Decoding by libjpeg -> Encoding by x264, strange artefacts on frames - c++

I have a collection of jpeg, which must be decoded by lib jpeg, and after it, encoded by x264 (after it encoded packets are streamed via rtmp).
Code I used for decoding:
struct my_error_mgr
{
struct jpeg_error_mgr pub;
jmp_buf setjmp_buffer;
};
typedef my_error_mgr *my_error_ptr;
METHODDEF(void) my_error_exit (j_common_ptr cinfo)
{
my_error_ptr myerr = (my_error_ptr) cinfo->err;
(*cinfo->err->output_message) (cinfo);
longjmp(myerr->setjmp_buffer, 1);
}
void init_source(j_decompress_ptr ptr)
{
Q_UNUSED(ptr)
}
boolean fill_input_buffer(j_decompress_ptr ptr)
{
Q_UNUSED(ptr)
return TRUE;
}
void term_source(j_decompress_ptr ptr)
{
Q_UNUSED(ptr)
}
void skip_input_data(j_decompress_ptr ptr, long num_bytes)
{
if(num_bytes>0)
{
ptr->src->next_input_byte+=(size_t)num_bytes;
ptr->src->bytes_in_buffer-=(size_t)num_bytes;
}
}
EtherDecoder::EtherDecoder(QObject *parent):
QObject(parent)
{
}
void EtherDecoder::dataBlockReady(QByteArray data)
{
jpeg_decompress_struct decompressInfo;
jpeg_create_decompress(&decompressInfo);
my_error_mgr err;
decompressInfo.do_fancy_upsampling = FALSE;
decompressInfo.src = (jpeg_source_mgr *) (*decompressInfo.mem->alloc_small) ((j_common_ptr) &decompressInfo, JPOOL_PERMANENT, sizeof(jpeg_source_mgr));
decompressInfo.err = jpeg_std_error(&err.pub);
err.pub.error_exit = my_error_exit;
if (setjmp(err.setjmp_buffer))
{
jpeg_destroy_decompress(&decompressInfo);
return;
}
decompressInfo.src->init_source = init_source;
decompressInfo.src->resync_to_restart = jpeg_resync_to_restart;
decompressInfo.src->fill_input_buffer = fill_input_buffer;
decompressInfo.src->skip_input_data = skip_input_data;
decompressInfo.src->term_source = term_source;
decompressInfo.src->next_input_byte = reinterpret_cast<const JOCTET*>(data.data());
decompressInfo.src->bytes_in_buffer = data.size();
jpeg_read_header(&decompressInfo, TRUE);
jpeg_start_decompress(&decompressInfo);
int size = 0;
int n_samples = 0;
char *samples = new char[5242880];
char *reserv = samples;
while (decompressInfo.output_scanline < decompressInfo.output_height)
{
n_samples = jpeg_read_scanlines(&decompressInfo, (JSAMPARRAY) &samples, 1);
samples += n_samples * decompressInfo.image_width * decompressInfo.num_components;
size += n_samples * decompressInfo.image_width * decompressInfo.num_components;
}
jpeg_finish_decompress(&decompressInfo);
QByteArray output(reserv, size);
emit frameReady(output, decompressInfo.output_width, decompressInfo.output_height);
jpeg_destroy_decompress(&decompressInfo);
delete[] reserv;
}
When I emit frameReady signal, I send data to Encoder, method, where I init Encedor looks like:
bool EtherEncoder::initEncoder(unsigned int width, unsigned int height)
{
x264_param_t param;
x264_param_default_preset(&param, "veryfast", "zerolatency");
param.i_width=width;
param.i_height=height;
param.i_frame_total=0;
param.i_csp=X264_CSP_I420;
param.i_timebase_num=1;
param.i_timebase_den=96000;
param.b_annexb=true;
param.b_repeat_headers=false;
x264_param_apply_fastfirstpass(&param);
x264_param_apply_profile(&param, "baseline");
_context=x264_encoder_open(&param);
if(!_context)
return false;
int nal_count;
x264_nal_t *nals;
if(x264_encoder_headers(_context, &nals, &nal_count)<0)
{
x264_encoder_close(_context);
_context=0;
return false;
}
_extradata=QByteArray();
_width=width;
_height=height;
if(nal_count>0)
{
_extradata=QByteArray(
(const char *)nals[0].p_payload,
nals[nal_count-1].p_payload+nals[nal_count-1].i_payload-nals[0].p_payload);
}
return true;
}
And encoding method:
void EtherEncoder::onFrameReady(QByteArray data, int width, int height)
{
while(data.size()>0)
{
if(!_context && initEncoder(width, height))
{
_timestampDelta=realTimestamp();
}
if(_context)
{
x264_picture_t pic;
x264_picture_init(&pic);
pic.i_type=X264_TYPE_AUTO;
pic.i_pts=_timestampDelta*96000;
pic.img.i_csp=X264_CSP_I420;
pic.img.i_plane=3;
int planeSize = width*height;
uint8_t *p = (uint8_t*)data.data();
pic.img.plane[0]=p;
p+=planeSize;
pic.img.plane[1]=p;
p+=planeSize/4;
pic.img.plane[2]=p;
pic.img.i_stride[0]=width;
pic.img.i_stride[1]=width/2;
pic.img.i_stride[2]=width/2;
if(_forceKeyFrame)
{
pic.i_type=X264_TYPE_I;
_forceKeyFrame=false;
}
int nal_count;
x264_nal_t *nals;
int rc=x264_encoder_encode(_context, &nals, &nal_count, &pic, &pic);
if(rc>0)
{
_mutex.lock();
_packets.push_back(
Packet(
QByteArray(
(const char *)nals[0].p_payload, nals[nal_count- 1].p_payload+nals[nal_count-1].i_payload-nals[0].p_payload),
_timestampDelta/96.0,
_timestampDelta/96.0,
pic.b_keyframe));
_timestampDelta+=40;
data.clear();
_mutex.unlock();
emit onPacketReady();
}
}
}
}
Decoding and encoding proceeds without errors, at the end I get valid video stream, but, it seems that in one of this steps I set Invalid data for decoder/encoder. I get only 1/4 part of image (top-left, as I understood) and it has invalid color and come color stripes. Maybe I set invalid strides and planes when encode frame, or maybe my setting data for libjpeg decoder is incorrect.. Please ask questions about my code, I'll try to make some explanations for you. I explodes my brain.. Thank you.

