Good way to handle collisions between mass-spring systems - c++

I am programming a C++ simulation application in which several mass-spring structures will move and collide and I'm currently struggling with the collision detection and response part. These structures might or might not be closed (it might be a "ball" or just a chain of masses and springs) so it is (I think) impossible to use a "classic" approach where we test for 2 overlapping shapes.
Furthermore, the collisions are a really important part of that simulation and I need them to be as accurate as possible, both in terms of detection and response (real time is not a constraint here). I want to be able to know the forces applied to each Nodes (the masses), as far as possible.
At the moment I am detecting collisions between Nodes and springs at each time step, and the detection seems to work. I can compute the time of collision between one node and a spring, and thus find the exact position of the collision. However, I am not sure if this is the right approach for this problem and after lots of researches I can't quite find a way to make things work properly, mainly on the response aspect of the collisions.
Thus I would really like to hear from any technique, algorithm or library that seems well suited for this kind of collisions problems or any idea you might have to make this work. Really, any kind of help will be greatly appreciated.

If you can meet the following conditions:
0) All collisions are locally binary - that is to say
collisions only occur for pairs of particles, not triples etc,
1) you can predict the future time for a collision between
objects i and j from knowledge of their dynamics (assuming that no other
collision occurs first)
2) you know how to process the physics/dynamicseac of the collision
then you should be able to do the following:
Let Tpq be the predicted time for a collision between particles p and q, and Vp (Vq) be a structure holding the local dynamics of each particle p (q) (i.e its velocity, position, spring-constants, whatever)
For n particles...
Initialise by calculating all Tpq (p,q in 1..n)
Store the n^2 values of Tpq in a Priority Queue (PQ)
repeat
extract first Tpq from the PQ
Advance the time to Tpq
process the collision (i.e. update Vp and Vq according to your dynamics)
remove all Tpi, and Tiq (i in 1..n) from the PQ
// these will be invalid now as the changes in Vp, Vq means the
// previously calculated collision of p and q with any other particle
// i might occur sooner, later or not at all
recalculate new Tpi and Tiq (i in 1..n) and insert in the PQ
until done
There is an o(n^2) initial setup cost, but the repeat loop should be O(nlogn) - the cost of removing and replacing the 2n-1 invalidated collisions. This is fairly efficient for moderate numbers of particles (up to hundreds). It has the benefit that you only need to process things at collision time, rather than for equally spaced time steps. This makes things particularly efficient for a sparsely populated simulation.

I guess an octree approach would do best with your problem. An octree devides the virtual space into several recursive leaves of a tree and lets you compute possible collisions between the most probable nodes.
Here a short introduction: http://www.flipcode.com/archives/Introduction_To_Octrees.shtml :)

Related

Is a KD tree still one of the best algorithms to use on moving objects

Say you have a list of objects and every object needs to calculate his closest object to shoot. This object has a x and a y value. Also the objects are moving. Will a kd tree still be usefull? I am not sure because if the objects are moving you have to keep creating this kd tree.
What algorithm can i use for the best speed (Preferably with Big O)
The k-d tree is a very, very efficient data structure to determine closest neighbors in a euclidian space with cooordinates.
It would take a really huge number of objects to have issues with a k-d tree generation (it is generated in O(n logĀ²n), so almost linear time, and search of all nearest neighbors takes O(n log n), very cheap too). So you would probably have issues with the rest of the program as well.
From the look of your question, it seems that all you need to keep track of is the closest neighbor of a number of points in a euclidian space. I'd suggest you to start with a vanilla implementation of a k-d tree, and, in the extreme and unlikely case where the generation of the k-d tree would be too costy in terms of time, or of memory, to try and find a way to keep track of several neighbors for each element, and update the list only when needed.
But honestly, I've been working with k-d tree in the past, and I remember that despite the data set being quite big (dozens of millions of points in a 2D space), the generation and search were fast enough to seem negligible w.r.t the other operations.

When should I find the min and max for a BoundingBox attached to a Model

I'm working on implementing a ModelClass for any 3D model in my DirectX 11/12 pipeline.
My specific problem lies within calculating the min and max for the BoundingBox structure I wish to use as a member of the ModelClass.
I have two approaches to calculating them.
Approach 1.
When each vertex is being read from file, store a current minx,y,z and maxx,y,z and check each vertex as it is loaded in against the current min/max x,y,z.
Approach 2.
After all the vertices have been loaded, sort them by x, then y, then z, finding the lowest and highest value at each point.
Which Approach would you recommend and why?
Approach 1
Time complexity is in O(n) and memory complexity is O(1).
It is simple to implement.
Approach 2
Time complexity is O(nLogn) memory complexity is potentially at least linear (if you make a copy of the arrays or if you use merge sort) or O(1) if you use an in place sorting algorithm like quicksort.
This has to be done 3 times one for each dimension.
All in all Approach 1 is best in all scenarios I can think of.
Sorting generally is not a cheap operation especially as your models are getting larger. Therefore it to me like Approach 1 is more efficient but if unsure I suggest measuring it see which one takes longer.
If you are using a library like Asspimp I believe the library takes care of bounding boxes but this might not be an option if you create the pipeline as a learning opportunity.

