation shall ensure that the strings are received in lowercase.
— If the value of argc is greater than zero, the string pointed to by argv[0] represents the program name; argv[0][0] shall be the null character if the program name is not available from the host environment.
If the value of argc is greater than one, the strings pointed to by argv1 through argv[argc-1] represent the program parameters.
— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable by the program, and retain their last-stored values between program startup and program termination
so, in short, adding the const is illegal and probably technically not possible (depending on the compiler)
Checking the standard you see the following rules: (ISO/IEC 9899:TC3), go to 5.1.2.2.1
In many C++ IDE's and compilers, when it generates the main function for you, it looks like this:
int main(int argc, char *argv[])
When I code C++ without an IDE, just with a command line compiler, I type:
int main()
without any parameters. What does this mean, and is it vital to my program?
argv and argc are how command line arguments are passed to main() in C and C++.
argc will be the number of strings pointed to by argv. This will (in practice) be 1 plus the number of arguments, as virtually all implementations will prepend the name of the program to the array.
The variables are named argc (argument count) and argv (argument vector) by convention, but they can be given any valid identifier: int main(int num_args, char** arg_strings) is equally valid.
They can also be omitted entirely, yielding int main(), if you do not intend to process command line arguments.
Try the following program:
#include <iostream>
int main(int argc, char** argv) {
std::cout << "Have " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << argv[i] << std::endl;
}
}
Running it with ./test a1 b2 c3 will output
Have 4 arguments:
./test
a1
b2
c3
argc is the number of arguments being passed into your program from the command line and argv is the array of arguments.
You can loop through the arguments knowing the number of them like:
for(int i = 0; i < argc; i++)
{
// argv[i] is the argument at index i
}
Suppose you run your program thus (using sh syntax):
myprog arg1 arg2 'arg 3'
If you declared your main as int main(int argc, char *argv[]), then (in most environments), your main() will be called as if like:
p = { "myprog", "arg1", "arg2", "arg 3", NULL };
exit(main(4, p));
However, if you declared your main as int main(), it will be called something like
exit(main());
and you don't get the arguments passed.
Two additional things to note:
These are the only two standard-mandated signatures for main. If a particular platform accepts extra arguments or a different return type, then that's an extension and should not be relied upon in a portable program.
*argv[] and **argv are exactly equivalent, so you can write int main(int argc, char *argv[]) as int main(int argc, char **argv).
int main();
This is a simple declaration. It cannot take any command line arguments.
int main(int argc, char* argv[]);
This declaration is used when your program must take command-line arguments. When run like such:
myprogram arg1 arg2 arg3
argc, or Argument Count, will be set to 4 (four arguments), and argv, or Argument Vectors, will be populated with string pointers to "myprogram", "arg1", "arg2", and "arg3". The program invocation (myprogram) is included in the arguments!
Alternatively, you could use:
int main(int argc, char** argv);
This is also valid.
There is another parameter you can add:
int main (int argc, char *argv[], char *envp[])
The envp parameter also contains environment variables. Each entry follows this format:
VARIABLENAME=VariableValue
like this:
SHELL=/bin/bash
The environment variables list is null-terminated.
IMPORTANT: DO NOT use any argv or envp values directly in calls to system()! This is a huge security hole as malicious users could set environment variables to command-line commands and (potentially) cause massive damage. In general, just don't use system(). There is almost always a better solution implemented through C libraries.
The parameters to main represent the command line parameters provided to the program when it was started. The argc parameter represents the number of command line arguments, and char *argv[] is an array of strings (character pointers) representing the individual arguments provided on the command line.
The main function can have two parameters, argc and argv. argc is an integer (int) parameter, and it is the number of arguments passed to the program.
The program name is always the first argument, so there will be at least one argument to a program and the minimum value of argc will be one. But if a program has itself two arguments the value of argc will be three.
Parameter argv points to a string array and is called the argument vector. It is a one dimensional string array of function arguments.
Lets consider the declaration:
int main (int argc, char *argv[])
In the above declaration, the type of the second parameter named argv is actually a char**. That is, argv is a pointer to a pointer to a char. This is because a char* [] decays to a char** due to type decay. For example, the below given declarations are equivalent:
int main (int argc, char *argv[]); //first declaration
int main (int argc, char **argv); //RE-DECLARATION. Equivalent to the above declaration
In other words, argv is a pointer that points to the first element of an array with elements of type char*. Moreover, each elements argv[i] of the array(with elements of type char*) itself point to a character which is the start of a null terminated character string. That is, each element argv[i] points to the first element of an array with elements of type char(and not const char). A diagram is given for illustration purposes:
As already said in other answers, this form of declaration of main is used when we want to make use of the command line argument(s).
The first parameter is the number of arguments provided and the second parameter is a list of strings representing those arguments.