Related

How do I generate a tone using SDL_audio?

I am trying to generate a simple, constant sine tone using SDL_audio. I have a small helper class that can be called to turn the tone on/off, change the frequency, and change the wave shape. I have followed some examples I could find on the web and got the following:
beeper.h
#pragma once
#include <SDL.h>
#include <SDL_audio.h>
#include <cmath>
#include "logger.h"
class Beeper {
private:
//Should there be sound right now
bool soundOn = true;
//Type of wave that should be generated
int waveType = 0;
//Tone that the wave will produce (may or may not be applicable based on wave type)
float waveTone = 440;
//Running index for sampling
float samplingIndex = 0;
//These are useful variables that cannot be changed outside of this file:
//Volume
const Sint16 amplitude = 32000;
//Sampling rate
const int samplingRate = 44100;
//Buffer size
const int bufferSize = 1024;
//Samples a sine wave at a given index
float sampleSine(float index);
//Samples a square wave at a given index
float sampleSquare(float index);
public:
//Initializes SDL audio, audio device, and audio specs
void initializeAudio();
//Function called by SDL audio_callback that fills stream with samples
void generateSamples(short* stream, int length);
//Turn sound on or off
void setSoundOn(bool soundOnOrOff);
//Set timbre of tone produced by beeper
void setWaveType(int waveTypeID);
//Set tone (in Hz) produced by beeper
void setWaveTone(int waveHz);
};
beeper.cpp
#include <beeper.h>
void fillBuffer(void* userdata, Uint8* _stream, int len) {
short * stream = reinterpret_cast<short*>(_stream);
int length = len;
Beeper* beeper = (Beeper*)userdata;
beeper->generateSamples(stream, length);
}
void Beeper::initializeAudio() {
SDL_AudioSpec desired, returned;
SDL_AudioDeviceID devID;
SDL_zero(desired);
desired.freq = samplingRate;
desired.format = AUDIO_S16SYS; //16-bit audio
desired.channels = 1;
desired.samples = bufferSize;
desired.callback = &fillBuffer;
desired.userdata = this;
devID = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(0,0), 0, &desired, &returned, SDL_AUDIO_ALLOW_FORMAT_CHANGE);
SDL_PauseAudioDevice(devID, 0);
}
void Beeper::generateSamples(short *stream, int length) {
int samplesToWrite = length / sizeof(short);
for (int i = 0; i < samplesToWrite; i++) {
if (soundOn) {
if (waveType == 0) {
stream[i] = (short)(amplitude * sampleSine(samplingIndex));
}
else if (waveType == 1) {
stream[i] = (short)(amplitude * 0.8 * sampleSquare(samplingIndex));
}
}
else {
stream[i] = 0;
}
//INFO << "Sampling index: " << samplingIndex;
samplingIndex += (waveTone * M_PI * 2) / samplingRate;
//INFO << "Stream input: " << stream[i];
if (samplingIndex >= (M_PI*2)) {
samplingIndex -= M_PI * 2;
}
}
}
void Beeper::setSoundOn(bool soundOnOrOff) {
soundOn = soundOnOrOff;
//if (soundOnOrOff) {
// samplingIndex = 0;
//}
}
void Beeper::setWaveType(int waveTypeID) {
waveType = waveTypeID;
//samplingIndex = 0;
}
void Beeper::setWaveTone(int waveHz) {
waveTone = waveHz;
//samplingIndex = 0;
}
float Beeper::sampleSine(float index) {
double result = sin((index));
//INFO << "Sine result: " << result;
return result;
}
float Beeper::sampleSquare(float index)
{
int unSquaredSin = sin((index));
if (unSquaredSin >= 0) {
return 1;
}
else {
return -1;
}
}
The callback function is being called and the generateSamples function is loading data into the stream, but I cannot hear anything but a very slight click at irregular periods. I have had a look at the data inside the stream and it follows a pattern that I would expect for a scaled sine wave with a 440 Hz frequency. Is there something obvious that I am missing? I did notice that the size of the stream is double what I put when declaring the SDL_AudioSpec and calling SDL_OpenAudioDevice. Why is that?