How can I remove too close points in a list

I have a list of points with x,y coordinates:
List_coord=[(462, 435), (491, 953), (617, 285),(657, 378)]
This list lenght (4 element here) can be very large from few hundred up to 35000 elements.
I want to remove too close points by threshold in this list.
note:Points are never at the exact same position.
My current code for that:
while iteration<5:
for pt in List_coord:
for PT in List_coord:
if (abs(pt[0]-PT[0])+abs(pt[1]-PT[1]))!=0 and abs(pt[0]-PT[0])<threshold and abs(pt[1]-PT[1])<threshold:
List_coord.remove(PT)
iteration=iteration+1
Explication of my terrible code :) :
I check if the very distance is 0 then it means that i am comparing
the same point
then i check the distance in x and in y..
Iteration:
I need few iterations to avoid missing one remove because the list change inside the loop itself...
This code is working but it is a very low process!
I am sure there is another method much easier but i wasn't able to find even if some allready answered questions are close to mine..
note:I would like to avoid using extra library for that code if it is possible
Python will be a bit slow at this ;-)
The solution you will probably want is called quad-trees, but I'll mention a simpler approach first, in case it's preferable.
The usual approach is to group the points so that you can easily reject points that are clearly far away from each other.
One approach might be to sort the list twice, once by x once by y. You can prove that if two points are too-close, they must be close in one dimension or the other. Thus your inner loop can break out early. If it sees a point that is too far away from the outer point in the sorted direction, it can know for a fact that all future points in that list are also too far away. Thus it doesn't have to look any further. Do this in X and Y and you're set!
This approach is going to tend to be dominated by the O(n log n) sort times. However, if all of your points share a single x value, you'll end up doing the same slow O(n^2) iteration that you're doing right now because you never terminate the inner loop early.
The more robust solution is to use quadtrees. Quadtrees are designed to solve the kind of problem you are looking at. The idea is to build a tree such that you can rapidly exclude large numbers of points. I'd recommend this.
If your number of points gets too large, I'd recommend getting a clustering library. Efficient clustering is a very difficult task, and often done in C++ or another fast language.

O(n^log n) algorithm for collision detection

I'm building a game engine and I was wondering: are there any algorithms out there for Collision Detection that have time complexity of O(N^log N)?
I haven't written any coding yet, but I can only think of a O(N^2) algorithm (ie: 2 for-loops looping through a list of object to see if there's collision).
Any advice and help will be appreciated.
Thanks
Spatial partitioning can create O(n log(n)) solutions. Depending on the exact structure and nature of your objects, you'll want a different spatial partitioning algorithm, but the most common are octrees and BSP.
Basically, the idea of spatial partitioning is to group objects by the space they occupy. An object in node Y can never collide with an object in node X (unless X is a subnode of Y or vice versa). Then you partition the objects by which go in which nodes. I implemented an octree myself.
You can minimize the number of checks by sorting the objects into areas of space.
( There is no point in checking for a collision between an object near 0,0 and one near 1000,1000 )
The obvious solution would be to succesively divide your space in half and use a tree (BSP) structure. Although this works best for sparse clouds of objects, otherwise you spend all the time checking if an object near a boundary hits an object just on the other side of the boundary
I assume you have a restricted interaction length, i.e. when two objects are a certain distance, there is no more interaction.
If that is so, you normally would divide your space into domains of appropriate size (e.g. interaction length in each direction). Now, for applying the interaction to a particle, all you need to do is go through its own domain and the nearest neighbor domains, because all other particles are guaranteed further away than the interaction length is. Of course, you must check at particle updates whether any domain boundary is crossed, and adjust the domain membership accordingly. This extra bookkeeping is no problem, considering the enormous performance improvement due to the lowered interacting pair count.
For more tricks I suggest a scientific book about numerical N-Body-Simulation.
Of course each domain has its own list of particles that are in that domain. There's no use having a central list of particles in the simulation and going through all entries to check on each one whether it's in the current or the neighboring domains.
I'm using oct-tree for positions in 3D, which can be quite in-homogeneously distributed. The tree (re-)build is usually quite fast, bot O(N log(N)). Then finding all collisions for a given particle can be done in O(K) with K the number of collisions per particle, in particular there is no factor log(N). So, to find all collisions then need O(K*N), after the tree build.