Both of
int main(int argc, char *argv[]);
int main();
are legal definitions of the entry point for a C or C++ program. Stroustrup: C++ Style and Technique FAQ details some of the variations that are possible or legal for your main function.
In case you learn something from this
#include<iostream>
using namespace std;
int main(int argc, char** argv) {
cout << "This program has " << argc << " arguments:" << endl;
for (int i = 0; i < argc; ++i) {
cout << argv[i] << endl;
}
return 0;
}
This program has 3 arguments. Then the output will be like this.
C:\Users\user\Desktop\hello.exe
hello
people
When using int and char**, the first argument will be the number of commands in by which the programs is called and second one is all those commands
Just to add because someone says there is a third parameter (*envp[]), it's true, there is, but is not POSIX safe, if you want your program to use environment variables you should use extern char environ ;D
Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 2 years ago.
Improve this question
I am trying to use this simple program:
int main (int argc, char** argv)
{
cout<<"This program has "<<argc<<" arguments.";
}
However, the program does not get any input. It automatically puts a 1 in argc, and sth unlcear for argv!
I have also tried many different codes like:
int main (int argc, char* argv[])
int main (int argc, char *argv[])
int main (int argc, char **argv)
int main (int argc, string argv[])
Nothing seems to work! By the way, my compiler is DEV.
The C++ standard says:
argc shall be the number of arguments passed to the program from the
environment in which the program is run. If argc is nonzero these
arguments shall be supplied in argv[0] through argv[argc-1] as
pointers to the initial characters of null-terminated multibyte
strings (ntmbs s) (20.4.2.1.5.2) and argv[0] shall be the pointer to
the initial character of a ntmbs that represents the name used to
invoke the program or "". The value of argc shall be non-negative. The
value of argv[argc] shall be 0. [ Note: It is recommended that any
further (optional) parameters be added after argv. — end note ]
In most cases the first argument is the name of the executable. Something like foo.exe. The further values are typically command line arguments you pass to the application while running. So, if you run the application like:
foo.exe arg1 arg2 arg3
The values of the variables could be:
argc = 4
argv = { "foo.exe", "arg1", "arg2", "arg3", NULL }
Do note that argv is null-terminated.
If the code you provided is the code you really have, i am wondering how it did compile, without including the iostream header. This code will work:
#include <iostream>
int main(int argc, char* argv[]) {
std::cout << "This program was given " << argc << " arguments." << std::endl;
}
When you run this code, the output will be:
$ nameofexecutable
This program was given 1 arguments.
If you give it arguments, it will print them:
$ nameofexecutable opt1 opt2 opt3
This program was given 4 arguments.
You may be wondering, why the program says it got 4 arguments while receiving only 3. That is, because the name of the executable is counted as an argument, too.
The core of your question is why you get argc as 1, even if you give no arguments.
If you would do more experiments you'd notice that you always get one more than you give arguments.
This is because in most environments the first arguments argv[0] is filled with the executables name. You can also check that by outputting argv[0].
The arguments you give on the commandline are given starting with argv[1], which in the zero-based index counting world of C++ is of course the second one.
You haven't actually provided code that exhibits your problem but, to answer your question, ways to pass argv[2] as a string to a function include
#include <cstring>
#include <iostream>
void func(const char *s)
{
// treat s as a zero terminated string
if (std::strcmp(s, "Hello") == 0)
{
std::cout << "You said hello\n";
}
}
int main(int argc, char **argv)
{
if (argc >= 3)
func(argv[2]);
else
std::cout << "You have not supplied an argv[2]\n";
}
or
#include <string>
#include <iostream>
void func2(const std::string &s)
{
if (s == "Hello")
{
std::cout << "You said hello\n";
}
}
int main(int argc, char **argv)
{
if (argc >= 3)
func2(argv[2]);
else
std::cout << "You have not supplied an argv[2]\n";
}
The first example above (apart from usage of std namespace, std::cout and C++ headers) is essentially vanilla C.
The second example uses the std::string class, so comparison of strings is possible using the == operator. Note that main(), when calling func2() implicitly converts argv[2] into an std::string (since std::string has a constructor that permits that conversion) that is then passed to the function.
In both cases, main() checks argc to ensure that 2 (or more) arguments have been passed to it.
In many C++ IDE's and compilers, when it generates the main function for you, it looks like this:
int main(int argc, char *argv[])
When I code C++ without an IDE, just with a command line compiler, I type:
int main()
without any parameters. What does this mean, and is it vital to my program?
argv and argc are how command line arguments are passed to main() in C and C++.
argc will be the number of strings pointed to by argv. This will (in practice) be 1 plus the number of arguments, as virtually all implementations will prepend the name of the program to the array.
The variables are named argc (argument count) and argv (argument vector) by convention, but they can be given any valid identifier: int main(int num_args, char** arg_strings) is equally valid.