Answered my own question! When opening the audio device I used the flag SDL_AUDIO_ALLOW_FORMAT_CHANGE which meant that SDL was actually using a float buffer instead of the short buffer that I expected. This was causing issues in a couple of places that were hard to detect (the stream being double the amount of bytes I was expecting should have tipped me off). I changed that parameter in SDL_OpenAudioDevice() to 0 and it worked as expected!

CoreAudio Stuff From C++ to Swift

How to convert the code below to swift? Someone help.
I want to convert this cpp code to swift, from project FreeStreamer.
But some C++ struct and some C callback drive me crazy.
Help.
Here is the code from audio_stream.h and audio_stream.cpp
// var
queued_packet_t *m_queuedHead;
queued_packet_t *m_queuedTail;
queued_packet_t *m_playPacket;
std::list <queued_packet_t*> m_processedPackets;
//struct
typedef struct queued_packet {
UInt64 identifier;
AudioStreamPacketDescription desc;
struct queued_packet *next;
char data[];
} queued_packet_t;
//function one
OSStatus Audio_Stream::encoderDataCallback(AudioConverterRef inAudioConverter, UInt32 *ioNumberDataPackets, AudioBufferList *ioData, AudioStreamPacketDescription **outDataPacketDescription, void *inUserData) {
Audio_Stream *THIS = (Audio_Stream *)inUserData;
pthread_mutex_trylock(&THIS->m_packetQueueMutex);
// Dequeue one packet per time for the decoder
queued_packet_t *front = THIS->m_playPacket;
if (!front) {
/* Don't deadlock */
AS_LOCK_TRACE("encoderDataCallback 2: unlock\n");
pthread_mutex_unlock(&THIS->m_packetQueueMutex);
pthread_mutex_trylock(&THIS->m_streamStateMutex);
THIS->m_converterRunOutOfData = true;
pthread_mutex_unlock(&THIS->m_streamStateMutex);
*ioNumberDataPackets = 0;
ioData->mBuffers[0].mDataByteSize = 0;
return noErr;
}
*ioNumberDataPackets = 1;
ioData->mBuffers[0].mData = front->data;
ioData->mBuffers[0].mDataByteSize = front->desc.mDataByteSize;
ioData->mBuffers[0].mNumberChannels = THIS->m_srcFormat.mChannelsPerFrame;
if (outDataPacketDescription) {
*outDataPacketDescription = &front->desc;
}
THIS->m_playPacket = front->next;
THIS->m_processedPackets.push_front(front);
AS_LOCK_TRACE("encoderDataCallback 5: unlock\n");
pthread_mutex_unlock(&THIS->m_packetQueueMutex);
return noErr;
}
//function two
void Audio_Stream::streamDataCallback(void *inClientData, UInt32 inNumberBytes, UInt32 inNumberPackets, const void *inInputData, AudioStreamPacketDescription *inPacketDescriptions) {
AS_TRACE("%s: inNumberBytes %u, inNumberPackets %u\n", __FUNCTION__, (unsigned int)inNumberBytes, (unsigned int)inNumberPackets);
Audio_Stream *THIS = static_cast<Audio_Stream*>(inClientData);
if (!THIS->m_audioStreamParserRunning) {
AS_TRACE("%s: stray callback detected!\n", __PRETTY_FUNCTION__);
return;
}
for (int i = 0; i < inNumberPackets; i++) {
/* Allocate the packet */
UInt32 size = inPacketDescriptions[i].mDataByteSize;
queued_packet_t *packet = (queued_packet_t *)malloc(sizeof(queued_packet_t) + size);
packet->identifier = THIS->m_packetIdentifier;
// If the stream didn't provide bitRate (m_bitRate == 0), then let's calculate it
if (THIS->m_bitRate == 0 && THIS->m_bitrateBufferIndex < kAudioStreamBitrateBufferSize) {
// Only keep sampling for one buffer cycle; this is to keep the counters (for instance) duration
// stable.
THIS->m_bitrateBuffer[THIS->m_bitrateBufferIndex++] = 8 * inPacketDescriptions[i].mDataByteSize / THIS->m_packetDuration;
if (THIS->m_bitrateBufferIndex == kAudioStreamBitrateBufferSize) {
if (THIS->m_delegate) {
THIS->m_delegate->bitrateAvailable();
}
}
}
AS_LOCK_TRACE("streamDataCallback: lock\n");
pthread_mutex_trylock(&THIS->m_packetQueueMutex);
/* Prepare the packet */
packet->next = NULL;
packet->desc = inPacketDescriptions[i];
packet->desc.mStartOffset = 0;
memcpy(packet->data, (const char *)inInputData + inPacketDescriptions[i].mStartOffset,
size);
if (THIS->m_queuedHead == NULL) {
THIS->m_queuedHead = THIS->m_queuedTail = THIS->m_playPacket = packet;
} else {
THIS->m_queuedTail->next = packet;
THIS->m_queuedTail = packet;
}
THIS->m_cachedDataSize += size;
THIS->m_packetIdentifier++;
AS_LOCK_TRACE("streamDataCallback: unlock\n");
pthread_mutex_unlock(&THIS->m_packetQueueMutex);
}
THIS->determineBufferingLimits();
}
All the FreeStreamer project has been rewrite wieth Swift 3.0 in here FreePlayer
Answer can be found here AudioStream

How to asynchronously read/write in C++?