Hard sorting problem - what type of algorithm should I be using?

The problem:
N nodes are related to each other by a 'closeness' factor ranging from 0 to 1, where a factor of 1 means that the two nodes have nothing in common and 0 means the two nodes are exactly alike.
If two nodes are both close to another node (i.e. they have a factor close to 0) then this doesn't mean that they will be close together, although probabilistically they do have a much higher chance of being close together.
-
The question:
If another node is placed in the set, find the node that it is closest to in the shortest possible amount of time.
This isn't a homework question, this is a real world problem that I need to solve - but I've never taken any algorithm courses etc so I don't have a clue what sort of algorithm I should be researching.
I can index all of the nodes before another one is added and gather closeness data between each node, but short of comparing all nodes to the new node I haven't been able to come up with an efficient solution. Any ideas or help would be much appreciated :)
Because your 'closeness' metric obeys the triangle inequality, you should be able to use a variant of BK-Trees to organize your elements. Adapting them to real numbers should simply be a matter of choosing an interval to quantize your number on, and otherwise using the standard Bk-Tree procedure. Some experimentation may be required - you might want to increase the resolution of the quantization as you progress down the tree, for instance.
but short of comparing all nodes to
the new node I haven't been able to
come up with an efficient solution
Without any other information about the relationships between nodes, this is the only way you can do it since you have to figure out the closeness factor between the new node and each existing node. A O(n) algorithm can be a perfectly decent solution.
One addition you might consider - keep in mind we have no idea what data structure you are using for your objects - is to organize all present nodes into a graph, where nodes with factors below a certain threshold can be considered connected, so you can first check nodes that are more likely to be similar/related.
If you want the optimal algorithm in terms of speed, but O(n^2) space, then for each node create a sorted list of other nodes (ordered by closeness).
When you get a new node, you have to add it to the indexed list of all the other nodes, and all the other nodes need to be added to its list.
To find the closest node, just find the first node on any node's list.
Since you already need O(n^2) space (in order to store all the closeness information you need basically an NxN matrix where A[i,j] represents the closeness between i and j) you might as well sort it and get O(1) retrieval.
If this closeness forms a linear spectrum (such that closeness to something implies closeness to other things that are close to it, and not being close implies not being close to those close), then you can simply do a binary or interpolation sort on insertion for closeness, handling one extra complexity: at each point you have to see if closeness increases or decreases below or above.
For example, if we consider letters - A is close to B but far from Z - then the pre-existing elements can be kept sorted, say: A, B, E, G, K, M, Q, Z. To insert say 'F', you start by comparing with the middle element, [3] G, and the one following that: [4] K. You establish that F is closer to G than K, so the best match is either at G or to the left, and we move halfway into the unexplored region to the left... 3/2=[1] B, followed by E, and we find E's closer to F, so the match is either at E or to its right. Halving the space between our earlier checks at [3] and [1], we test at [2] and find it equally-distant, so insert it in between.
EDIT: it may work better in probabilistic situations, and require less comparisons, to start at the ends of the spectrum and work your way in (e.g. compare F to A and Z, decide it's closer to A, see if A's closer or the halfway point [3] G). Also, it might be good to finish with a comparison to the closest few points either side of where the binary/interpolation led you.
ACM Surveys September 2001 carried two papers that might be relevant, at least for background. "Searching in Metric Spaces", lead author Chavez, and "Searching in High Dimensional Spaces - Index Structures for Improving the Performance of Multimedia Databases", lead author Bohm. From memory, if all you have is the triangle inequality, you can use it to some effect, but if you can trim your data down to a sensible number of dimensions, you can do better by using a search structure that knows about this dimensional structure.
Facebook has this thing where it puts you and all of your friends in a graph, then slowly moves everyone around until people are grouped together based on mutual friends and so on.
It looked to me like they just made anything <0.5 an attractive force, anything >0.5 a repulsive force, and moved people with every iteration based on the net force. After a couple hundred iterations, it was looking pretty darn good.
Note: this is not an algorithm it is a heuristic. In the facebook implementation I saw, two people were not able to reach equilibrium and kept dancing around each other. It turns out they were actually the same person with two different accounts.
Also, it took about 15 minutes on a decent computer and ~100 nodes. YMMV.
It looks suspiciously like a Nearest Neighbor Search problem (also called a similarity search)