They can also be omitted entirely, yielding int main(), if you do not intend to process command line arguments.
Try the following program:
#include <iostream>
int main(int argc, char** argv) {
std::cout << "Have " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << argv[i] << std::endl;
}
}
Running it with ./test a1 b2 c3 will output
Have 4 arguments:
./test
a1
b2
c3
argc is the number of arguments being passed into your program from the command line and argv is the array of arguments.
You can loop through the arguments knowing the number of them like:
for(int i = 0; i < argc; i++)
{
// argv[i] is the argument at index i
}
Suppose you run your program thus (using sh syntax):
myprog arg1 arg2 'arg 3'
If you declared your main as int main(int argc, char *argv[]), then (in most environments), your main() will be called as if like:
p = { "myprog", "arg1", "arg2", "arg 3", NULL };
exit(main(4, p));
However, if you declared your main as int main(), it will be called something like
exit(main());
and you don't get the arguments passed.
Two additional things to note:
These are the only two standard-mandated signatures for main. If a particular platform accepts extra arguments or a different return type, then that's an extension and should not be relied upon in a portable program.
*argv[] and **argv are exactly equivalent, so you can write int main(int argc, char *argv[]) as int main(int argc, char **argv).
int main();
This is a simple declaration. It cannot take any command line arguments.
int main(int argc, char* argv[]);
This declaration is used when your program must take command-line arguments. When run like such:
myprogram arg1 arg2 arg3
argc, or Argument Count, will be set to 4 (four arguments), and argv, or Argument Vectors, will be populated with string pointers to "myprogram", "arg1", "arg2", and "arg3". The program invocation (myprogram) is included in the arguments!
Alternatively, you could use:
int main(int argc, char** argv);
This is also valid.
There is another parameter you can add:
int main (int argc, char *argv[], char *envp[])
The envp parameter also contains environment variables. Each entry follows this format:
VARIABLENAME=VariableValue
like this:
SHELL=/bin/bash
The environment variables list is null-terminated.
IMPORTANT: DO NOT use any argv or envp values directly in calls to system()! This is a huge security hole as malicious users could set environment variables to command-line commands and (potentially) cause massive damage. In general, just don't use system(). There is almost always a better solution implemented through C libraries.
The parameters to main represent the command line parameters provided to the program when it was started. The argc parameter represents the number of command line arguments, and char *argv[] is an array of strings (character pointers) representing the individual arguments provided on the command line.
The main function can have two parameters, argc and argv. argc is an integer (int) parameter, and it is the number of arguments passed to the program.
The program name is always the first argument, so there will be at least one argument to a program and the minimum value of argc will be one. But if a program has itself two arguments the value of argc will be three.
Parameter argv points to a string array and is called the argument vector. It is a one dimensional string array of function arguments.
Lets consider the declaration:
int main (int argc, char *argv[])
In the above declaration, the type of the second parameter named argv is actually a char**. That is, argv is a pointer to a pointer to a char. This is because a char* [] decays to a char** due to type decay. For example, the below given declarations are equivalent:
int main (int argc, char *argv[]); //first declaration
int main (int argc, char **argv); //RE-DECLARATION. Equivalent to the above declaration
In other words, argv is a pointer that points to the first element of an array with elements of type char*. Moreover, each elements argv[i] of the array(with elements of type char*) itself point to a character which is the start of a null terminated character string. That is, each element argv[i] points to the first element of an array with elements of type char(and not const char). A diagram is given for illustration purposes:
As already said in other answers, this form of declaration of main is used when we want to make use of the command line argument(s).
The first parameter is the number of arguments provided and the second parameter is a list of strings representing those arguments.
Both of
int main(int argc, char *argv[]);
int main();
are legal definitions of the entry point for a C or C++ program. Stroustrup: C++ Style and Technique FAQ details some of the variations that are possible or legal for your main function.
In case you learn something from this
#include<iostream>
using namespace std;
int main(int argc, char** argv) {
cout << "This program has " << argc << " arguments:" << endl;
for (int i = 0; i < argc; ++i) {
cout << argv[i] << endl;
}
return 0;
}
This program has 3 arguments. Then the output will be like this.
C:\Users\user\Desktop\hello.exe
hello
people
When using int and char**, the first argument will be the number of commands in by which the programs is called and second one is all those commands
Just to add because someone says there is a third parameter (*envp[]), it's true, there is, but is not POSIX safe, if you want your program to use environment variables you should use extern char environ ;D
In many C++ IDE's and compilers, when it generates the main function for you, it looks like this:
int main(int argc, char *argv[])
When I code C++ without an IDE, just with a command line compiler, I type:
int main()
without any parameters. What does this mean, and is it vital to my program?
argv and argc are how command line arguments are passed to main() in C and C++.
argc will be the number of strings pointed to by argv. This will (in practice) be 1 plus the number of arguments, as virtually all implementations will prepend the name of the program to the array.