How do you copy one stream to another using dedicated read/write threads in C++?
Let's say I have these methods (not real, but to illustrate the point) to read/write data from. These read/write functions could represent anything (network/file/USB/serial/etc).
// returns the number of bytes read
void read(char* buffer, int bufferSize, int* bytesRead);
// returns the number of bytes written
void write(char* buffer, int bufferSize, int* bytesWritten);
The solution should also be portable.
NOTE: I am aware that Windows has a FILE_FLAG_OVERLAPPED feature, but this assumes that the read/write is file IO. Remember, these read/write methods could represent anything.
Here is the solution I came up with.
Header
#pragma once
#include <stdlib.h>
#include <queue>
#include <mutex>
#include <thread>
#include <chrono>
#include <list>
#include <thread>
#define ASYNC_COPY_READ_WRITE_SUCCESS 0
struct BufferBlock;
struct ReadStream
{
// read a stream to a buffer.
// return non-zero if error occured
virtual int read(char* buffer, int bufferSize, int* bytesRead) = 0;
};
struct WriteStream
{
// write a buffer to a stream.
// return non-zero if error occured
virtual int write(char* buffer, int bufferSize, int* bytesWritten) = 0;
};
class BufferBlockManager
{
public:
BufferBlockManager(int numberOfBlocks, int bufferSize);
~BufferBlockManager();
void enqueueBlockForRead(BufferBlock* block);
void dequeueBlockForRead(BufferBlock** block);
void enqueueBlockForWrite(BufferBlock* block);
void dequeueBlockForWrite(BufferBlock** block);
void resetState();
private:
std::list<BufferBlock*> blocks;
std::queue<BufferBlock*> blocksPendingRead;
std::queue<BufferBlock*> blocksPendingWrite;
std::mutex queueLock;
std::chrono::milliseconds dequeueSleepTime;
};
void AsyncCopyStream(BufferBlockManager* bufferBlockManager, ReadStream* readStream, WriteStream* writeStream, int* readResult, int* writeResult);
CPP
#include "AsyncReadWrite.h"
struct BufferBlock
{
BufferBlock(int bufferSize) : buffer(NULL)
{
this->bufferSize = bufferSize;
this->buffer = new char[bufferSize];
this->actualSize = 0;
this->isLastBlock = false;
}
~BufferBlock()
{
this->bufferSize = 0;
free(this->buffer);
this->buffer = NULL;
this->actualSize = 0;
}
char* buffer;
int bufferSize;
int actualSize;
bool isLastBlock;
};
BufferBlockManager::BufferBlockManager(int numberOfBlocks, int bufferSize)
{
dequeueSleepTime = std::chrono::milliseconds(100);
for (int x = 0; x < numberOfBlocks; x++)
{
BufferBlock* block = new BufferBlock(bufferSize);
blocks.push_front(block);
blocksPendingRead.push(block);
}
}
BufferBlockManager::~BufferBlockManager()
{
for (std::list<BufferBlock*>::const_iterator iterator = blocks.begin(), end = blocks.end(); iterator != end; ++iterator) {
delete (*iterator);
}
}
void BufferBlockManager::enqueueBlockForRead(BufferBlock* block)
{
queueLock.lock();
block->actualSize = 0;
block->isLastBlock = false;
blocksPendingRead.push(block);
queueLock.unlock();
}
void BufferBlockManager::dequeueBlockForRead(BufferBlock** block)
{
WAITFOR:
while (blocksPendingRead.size() == 0)
std::this_thread::sleep_for(dequeueSleepTime);
queueLock.lock();
if (blocksPendingRead.size() == 0)
{
queueLock.unlock();
goto WAITFOR;
}
*block = blocksPendingRead.front();
blocksPendingRead.pop();
queueLock.unlock();
}
void BufferBlockManager::enqueueBlockForWrite(BufferBlock* block)
{
queueLock.lock();
blocksPendingWrite.push(block);
queueLock.unlock();
}
void BufferBlockManager::dequeueBlockForWrite(BufferBlock** block)
{
WAITFOR:
while (blocksPendingWrite.size() == 0)
std::this_thread::sleep_for(dequeueSleepTime);
queueLock.lock();
if (blocksPendingWrite.size() == 0)
{
queueLock.unlock();
goto WAITFOR;
}
*block = blocksPendingWrite.front();
blocksPendingWrite.pop();
queueLock.unlock();
}
void BufferBlockManager::resetState()
{
queueLock.lock();
blocksPendingRead = std::queue<BufferBlock*>();
blocksPendingWrite = std::queue<BufferBlock*>();
for (std::list<BufferBlock*>::const_iterator iterator = blocks.begin(), end = blocks.end(); iterator != end; ++iterator) {
(*iterator)->actualSize = 0;
}
queueLock.unlock();
}
struct AsyncCopyContext
{
AsyncCopyContext(BufferBlockManager* bufferBlockManager, ReadStream* readStream, WriteStream* writeStream)
{
this->bufferBlockManager = bufferBlockManager;
this->readStream = readStream;
this->writeStream = writeStream;
this->readResult = ASYNC_COPY_READ_WRITE_SUCCESS;
this->writeResult = ASYNC_COPY_READ_WRITE_SUCCESS;
}
BufferBlockManager* bufferBlockManager;
ReadStream* readStream;
WriteStream* writeStream;
int readResult;
int writeResult;
};
void ReadStreamThread(AsyncCopyContext* asyncContext)
{
int bytesRead = 0;
BufferBlock* readBuffer = NULL;
int readResult = ASYNC_COPY_READ_WRITE_SUCCESS;
while (
// as long there hasn't been any write errors
asyncContext->writeResult == ASYNC_COPY_READ_WRITE_SUCCESS
// and we haven't had an error reading yet
&& readResult == ASYNC_COPY_READ_WRITE_SUCCESS)
{
// let's deque a block to read to!
