Function overloading resolution with const - c++

Consider this
#include <iostream>
class A
{
public:
void fun(int x) const
{
std::cout<<"int x"<<std::endl;
}
void fun(const int x)
{
std::cout<<"const int x"<<std::endl;
}
void fun(int &x)
{
std::cout<<"int &x"<<std::endl;
}
void fun(const int &x)
{
std::cout<<"const int &x"<<std::endl;
}
};
int main()
{
A obj;
int a = 10;
const int b = 10;
int& ref = a;
const int& ref1 = b;
obj.fun(a);
obj.fun(b);
obj.fun(ref);
obj.fun(ref1);
return 0;
}
Compiling this get ambiguities but none of them says its due to fun(const int x) but removing this makes code getting compiled correctly
What difference does it make when we make a argument const ex- fun(const int& x)
and a function itself const ex - fun(int x) const while overload resolution
There are some more doubts trying various combinations, so any generic answer explaining the role of const while overload resolution is welcome

Top level const is ignored on a declaration, so fun(const int x) is same as fun(int x).
Certainly it will conflict with the ref versions and hardly makes any sense. If you hunt for rvalues add fun(int &&x), though its normally used with user defined types
The const after the () qualifies the object instance -- the this pointer. Seleced when you would use const A obj.

Related

Why does C++ give preference to rvalue reference over const reference while function call? [duplicate]

This question already has an answer here:
Overload resolution between object, rvalue reference, const reference
(1 answer)
Closed 9 months ago.
So I wrote a code in C++ 11
#include <iostream>
using namespace std;
void print (int &&a)
{
cout<<"rval ref";
}
void print (const int& a)
{
cout<<"const ref";
}
int main()
{
print(9);
}
The output of code was fascinating that it is "rval refernce"
But if I rewrite the code just removing a function defination:
#include <iostream>
using namespace std;
void print (const int& a)
{
cout<<"const ref";
}
int main()
{
print(9);
}
I get output as "const ref"
Edit:
There's one more thing here if I rewrite code again as
#include <iostream>
using namespace std;
void print (int &&a)
{
cout<<"rval ref";
}
void print (const int&& a)
{
cout<<"const ref";
}
int main()
{
print(9);
}
Still its printing "rval ref" , please explain the logic
Can someone explain why C++ give preference to && over const while passing a ravlue as argument ?## Heading ##
Lets see on case by case basis what is happening:
Case 1
Here we consider:
void print (int &&a)
{
cout<<"rval ref";
}
void print (const int& a)
{
cout<<"const ref";
}
int main()
{
print(9); //chooses print(int&&) version
}
The behavior of this case 1 can be understood from over.ics.rank which states:
3.2 Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence S2 if
S1 and S2 are reference bindings ([dcl.init.ref]) and neither refers to an implicit object parameter of a non-static member function declared without a ref-qualifier, and S1 binds an rvalue reference to an rvalue and S2 binds an lvalue reference.
(emphasis mine)
This means that in your this case 1, the version with int&& is preferred over const int&.
Case 2
Here we consider:
void print (const int& a)
{
cout<<"const ref";
}
int main()
{
print(9); //chooses the only viable and available option print(const int&)
}
Here in case 2, since an lvalue reference to const object is allowed to bind to an rvalue, the provided print(const int&) is viable and is the only one available and hence is selected.
Case 3
Here we consider:
void print (int &&a)
{
cout<<"rval ref";
}
void print (const int&& a)
{
cout<<"const ref";
}
int main()
{
print(9);
}
Now, this chooses the first version print(int&&) because 9 is an int prvalue and not a const int prvalue. Note also that for a const int prvalue, its const will be stripped off before any further analysis and so the first version print(int&&) will be selected. This is as specified in expr#6:
If a prvalue initially has the type cv T, where T is a cv-unqualified non-class, non-array type, the type of the expression is adjusted to T prior to any further analysis.
This means that for class type const prvalues the second version of the function print with print(const C&&) will be selected unlike the built in type int as demonstrated below.
struct C
{
C()
{
std::cout<<"default ctor"<<std::endl;
}
};
void print (C &&a)
{
cout<<"rval ref";
}
void print (const C&& a)
{
cout<<"const ref";
}
const C func()
{
const C temp;
return temp;
}
int main()
{
print(func()); //prints const ref
}
The output of the above program for class type C is:
default ctor
const ref
As is evident from the above example, for class types the second version of print with const C&& will be selected.

