Class template can be instantiated without members? - c++

The Wikipedia article says this:
instantiating a class template does not cause its member definitions to be instantiated.
I can't imagine any class in C++ being instantiated, whether from a template or not, where that classes members were not also instantiated?

Many early C++ compilers instantiated all member functions, whether you ever called them or not.
Consider, for example, std::list, which has a sort member function. With a current, properly functioning compiler, you can instantiate list over a type that doesn't support comparison. If you try to use list::sort, it will fail, because you don't support comparison. As long as you don't call sort for that list, it's all fine though, because list<T>::sort won't be instantiated unless you call it.
With those older, poorly functioning compilers, however, trying to create list<T> meant that list<T>::sort was instantiated even though you never used it. The existence of list::sort meant that you needed to implement < for T, just to create a list<T>, even if you never actually used sort on a list of that type at all.

The standard clearly says that (both non-template and template) member methods instantiation should happen only when used.
An excerpt from C++ standard (N3690 - 14.7.1(2) Implicit instantiation)
2 Unless a member of a class template or a member template has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly instantiated when the specialization is referenced in a context that requires the member definition to exist; in particular, the initialization (and any associated side-effects) of a static data member does not occur unless the static data member is itself used in a way that requires the definition of the static data member to exist.

Methods of a class are also members. Class Template methods are instantiated when they are called for that instantiated class. So it is possible that those member methods are never instantiated.

Related

How to define a non-instantiable template class?

According to [temp.inst]:
Unless a class template specialization has been explicitly instantiated or explicitly specialized, the class template specialization is implicitly instantiated when the specialization is referenced in a context that requires a completely-defined object type or when the completeness of the class type affects the semantics of the program.
So if I get it right, it is possible to define a template class and use it without odr-use it. It then will not be instantiated.
My question: what is the more short and/or idiomatic way to define a non instantiable template class?
(I shouln'd ask two questions in one thread, but when does "the completeness of the class type [would] affect the semantics of the program"?)

When will implicit instantiation cause problems?

I'm reading C++ Primer, and it says:
"If a member function isn't used, it is not instantiated. The fact that members are instantiated only if we use them lets us instantiate a class with a type that may not meet the requirements for some of the template’s operations."
I don't know why this is a problem. If some operations are required, why doesn't compiler instantiate those operations? Can someone give an example?
That's an ease-of-use feature, not a pitfall.
Lazy instantiation serves to simplify templates. You can implement the set of all possible member functions that any specialization might have, even if some of the functions don't work for some specializations.
It also reduces compile time, since the compiler never needs to instantiate what you don't use.
To prevent lazy instantiation, use explicit instantiation:
template class my_template< some_arg >;
This will immediately instantiate all the members of the class (except members which are templates, inherited, or not yet defined). For templates that are slow to compile, you can do the above in one source file (translation unit) and then use the linker to bypass instantiation in other source files, by putting a declaration in the header:
extern template class my_template< some_arg >;

C++ template explicit specialization - calling existing member function

I'm using explicit template specialization to initialize a std::vector with information but only for a specific type of std::vector, thus the explicit specialization. Within the constructor, if I try to call push_back or any other existing function in std::vector, compilation fails. What is the problem and how do I fix it?
simplified example:
namespace std
{
template<>
class vector<int>
{
public:
vector(void)
{
int value = 5;
push_back(value);
}
};
}
compiler message:
In constructor 'std::vector<int>::vector()':
error: 'push_back' was not declared in this scope
push_back(value);
^
Explicit specializations are completely different classes that are separate from the primary template. You have to rewrite everything.
In normal situations where you control the primary template, you would typically have some sort of common base class or base class template to collect common structures.
With a given library, it is generally a very bad idea to add specializations (unless the library explicitly says it's OK). With the C++ standard library, this is outright undefined behaviour.
(The main problem is that other translation units may be using the template instantiation which you're specializing without seeing your specialization, which violates the one-definition rule.)
Template specializations are unrelated types from both the primary template and any other specialization. It is unclear what you are attempting to do, as it is also illegal to provide specializations of templates in the std namespace unless the specialization uses your own user defined type.
If you can explain the problem to solve, you might get other options, like specializing a member function rather than the template itself...

Will the compiler exclude unused template code?