asyncContext->bufferBlockManager->dequeueBlockForRead(&readBuffer);
readResult = asyncContext->readStream->read(readBuffer->buffer, readBuffer->bufferSize, &bytesRead);
readBuffer->actualSize = bytesRead;
readBuffer->isLastBlock = bytesRead == 0;
if (readResult == ASYNC_COPY_READ_WRITE_SUCCESS)
{
// this was a valid read, go ahead and queue it for writing
asyncContext->bufferBlockManager->enqueueBlockForWrite(readBuffer);
}
else
{
// an error occured reading
asyncContext->readResult = readResult;
// since an error occured, lets queue an block to write indicatiting we are done and there are no more bytes to read
readBuffer->isLastBlock = true;
readBuffer->actualSize = 0;
asyncContext->bufferBlockManager->enqueueBlockForWrite(readBuffer);
}
if (readBuffer->isLastBlock) return;
}
}
void WriteStreamThread(AsyncCopyContext* asyncContext)
{
int bytesWritten = 0;
BufferBlock* writeBuffer = NULL;
int writeResult = ASYNC_COPY_READ_WRITE_SUCCESS;
bool isLastWriteBlock = false;
while (
// as long as there are no errors during reading
asyncContext->readResult == ASYNC_COPY_READ_WRITE_SUCCESS
// and we haven't had an error writing yet
&& writeResult == ASYNC_COPY_READ_WRITE_SUCCESS)
{
// lets dequeue a block for writing!
asyncContext->bufferBlockManager->dequeueBlockForWrite(&writeBuffer);
isLastWriteBlock = writeBuffer->isLastBlock;
if (writeBuffer->actualSize > 0)
writeResult = asyncContext->writeStream->write(writeBuffer->buffer, writeBuffer->actualSize, &bytesWritten);
if (writeResult == ASYNC_COPY_READ_WRITE_SUCCESS)
{
asyncContext->bufferBlockManager->enqueueBlockForRead(writeBuffer);
if (isLastWriteBlock) return;
}
else
{
asyncContext->writeResult = writeResult;
asyncContext->bufferBlockManager->enqueueBlockForRead(writeBuffer);
return;
}
}
}
void AsyncCopyStream(BufferBlockManager* bufferBlockManager, ReadStream* readStream, WriteStream* writeStream, int* readResult, int* writeResult)
{
AsyncCopyContext asyncContext(bufferBlockManager, readStream, writeStream);
std::thread readThread(ReadStreamThread, &asyncContext);
std::thread writeThread(WriteStreamThread, &asyncContext);
readThread.join();
writeThread.join();
*readResult = asyncContext.readResult;
*writeResult = asyncContext.writeResult;
}
Usage
#include <stdio.h>
#include <tchar.h>
#include "AsyncReadWrite.h"
struct ReadTestStream : ReadStream
{
int readCount = 0;
int read(char* buffer, int bufferSize, int* bytesRead)
{
printf("Starting read...\n");
memset(buffer, bufferSize, 0);
if (readCount == 10)
{
*bytesRead = 0;
return 0;
}
// pretend this function takes a while!
std::this_thread::sleep_for(std::chrono::milliseconds(100));
char buff[100];
sprintf_s(buff, "This is read number %d\n", readCount);
strcpy_s(buffer, sizeof(buff), buff);
*bytesRead = strlen(buffer);
readCount++;
printf("Finished read...\n");
return 0;
}
};
struct WriteTestStream : WriteStream
{
int write(char* buffer, int bufferSize, int* bytesWritten)
{
printf("Starting write...\n");
// pretend this function takes a while!
std::this_thread::sleep_for(std::chrono::milliseconds(500));
printf(buffer);
printf("Finished write...\n");
return 0;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
BufferBlockManager bufferBlockManager(5, 4096);
ReadTestStream readStream;
WriteTestStream writeStream;
int readResult = 0;
int writeResult = 0;
printf("Starting copy...\n");
AsyncCopyStream(&bufferBlockManager, &readStream, &writeStream, &readResult, &writeResult);
printf("Finished copy... readResult=%d writeResult=%d \n", readResult, writeResult);
getchar();
return 0;
}
EDIT: I put my solution into a GitHub repository here. If you wish to use this code, refer to the repository since it may be more updated than this answer.