Return function type example in C++

Current get() member function in class MyClass is defined as below, the return type is const int&. My question is what would be the difference if I defined get() function as
int& get() const
or
int get() const
? And which way is recommended?
#include <iostream>
using namespace std;
class MyClass {
int x;
public:
MyClass(int val) : x(val) {}
const int& get() const {return x;}
};
void print (const MyClass& arg) {
cout << arg.get() << '\n';
}
int main() {
MyClass foo (10);
print(foo);
return 0;
}
There's really nothing wrong with this code; logically it accomplishes more or less the same thing after the compiler inlines the get() method.
There's quite a big difference in some degenerate callers though:
const int *iptr = &foo.get(); // returns the address of x in the class.
On the other hand had you declared as follows:
class MyClass {
int x;
public:
MyClass(int val) : x(val) {}
const int get() const {return x;}
};
const int *iptr = &foo.get(); // Error!
I don't see any good reason for int& here. If you don't have one, people will frown on this code. Normally if people are expected to keep pointers to things around you don't return them by reference. The only reason you would want to return a pointer to a member is so that somebody can auto-pickup changes to it; and I have never seen a good use for that though I can imagine why some such thing might exist.
As for selbie's comment about assigning to it; it's a const reference; assigning to it is a compile time error.

What does const lambda mean?

#include <iostream>
int foo(int i)
{
const auto a = [&i](){ i = 7; return i * i; };
a();
return i;
}
int main()
{
std::cout << foo(42) << std::endl;
return 0;
}
This compiles( g++ -std=c++11 -Wall -Wextra -Wpedantic main.cpp ) and returns 49. Which is surprising to me, because by declaring a to be a constant object, I would have expected i to be referenced as const int&. It clearly isn't, why?
Lambdas are just like non-lambdas, except their implementation details are hidden. Therefore, it may be easier to explain using a non-lambda functor:
#include <iostream>
int foo(int i)
{
struct F {
int &i;
int operator()() const { i = 7; return i * i; }
};
const F a {i};
a();
return i;
}
int main()
{
std::cout << foo(42) << std::endl;
return 0;
}
F has a int & reference member i. const F cannot have its instance data modified, but a modification to i isn't a modification to its instance data. A modification to its instance data would be re-binding i to another object (which isn't allowed anyway).
[&i](){ i = 7; return i * i; }
is mainly equivalent to
class Lambda
{
public:
Lambda(int& arg_i) : i(arg_i) {}
auto operator() () const { i = 7; return i * i;}
private:
int& i;
};
And so then you have:
const Lambda a(i);
a();
And the const Lambda won't promote its member to const int& i; but int& const i; which is equivalent to int& i;.
When you capure i it is captured as the type it is.
So internally it has a int&. A const before the variable declaration of the closure does not change anything for the lambda.
You have 2 options to solve this:
const int i = 5;
auto b = [&i]() { i++; }; //error on i++
This way a const int& will be captured.
If you cannot change i for some reasons you can do this in c++14
int i = 5;
auto b = [i = static_cast<const int&>(i)]() { i++; }; //error on i++
This casts the int& to a const int& and will be stored as such in the lambda. Though this is way more verbose as you can see.
In the code you gave:
int foo(int i)
{
const auto a = [&i](){ i = 7; return i * i; };
a();
return i;
}
You are not assigning after you initialized your constant lambda function. Therefore, const doesn't mean much in this context.
What you have declared as const it isn't the context of your anonymous function or lambda exspression and its parameters, but only the reference at that lambda expression: const auto a.
Therefore, you cannot change the value of your lambda expr reference a because it is const, but its parameter passed by reference, &i, can be changed within the context of lambda expression.
If I understand correctly, the question is why you're allowed to mutate i even though a is const and presumably contains a reference to i as a member.
The answer is that it's for the same reason that you're allowed to do this on any object - assigning to i doesn't modify the lambda instance, it modifies an object it refers to.
Example:
class A
{
public:
A(int& y) : x(y) {}
void foo(int a) const { x = a; } // But it's const?!
private:
int& x;
};
int main()
{
int e = 0;
const A a(e);
a.foo(99);
std::cout << e << std::endl;
}
This compiles, and prints "99", because foo isn't modifying a member of a, it's modifying e.
(This is slightly confusing, but it helps to think about which objects are being modified and disregard how they're named.)
This "const, but not really" nature of const is a very common source of confusion and annoyance.
This is exactly how pointers behave, where it's more obviously not wrong:
class A
{
public:
A(int* y) : x(y) {}
void foo(int a) const { *x = a; } // Doesn't modify x, only *x (which isn't const).
private:
int* x;
};