The variables are named argc (argument count) and argv (argument vector) by convention, but they can be given any valid identifier: int main(int num_args, char** arg_strings) is equally valid.
They can also be omitted entirely, yielding int main(), if you do not intend to process command line arguments.
Try the following program:
#include <iostream>
int main(int argc, char** argv) {
std::cout << "Have " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << argv[i] << std::endl;
}
}
Running it with ./test a1 b2 c3 will output
Have 4 arguments:
./test
a1
b2
c3
argc is the number of arguments being passed into your program from the command line and argv is the array of arguments.
You can loop through the arguments knowing the number of them like:
for(int i = 0; i < argc; i++)
{
// argv[i] is the argument at index i
}
Suppose you run your program thus (using sh syntax):
myprog arg1 arg2 'arg 3'
If you declared your main as int main(int argc, char *argv[]), then (in most environments), your main() will be called as if like:
p = { "myprog", "arg1", "arg2", "arg 3", NULL };
exit(main(4, p));
However, if you declared your main as int main(), it will be called something like
exit(main());
and you don't get the arguments passed.
Two additional things to note:
These are the only two standard-mandated signatures for main. If a particular platform accepts extra arguments or a different return type, then that's an extension and should not be relied upon in a portable program.
*argv[] and **argv are exactly equivalent, so you can write int main(int argc, char *argv[]) as int main(int argc, char **argv).
int main();
This is a simple declaration. It cannot take any command line arguments.
int main(int argc, char* argv[]);
This declaration is used when your program must take command-line arguments. When run like such:
myprogram arg1 arg2 arg3
argc, or Argument Count, will be set to 4 (four arguments), and argv, or Argument Vectors, will be populated with string pointers to "myprogram", "arg1", "arg2", and "arg3". The program invocation (myprogram) is included in the arguments!
Alternatively, you could use:
int main(int argc, char** argv);
This is also valid.
There is another parameter you can add:
int main (int argc, char *argv[], char *envp[])
The envp parameter also contains environment variables. Each entry follows this format:
VARIABLENAME=VariableValue
like this:
SHELL=/bin/bash
The environment variables list is null-terminated.
IMPORTANT: DO NOT use any argv or envp values directly in calls to system()! This is a huge security hole as malicious users could set environment variables to command-line commands and (potentially) cause massive damage. In general, just don't use system(). There is almost always a better solution implemented through C libraries.
The parameters to main represent the command line parameters provided to the program when it was started. The argc parameter represents the number of command line arguments, and char *argv[] is an array of strings (character pointers) representing the individual arguments provided on the command line.
The main function can have two parameters, argc and argv. argc is an integer (int) parameter, and it is the number of arguments passed to the program.
The program name is always the first argument, so there will be at least one argument to a program and the minimum value of argc will be one. But if a program has itself two arguments the value of argc will be three.
Parameter argv points to a string array and is called the argument vector. It is a one dimensional string array of function arguments.
Lets consider the declaration:
int main (int argc, char *argv[])
In the above declaration, the type of the second parameter named argv is actually a char**. That is, argv is a pointer to a pointer to a char. This is because a char* [] decays to a char** due to type decay. For example, the below given declarations are equivalent:
int main (int argc, char *argv[]); //first declaration
int main (int argc, char **argv); //RE-DECLARATION. Equivalent to the above declaration
In other words, argv is a pointer that points to the first element of an array with elements of type char*. Moreover, each elements argv[i] of the array(with elements of type char*) itself point to a character which is the start of a null terminated character string. That is, each element argv[i] points to the first element of an array with elements of type char(and not const char). A diagram is given for illustration purposes:
As already said in other answers, this form of declaration of main is used when we want to make use of the command line argument(s).
The first parameter is the number of arguments provided and the second parameter is a list of strings representing those arguments.
Both of
int main(int argc, char *argv[]);
int main();
are legal definitions of the entry point for a C or C++ program. Stroustrup: C++ Style and Technique FAQ details some of the variations that are possible or legal for your main function.
In case you learn something from this
#include<iostream>
using namespace std;
int main(int argc, char** argv) {
cout << "This program has " << argc << " arguments:" << endl;
for (int i = 0; i < argc; ++i) {
cout << argv[i] << endl;
}
return 0;
}
This program has 3 arguments. Then the output will be like this.
C:\Users\user\Desktop\hello.exe
hello
people
When using int and char**, the first argument will be the number of commands in by which the programs is called and second one is all those commands
Just to add because someone says there is a third parameter (*envp[]), it's true, there is, but is not POSIX safe, if you want your program to use environment variables you should use extern char environ ;D