Typically, you would just have one thread for each direction that alternates between reads and writes.

Using Opus with PortAudio

I'm having trouble for using opus with Port audio.
I need to read data audio from a stream using PortAudio, encoding data, decoding data and writing data. If I just read and write, everything works well. But when encoding and decoding, all I can hear is snow with my voice in background.
Here a part of my code:
I/O stream header:
#define NUM_CHANNELS (2)
#define PA_SAMPLE_TYPE paInt24
#define SAMPLE_RATE (48000)
#define FRAMES_PER_BUFFER (1024)
#define SAMPLE_SIZE (3)
#define FRAME_SIZE (960)
class SoundSystem
{
private:
PaStream *_stream;
int _readBufferSize;
PaStreamParameters _inputParam;
PaStreamParameters _outputParam;
unsigned char *_readBuffer;
public:
SoundSystem();
~SoundSystem();
// Init Stream
bool initPa();
bool openStream();
bool startStream();
bool initStream();
// Init params stream
bool initParams() const;
bool initInputParams();
bool initOutputParams();
bool initParams();
// I/O
bool writeOnStream(unsigned cha\
r *buff);
bool readFromStream();
// Utils
void cleanReadBuffer();
int getReadBufferSize() const;
unsigned char *getReadBuffer() const;
};
I/O stream .cpp:
SoundSystem::SoundSystem()
{
_stream = NULL;
_readBufferSize = FRAMES_PER_BUFFER * NUM_CHANNELS * SAMPLE_SIZE;
_readBuffer= new unsigned char [_readBufferSize];
}
SoundSystem::~SoundSystem()
{
}
bool SoundSystem::initPa()
{
if ((Pa_Initialize()) != paNoError)
return (false);
return (true);
}
bool SoundSystem::openStream()
{
if ((Pa_OpenStream(&_stream, &_inputParam, &_outputParam, SAMPLE_RATE,
FRAMES_PER_BUFFER, paClipOff, NULL, NULL)) != paNoError)
return (false);
return (true);
}
bool SoundSystem::startStream()
{
if ((Pa_StartStream(_stream)) != paNoError)
return (false);
return (true);
}
bool SoundSystem::initStream()
{
if ((openStream()) == false)
std::cerr << "can not open stream" << std::endl;
if ((startStream()) == false)
std::cerr << "cannot start stream" <<std::endl;
return (true);
}
bool SoundSystem::initParams()
{
if ((initPa()) == false)
std::cerr << "can not ijnit PA" << std::endl;
initInputParams();
initOutputParams();
return (true);
}
bool SoundSystem::initInputParams()
{
if ((_inputParam.device = Pa_GetDefaultInputDevice()) == paNoDevice)
return (false);
_inputParam.channelCount = 2;
_inputParam.sampleFormat = PA_SAMPLE_TYPE;
_inputParam.suggestedLatency = Pa_GetDeviceInfo(_inputParam.device)->defaultLowInputLatency;
_inputParam.hostApiSpecificStreamInfo = NULL;
return (true);
}
bool SoundSystem::initOutputParams()
{
if ((_outputParam.device = Pa_GetDefaultInputDevice()) == paNoDevice)
return (false);
_outputParam.channelCount = 2;
_outputParam.sampleFormat = PA_SAMPLE_TYPE;
_outputParam.suggestedLatency = Pa_GetDeviceInfo(_outputParam.device)->defaultLowInputLatency;
_outputParam.hostApiSpecificStreamInfo = NULL;
return (true);
}
bool SoundSystem::writeOnStream(unsigned char *buff)
{
if ((Pa_WriteStream(_stream, buff, FRAMES_PER_BUFFER)) != paNoError)
{
std::cout << "FAIL WRITE" <<std::endl;
return (false);
}
return (true);
}
bool SoundSystem::readFromStream()
{
if ((Pa_ReadStream(_stream, _readBuffer, FRAMES_PER_BUFFER)) != paNoError)
return (false);
return (true);
}
void SoundSystem::cleanReadBuffer()
{
for (int i = 0; i != _readBufferSize; i++)
_readBuffer[i] = 0;
}
int SoundSystem::getReadBufferSize() const
{enter code here
return (_readBufferSize);
}
unsigned char* SoundSystem::getReadBuffer() const { return (_readBuffer); }
Encode header:
#define FRAME_SIZE (960)
#define SAMPLE_RATE (48000)
#define CHANNELS (2)
#define APPLICATION OPUS_APPLICATION_VOIP
#define MAX_FRAME_SIZE (6*960)
class EncoderSystem
{
private:
OpusEncoder *_encode;
OpusDecoder *_decode;
opus_int16 _in[FRAME_SIZE*CHANNELS];
opus_int16 _out[MAX_FRAME_SIZE*CHANNELS];
int _nbBytes;
public:
EncoderSystem();
~EncoderSystem();
bool encoderCreate();
bool decoderCreate();
unsigned char* encode(unsigned char *, int);
unsigned char* decode(unsigned char *, int);
int getEncodeLen() const;
};
Encode .cpp:
EncoderSystem::EncoderSystem()
{
}
EncoderSystem::~EncoderSystem()
{
}
bool EncoderSystem::encoderCreate()
{
int error;
if ((_encode = opus_encoder_create(SAMPLE_RATE, CHANNELS, OPUS_APPLICATION_VOIP, &error)) == NU\
LL)
{
std::cerr << "Can not create encode" <<std::endl;
return (false);
}