When you use a template with numerous methods (like vector) and compile your code, will the compiler discard the code from the unused methods?
A template is not instantiated unless it is used, so there is actually no code to discard.
The standard says (14.7.1/10)
An implementation shall not implicitly instantiate a function template, a member template, a non-virtual member function, a member class, or a static data member of a class template that does not require instantiation. It is unspecified whether or not an implementation implicitly instantiates a virtual member function of a class template if the virtual member function would not otherwise be instantiated. The use of a template specialization in a default argument shall not cause the template to be implicitly instantiated except that a class template may be instantiated where its complete type is needed to determine the correctness of the default argument. The use of a default argument in a function call causes specializations in the default argument to be implicitly instantiated.
So if you can avoid making the template's member functions virtual, the compiler will not generate any code for them (and that might work for virtual functions as well, if the compiler is smart enough).
It depends on your optimization level. At higher optimization settings, yes, dead code elimination will most likely occur.
the compiler, optimizers, and the linker can omit and/or reduce that information. each mature tool likely has options specific to dead code elimination.
with templates, the code may not really be created in the first place (unless instantiated).
certainly not all of it will be removed in every scenario, however (rtti is a silent killer). a bit of caution and testing using your build settings can go a long way to help you reduce the binary sizes and dead code.
Smart compilers will exclude it most likely. Long time ago when I played with Borland C++ Builder, I think, it did not throw out unused template class methods. Can not confirm though

Undefined template methods trick?

A colleague of mine told me about a little piece of design he has used with his team that sent my mind boiling. It's a kind of traits class that they can specialize in an extremely decoupled way.
I've had a hard time understanding how it could possibly work, and I am still unsure of the idea I have, so I thought I would ask for help here.
We are talking g++ here, specifically the versions 3.4.2 and 4.3.2 (it seems to work with both).
The idea is quite simple:
1- Define the interface
// interface.h
template <class T>
struct Interface
{
void foo(); // the method is not implemented, it could not work if it was
};
//
// I do not think it is necessary
// but they prefer free-standing methods with templates
// because of the automatic argument deduction
//
template <class T>
void foo(Interface<T>& interface) { interface.foo(); }
2- Define a class, and in the source file specialize the interface for this class (defining its methods)
// special.h
class Special {};
// special.cpp
#include "interface.h"
#include "special.h"
//
// Note that this specialization is not visible outside of this translation unit
//
template <>
struct Interface<Special>
{
void foo() { std::cout << "Special" << std::endl; }
};
3- To use, it's simple too:
// main.cpp
#include "interface.h"
class Special; // yes, it only costs a forward declaration
// which helps much in term of dependencies
int main(int argc, char* argv[])
{
Interface<Special> special;
foo(special);
return 0;
};
It's an undefined symbol if no translation unit defined a specialization of Interface for Special.
Now, I would have thought this would require the export keyword, which to my knowledge has never been implemented in g++ (and only implemented once in a C++ compiler, with its authors advising anyone not to, given the time and effort it took them).
I suspect it's got something to do with the linker resolving the templates methods...
Do you have ever met anything like this before ?
Does it conform to the standard or do you think it's a fortunate coincidence it works ?
I must admit I am quite puzzled by the construct...
Like #Steward suspected, it's not valid. Formally it's effectively causing undefined behavior, because the Standard rules that for a violation no diagnostic is required, which means the implementation can silently do anything it wants. At 14.7.3/6
If a template, a member template or the member of a class template is explicitly specialized then that specialization shall be declared before the first use of that specialization that would cause an implicit instantiation to take place, in every translation unit in which such a use occurs; no diagnostic is required.
In practice at least on GCC, it's implicitly instantiating the primary template Interface<T> since the specialization wasn't declared and is not visible in main, and then calling Interface<T>::foo. If its definition is visible, it instatiates the primary definition of the member function (which is why when it is defined, it wouldn't work).
Instantiated function name symbols have weak linkage because they could possibly be present multiple times in different object files, and have to be merged into one symbol in the final program. Contrary, members of explicit specializations that aren't templates anymore have strong linkage so they will dominate weak linkage symbols and make the call end up in the specialization. All this is implementation detail, and the Standard has no such notion of weak/strong linkage. You have to declare the specialization prior to creating the special object:
template <>
struct Interface<Special>;
The Standard lays it bare (emphasize by me)
The placement of explicit specialization declarations for function templates, class templates, member functions of class templates, static data members of class templates, member classes of class templates, member class templates of class templates, member function templates of class templates, member functions of member templates of class templates, member functions of member templates of non-template classes, member function templates of member classes of class templates, etc., and the placement of partial specialization declarations of class templates, member class templates of non-template classes, member class templates of class templates, etc., can affect whether a program is well-formed according to the relative positioning of the explicit specialization declarations and their points of instantiation in the translation unit as specified above and below. When writing a specialization, be careful about its location; or to make it compile will be such a trial as to kindle its self-immolation.
Thats pretty neat. I'm not sure if it is guaranteed to work everywhere though. It looks like what they're doing is having a deliberately undefined template method, and then defining a specialization tucked away in its own translation unit. They're depending on the compiler using the same name mangling for both the original class template method and the specialization, which is the bit I think is probably non-standard. The linker will then look for the method of the class template, but instead find the specialization.
There are a few risks with this though. No one, not even the linker, will pick up multiple implementations of the method for example. The template methods will be marked selectany because template implies inline so if the linker sees multiple instances, instead of issuing an error it will pick whichever one is most convenient.
Still a nice trick though, although unfortunately it does seem to be a lucky coincidence that it works.