C++ Force const-ness of lvalue in initializer expression

I would like the compiler to enforce const-ness of an lvalue (non-reference) but don't know if this is possible in C++. An example:
int foo() { return 5; }
int main() {
// Is there anything I can add to the declaration of foo()
// that would make the following cause a compile-error?
int a = foo();
// Whereas this compiles fine.
const int a = foo();
}
This is not really possible with something like an int because you need to give access to read the int and if they can read the int then they can copy it into a non-const int.
But from your comments it sounds like what you have in reality is not an int but a more complex user defined type, some sort of container perhaps. You can easily create an immutable container. This container could be a wrapper, or alternative implementation of your existing container. It then doesn't matter if the caller uses a const or non-const variable it is still immutable.
class MyClass {
std::vector<int> data;
public:
MyClass(size_t size) : data(size) {}
int& operator[](size_t index) { return data[index]; }
int operator[](size_t index) const { return data[index]; }
size_t size() const { return data.size(); }
};
class MyClassImmutable {
MyClass mc;
public:
MyClassImmutable(MyClass&& mc) : mc(std::move(mc)){}
int operator[](size_t index) const { return mc[index]; }
size_t size() const { return mc.size(); }
const MyClass& get() const { return mc; }
};
MyClassImmutable foo() {
MyClass mc(100);
mc[10] = 3;
return mc;
}
void func(const MyClass& mc);
int main() {
MyClassImmutable mci = foo();
std::cout << mci[10] << "\n"; // Can read individual values
//mci[10] = 4; // Error immutable
func(mc.get()); // call function taking a const MyClass&
}
Live demo.
Of course there is nothing to stop the caller from copying each and every value from your immutable container and inserting them into a mutable container.
Edit: An alternative approach might be to return a smart pointer-to-const. The only downside is you have to pay for a dynamic memory allocation:
std::unique_ptr<const MyClass> foo() {
auto mc = std::make_unique<MyClass>(100);
(*mc)[10] = 3;
return mc;
}
void func(const MyClass& mc);
int main() {
auto mc = foo();
std::cout << (*mc)[10] << "\n"; // Can read individual values
//(*mc)[10] = 4; // Error const
func(*mc); // can pass to a function taking a const MyClass&
}
It's not possible. foo() has no way of knowing about the type of the left hand side of the assignment, because when the assignment itself happens, foo() is already evaluated. The best you could hope for is to change the return value, to try and cause a type-based error on the initialization:
#include <type_traits>
struct my_int {
const int m;
template<typename T, typename std::enable_if<std::is_const<T>::value, T>::type* = nullptr>
constexpr operator T() const {return m;}
};
constexpr my_int foo() { return {5};}
int main() {
const int a = foo();
int b = foo();
}
Live example
But this will also not work, because the typename in the template will never be substitued by a const-qualified type (in this specific case, it will be int for both lines in main()).
As the following is possible
const int x = 4;
int y = x;
the C++ language will not provide such a mechanism.
Remains making a int const by a macro mechanism.
#define int_const_foo(var) const int var = ___foo()
int_const_foo(a);
Drawback: foo cannot be hidden, and the syntax is no longer C style.