return (true);
}
bool EncoderSystem::decoderCreate()
{
int error;
if ((_decode = opus_decoder_create(SAMPLE_RATE, CHANNELS, &error)) == NULL)
{
std::cerr << "Can not create decoder" <<std::endl;
return (false);
}
return (true);
}
unsigned char* EncoderSystem::encode(unsigned char *data, int size)
{
unsigned char *c_bits = new unsigned char [size];
memcpy(_in, data, size);
/* Encode the frame. */
_nbBytes = opus_encode(_encode, _in, FRAME_SIZE, c_bits, size);
if (_nbBytes<0)
{
std::cerr << "cannot decode" << std::endl;
return NULL;
}
return (c_bits);
}
unsigned char* EncoderSystem::decode(unsigned char *data, int size)
{
int frame_size = opus_decode(_decode, data, size, _out,
MAX_FRAME_SIZE * CHANNELS * 2, 0);
unsigned char *pcm_bytes = new unsigned char [MAX_FRAME_SIZE * CHANNELS * 2];
if (frame_size<0)
{
std::cerr << "cannot decode" << std::endl;
return (NULL);
}
memcpy(pcm_bytes, _out, size);
return (pcm_bytes);
}
int EncoderSystem::getEncodeLen() const { return (this->_nbBytes); }
I really need you, thanks a lot to take your time to help me.
#define PA_SAMPLE_TYPE paInt24
That's probably your problem. As far as I know the standard OPUS codecs take 16-bit integers or 32-bit floating point samples. These correspond to the PortAudio sample types paInt16 and paFloat32.
I recommend getting the types of all your sample buffers correct. Using unsigned char* for formatted sample data is asking for trouble. You need to understand what data types are expected by PortAudio functions and by the OPUS codec functions.

Saving Byte Array to a RAW file format

I have a simple program that reads data from a PNG into a 2D array. I would like to save that data to a .RAW file so that Raw Studio or Irfanview can view the raw image that my program outputs to my_out.raw. Currently if I just write the raw binary data to the my_out.raw file, neither application can actually read the file, that is view the image. What do I need to do to the program below so that I can see the image?
The code to read the PNG files is:
// MAIN.cpp
#include "pngfilereader.h"
#include <string>
#include <vector>
#include <fstream>
int main (int argc, char *argv[])
{
PNGFileReader pngfr;
if (!pngfr.decompress_png_to_raw(std::string("/home/matt6809/Downloads"
"/City.png"))) {
std::cout << "File decompression error: " << std::endl;
} else {
std::ofstream out;
out.open("./my_out.raw", std::ios_base::out);
std::vector<std::vector<unsigned char> > data;
pngfr.get_image_data(data);
typedef std::vector<std::vector<unsigned char> >::iterator row_it;
typedef std::vector<unsigned char>::iterator col_it;
for(row_it rit= data.begin(); rit != data.end(); ++rit) {
for(col_it cit = rit->begin(); cit != rit->end(); ++cit) {
out << (*cit);
}
}
out << std::endl;
}
return 0;
}
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <png.h>
#include <iostream>
#include <vector>
#include <string>
class PNGFileReader
{
public:
PNGFileReader();
~PNGFileReader();
// Public exposed API:
bool compress_raw_to_png(uint8_t data, int size);
bool decompress_png_to_raw(const std::string &path);
// Getters
long unsigned int get_image_width();
long unsigned int get_image_height();
void get_image_data(std::vector<std::vector<unsigned char> > &data);
private:
// Helper functions:
bool read_png(const std::string &path);
bool create_png_structs(FILE *fp);
bool free_data();
bool alloc_data();
// Member variables:
png_structp m_pPNG;
png_infop m_pPNGInfo;
png_infop m_pPNGEndInfo;
png_bytepp m_Data;
long unsigned int m_ImageWidth;
long unsigned int m_ImageHeight;
// Enums
enum PNGBOOL {NOT_PNG, PNG};
enum PNGERRORS {ERROR, SUCCESS};
};
#include "pngfilereader.h"
#include <stdexcept>
PNGFileReader::PNGFileReader() :
m_pPNG(NULL),
m_pPNGInfo(NULL),
m_pPNGEndInfo(NULL),
m_Data(NULL),
m_ImageWidth(0),
m_ImageHeight(0)
{
}
PNGFileReader::~PNGFileReader()
{
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
}
// Public Exposed API
bool PNGFileReader::compress_raw_to_png(uint8_t m_Data, int size)
{
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::decompress_png_to_raw(const std::string &path)
{
return read_png(path);
}
// Getters
long unsigned int PNGFileReader::get_image_width()
{
return m_ImageWidth;
}
long unsigned int PNGFileReader::get_image_height()
{
return m_ImageHeight;
}
void PNGFileReader::get_image_data(
std::vector<std::vector<unsigned char> > &data)
{
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
std::vector<unsigned char> v;
data.push_back(v);
for (unsigned long int j = 0; j < m_ImageWidth; ++j) {
std::vector<unsigned char> *vp = &data[i];
vp->push_back(m_Data[i][j]);
}
}
}
// Private Methods
bool PNGFileReader::read_png(const std::string &path)
{
/*
* Open up the file to read (path) in binary mode
* first so that if anything goes wrong with libpng
* we won't have much to undo
*/
const char *c_path = path.c_str();
FILE *fp = fopen(c_path, "rb");
if (!fp)
return PNGFileReader::ERROR;
/*
* Read the first BYTES_TO_READ bytes from file
* then determine if it is a png file or
* not. If png_sig_cmp == 0 all is okay
*/
enum {BYTES_TO_READ = 8};
unsigned char sig[BYTES_TO_READ];
if (!fread(sig, 1, BYTES_TO_READ, fp)) {
fclose(fp);
return PNGFileReader::ERROR;
}
bool is_png = !png_sig_cmp(sig, 0, BYTES_TO_READ);
if (!is_png) {
fclose(fp);
return PNGFileReader::ERROR;
}
if (!this->create_png_structs(fp)) {
fclose(fp);
return PNGFileReader::ERROR;
}
/*
* For error handling purposes. Set a long pointer
* back to this function to handle all error related
* to file IO
*/
if (setjmp(png_jmpbuf(m_pPNG)))
{
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, &m_pPNGEndInfo);
fclose(fp);
return PNGFileReader::ERROR;
}
/*
* Set up the input code for FILE openend in binary mode,
* and tell libpng we have already read BYTES_TO_READ btyes from
* signature
*/
png_init_io(m_pPNG, fp);
png_set_sig_bytes(m_pPNG, BYTES_TO_READ);
/*
* Using the lowlevel interface to lib png ...
*/
png_read_info(m_pPNG, m_pPNGInfo);
m_ImageHeight = png_get_image_height(m_pPNG, m_pPNGInfo);
m_ImageWidth = png_get_rowbytes(m_pPNG, m_pPNGInfo);
this->alloc_data();
png_read_image(m_pPNG, m_Data);
png_read_end(m_pPNG, NULL);
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, &m_pPNGEndInfo);
fclose(fp);
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::create_png_structs(FILE *fp)
{
/*
* Create the pointer to main libpng struct, as well as
* two info structs to maintain information after, and
* prior to all operations on png m_Data. Only necessary
* to release resource after function succeeds.
*/
m_pPNG = png_create_read_struct(PNG_LIBPNG_VER_STRING, (png_voidp)NULL,
NULL, NULL);
if (!m_pPNG)
{
fclose(fp);
return PNGFileReader::ERROR;
}
m_pPNGInfo = png_create_info_struct(m_pPNG);
if (!m_pPNGInfo)
{
png_destroy_read_struct(&m_pPNG, (png_infopp)NULL,(png_infopp)NULL);
fclose(fp);
return PNGFileReader::ERROR;
}
m_pPNGEndInfo = png_create_info_struct(m_pPNG);
if (!m_pPNGEndInfo)
{
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, (png_infopp)NULL);
fclose(fp);
return PNGFileReader::ERROR;
}
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::free_data()
{
if (m_ImageHeight == 0 || m_ImageWidth == 0)
return PNGFileReader::ERROR;
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::alloc_data()
{
if (m_ImageHeight == 0 || m_ImageWidth == 0)
return PNGFileReader::ERROR;
if (m_Data != NULL)
this->free_data();
m_Data = new png_bytep[m_ImageHeight]();
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
m_Data[i] = NULL;
}
try {
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
m_Data[i] = new png_byte[m_ImageWidth];
}
}
catch (std::bad_alloc e) {
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
throw e;
}
return PNGFileReader::SUCCESS;
}
A "raw" file that is intended to be used with a camera-image processing program like Raw Studio and Irfraview is not a raw-binary dump of the image-data with no header. Instead the "raw" moniker refers to the fact that the image has a minimal amount of image-processing applied in-camera. For instance, the image-data may still be a single-channel monochrome image from the camera's bayer-pattern CFA, or no white-balance, color-matrix, etc. has been applied, etc. Either way, the image-data is still formatted in a standard binary image file format complete with a header, data-packing method, etc. Examples include formats such as Adobe's DNG file format (which is based on TIFF), or proprietary formats from camera manufacturer's themselves such as Canon's CR2, Nikon's NEF, etc.
So if you want these raw-file processing programs to read your "raw" file image data, you'll have to read-up on the binary data specifications the raw-file formats they support, and then re-format the original PNG image-data correctly.