Member-Function Pointers With Default Arguments

I am trying to create a pointer to a member function which has default arguments. When I call through this function pointer, I do not want to specify an argument for the defaulted argument. This is disallowed according to the standard, but I have never before found anything that the standard disallowed that I could not do in some other conformant way. So far, I have not found a way to do this.
Here is code illustrating the problem I'm trying to solve:
class MyObj
{
public:
int foo(const char* val) { return 1; }
int bar(int val = 42) { return 2; }
};
int main()
{
MyObj o;
typedef int(MyObj::*fooptr)(const char*);
fooptr fp = &MyObj::foo;
int r1 = (o.*fp)("Hello, foo.");
typedef int(MyObj::*barptr)(int);
barptr bp1 = &MyObj::bar;
int r2 = (o.*bp1)(); // <-- ERROR: too few arguments for call
typedef int (MyObj::*barptr2)();
barptr2 bp2 = &MyObj::bar; // <-- ERROR: Can't convert from int(MyObj::*)(int) to int(MyObj::*)(void)
int r3 = (o.*bp2)();
return 0;
}
Any ideas on how to do this in conformant C++ if I do not want to specify any values for the defaulted arguments?
EDIT: To clarify the restrictions a bit. I do not want to specify any default arguments either in the call or in any typedef. For example, I do not want to do this:
typedef int(MyObj::*barptr)(int = 5);
...nor do I want to do this:
typedef int(MyObj::*barptr)(int);
...
(o.barptr)(5);
It would be rather strange to expect the function pointers to work the way you expect them to work in your example. "Default argument" is a purely compile-time concept, it is a form of syntactic sugar. Despite the fact that default arguments are specified in the function declaration or definition, they really have nothing to do with the function itself. In reality default arguments are substituted at the point of the call, i.e. they are handled in the context of the caller. From the function's point of view there's no difference between an explicit argument supplied by the user or a default one implicitly supplied by the compiler.
Function pointers, on the other hand, are run-time entities. They are initialized at run time. At run-time default arguments simply don't exist. There's no such concept as "run-time default arguments" in C++.
Some compilers will allow you to specify default arguments in function pointer declaration, as in
void foo(int);
int main() {
void (*pfoo)(int = 42) = foo;
pfoo(); // same as 'pfoo(42)'
}
but this is not standard C++ and this does not appear to be what you are looking for, since you want the "default argument " value to change at run time depending on the function the pointer is pointing to.
As long as you want to stick with genuine function pointers (as opposed to function objects, aka functors) the immediate workaround would be for you to provide a parameter-less version of your function under a different name, as in
class MyObj
{
public:
...
int bar(int val = 42) { return 2; }
int bar_default() { return bar(); }
};
int main()
{
MyObj o;
typedef int (MyObj::*barptr2)();
barptr2 bp2 = &MyObj::bar_default;
int r3 = (o.*bp2)();
return 0;
}
This is, of course, far from elegant.
One can actually argue that what I did above with bar_default could have been implicitly done by the compiler, as a language feature. E.g. given the class definition
class MyObj
{
public:
...
int bar(int val = 42) { return 2; }
...
};
one might expect the compiler to allow the following
int main()
{
MyObj o;
typedef int (MyObj::*barptr2)();
barptr2 bp2 = &MyObj::bar;
int r3 = (o.*bp2)();
return 0;
}
where the pointer initialization would actually force the compiler to implicitly generate an "adapter" function for MyObj::bar (same as bar_default in my previous example), and set bp2 to point to that adaptor instead. However, there's no such feature in C++ language at this time. And to introduce something like that would require more effort than it might seem at the first sight.
Also note that in the last two examples the pointer type is int (MyObj::*)(), which is different from int (MyObj::*)(int). This is actually a question to you (since you tried both in your example): how would you want it to work? With an int (MyObj::*)() pointer? Or with a int (MyObj::*)(int) pointer?
You could create functors instead of function pointers of course.
struct MyFunctor {
int operator() {
return myobj.bar();
}
MyFunctor(MyObj &obj) : myobj(obj) {}
MyObj &myobj;
};
then:
MyFunctor myfunc(o);
myFunctor();
This is not possible given the constraints. Your options are:
Using function wrappers.
Using Functors.
Check out Boost for some handy tools to simplify this.
Task: Suppose you have the following:
class Thing {
public:
void foo (int, double = 3.14) const {std::cout << "Thing::foo(int, double = 3.14) called.\n";}
void goo (int, double = 1.5) const {std::cout << "Thing::goo(int, double = 1.5) called.\n";}
};
void function1 (const Thing& thing, int a, int b, double c) {
// Code A
thing.foo(a,c);
// Code B
thing.foo(b);
// Code C
}
void function2 (const Thing& thing, int a, int b, double c) {
// Code A
thing.goo(a,c);
// Code B
thing.goo(b);
// Code C
}
We want to write a helper function to capture function1 and function2 so that the repeated codes A, B, C need not be written twice.
The following will not compile:
class Thing {
public:
void foo (int, double = 3.14) const {std::cout << "Thing::foo(int, double = 3.14) called.\n";}
void goo (int, double = 1.5) const {std::cout << "Thing::goo(int, double = 1.5) called.\n";}
};
void functionHelper (const Thing& thing, int a, int b, double c, void (Thing::*f)(int, double) const) {
// Code A
(thing.*f)(a,c);
// Code B
// (thing.*f)(b); // Won't compile. Too few arguments passed to (thing.*f), which expects (int, double).
// Code C
}
void function1 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, &Thing::foo);
}
void function2 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, &Thing::goo);
}
First solution (overload of Thing::foo and Thing::goo):
#include <iostream>
class Thing {
public:
void foo (int, double = 3.14) const {std::cout << "Thing::foo(int, double = 3.14) called.\n";}
void foo_default (int a) const {
std::cout << "Thing::foo_default(int) called.\n";
foo(a);
}
void goo (int, double = 1.5) const {std::cout << "Thing::goo(int, double = 1.5) called.\n";}
void goo_default (int a) const {
std::cout << "Thing::goo_default(int) called.\n";
goo(a);
}
};
void functionHelper (const Thing& thing, int a, int b, double c,
void (Thing::*f)(int, double) const, void (Thing::*g)(int) const) {
// Code A
(thing.*f)(a,c);
// Code B
(thing.*g)(b); // This will compile now, since (thing.*g) expects int only as argument.
// Code C
}
void function1 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, &Thing::foo, &Thing::foo_default);
}
void function2 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, &Thing::goo, &Thing::goo_default);
}
int main() {
Thing thing;
function1 (thing, 2, 5, 1.8);
std::cout << '\n';
function2 (thing, 2, 5, 1.8);
}
Output:
Thing::foo(int, double = 3.14) called.
Thing::foo_default(int) called.
Thing::foo(int, double = 3.14) called.
Thing::goo(int, double = 1.5) called.
Thing::goo_default(int) called.
Thing::goo(int, double = 1.5) called.
Second solution (Wrap Thing::foo and Thing::goo into function objects):
#include <iostream>
#include <memory>
class Thing {
public:
void foo (int, double = 3.14) const {std::cout << "Thing::foo(int, double = 3.14) called.\n";}
void goo (int, double = 1.5) const {std::cout << "Thing::goo(int, double = 1.5) called.\n";}
class FooOrGoo {
public:
void operator()(const Thing& thing, int a) const {helper1 (thing, a);}
void operator()(const Thing& thing, int a, double b) {helper2 (thing, a, b);}
virtual ~FooOrGoo() {std::cout << "Thing::FooOrGoo object destroyed.\n";}
private:
virtual void helper1 (const Thing& thing, int a) const = 0;
virtual void helper2 (const Thing& thing, int a, double b) const = 0;
};
class Foo : public FooOrGoo {
virtual void helper1 (const Thing& thing, int a) const override {thing.foo(a);}
virtual void helper2 (const Thing& thing, int a, double b) const override {thing.foo(a, b);}
};
class Goo : public FooOrGoo {
virtual void helper1 (const Thing& thing, int a) const override {thing.goo(a);}
virtual void helper2 (const Thing& thing, int a, double b) const override {thing.goo(a, b);}
};
};
void functionHelper (const Thing& thing, int a, int b, double c, std::unique_ptr<Thing::FooOrGoo> f) {
// Code A
(*f)(thing, a,c);
// Code B
(*f)(thing, b);
// Code C
}
void function1 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, std::unique_ptr<Thing::Foo>(new Thing::Foo)); // 'std::make_unique<Thing::Foo>());' is not supported by GCC 4.8.1.
}
void function2 (const Thing& thing, int a, int b, double c) {
functionHelper (thing, a, b, c, std::unique_ptr<Thing::Goo>(new Thing::Goo)); // 'std::make_unique<Thing::Goo>());' is not supported by GCC 4.8.1.
}
int main() {
Thing thing;
function1 (thing, 2, 5, 1.8);
std::cout << '\n';
function2 (thing, 2, 5, 1.8);
}
Output:
Thing::foo(int, double = 3.14) called.
Thing::foo(int, double = 3.14) called.
Thing::FooOrGoo object destroyed.
Thing::goo(int, double = 1.5) called.
Thing::goo(int, double = 1.5) called.
Thing::FooOrGoo object destroyed.
Which solution do you think is better? I think the second one is more elegant, but there are more lines of code (I couldn't do it without polymorphism).