Stata - Tobit - Lagrange Multiplier Test - stata

Community,
I am running a left- and right-censored tobit regression model. The dependent variable is the proportion of cash used in M&A transactions running from 0 to 1.
I assume heteroskedasticity to be prevalent due to the characteristics of my cross-sectional sample as well as the BPCW test for the LS regression model. In order to test the tobit specifications, I used bctobit. However, bctobit is not applicable for right-censored data.
This gives rise to the following question:
- Is there another user-written command to test for the tobit specifications with right- and left-censored data?
Thanks a lot for your efforts!

The most immediate question to me here is statistical. From what you say this approach is inadvisable, so how to implement it is immaterial.
I don't think Tobit makes much sense for variables that are defined to lie in an interval. Censoring to me implies that some high or low values might have been observed in principle, but in practice are recorded as less extreme values. It seems to me that logit or probit are the appropriate link functions for proportional responses, and in that Stata that means glm with e.g. logit link.
Regardless of that, do you regard linear dependence as expected here?
For an excellent concise review making this point, see http://www.stata-journal.com/sjpdf.html?articlenum=st0147

Related

Exclude variables in regression based on causality-criteria in SAS

I have done my best to search the web for an answer to my question, but haven't been able to find any. Maybe I'm not asking in the right way, or maybe my problem can't be solved... Well, here goes nothing!
When running a regression in SAS, it is possible to do backward or forward selection and thereby eliminating all insignificant variables, which is great, but just because the p-value of variable is ≤ 0.05, that doesn't necessarily mean that the result is correct.
E.g., I run a regression in SAS with the dependent variable being numbers of deaths due to illness and the independent variable being number of doctors. The result is significant with p ≤ 0.05, but the coefficient says, that as the number of doctors rises, the number of deaths also goes up. This would probably be the result of a spurious regression, but the causality is wrong, but SAS is only a computer, and doesn't know which way, the causality would go. (Of course it could also be true, that more doctors=more deaths due to some other factor, but let us ignore that for now).
My question is: Is it possible to make a regression and then tell SAS, that it must do backward/forward elimination, but according to some rules I set, it also has to exclude variables that don't meet these rules? E.g. if deaths goes up, as the number of doctors increase, exclude the variable number of doctors? And what would that
I really hope, that someone can help me, because I am running a regression for many different years with more than 50 variables, and it would be great if I didn't have to go through all results myself.
Thanks :)
I don't think this is possible or recommended. As mentioned, SAS is a computer and can't know which regression results are spurious. What if more doctors = more medical procedures = more death? Obviously you need to apply expert opinion to each situation but the above scenario is just as plausible.
You also mention 'share of docs' which isn't the actual number if I'm correct? So it may also be an artifact of how this metric is calculated.
If you have a specific set of rules you want to exclude that may be possible. But you have to first define all those rules and have a level of certainty regarding them.
If you need to specify unusual parameter selection criteria you could always roll your own machine learning by brute force: partition the data, run different regression models over all the partitions in macro loops, and use something like AIC to select the best model.
However, unless you are a machine learning expert it's probably best to start with something like proc glmselect.
SAS can do both forward selection and backwards elimination in the glmselect procedure, e.g.:
proc gmlselect data=...;
model ... / select=forward;
...
It would also be possible to combine both approaches - i.e. run several iterations of proc glmselect in macro loops, each with different model specifications, and then choose the best result.

Is there a way to quantify impact of independent variables with gradient boosting?

I've been asked to run a model using gradient boosting or random forest. So far so good, however, the only output that comes back in terms of variable importance is based on the number of times a variable was used as a branch rule. I've now been asked to basically get coefficients or somehow quantify the impact that the variables have on the target.
Is there a way to do this with a gradient boosting model? My other thoughts were to either use only the variables that were showed to be sued as branch rules in a regular decision tree or in a GLM or regular regression model.
Any help or ides would be appreciated!! Thanks so much!
Just to make certain there is not a misunderstanding: SAS implementation of decision tree/gradient boosting (at least in EM) uses Split-Based variable Importance.
Split-Based Importance does NOT count the number splits made.
It is the ratio of the reduction of sum-of-squares by one variable (specific the sum over all splits by this variable) in relation to the reduction of sum-of-squares achieved by all splits in the model.
If you are using surrogate rules, highly correlated variables will receive roughly the same value.

What is a proper method for minimizing st deviation of dependent variable (e.g. clustering?)

I'm stuck with minimizing the st deviation of a dependent variable being time difference in days. The mean is OK, but the deviation is terrible. Tried clustering by independent variables and noticed quite dissimilar clusters. Now, wondering:
1) How I can actually apply this knowledge from clustering to the independent variable? The fact is that it was not included in initial clustering analysis, as I know it's dependent on the others.
2) Given that I know the variable of time difference is dependent, should I run clustering of it with the variable of cluster number being the result of my initial clustering analysis? Would it help?
3) Is there any other technique apart from clustering that can help me somehow categorize observation groups so that for each group I would have a separate mean of the independent variable with low st deviation?
Any help highly appreciated!
P.S. I was using Stata and SPSS, though I can also use SAS if you can share the code.
It sounds like you're going about this all wrong. Here are some relevant points to consider.
It's more important for the variance to be consistent across groups than it is to be low.
Clustering is (generally) going to organize individuals based on similar patterns of the clustering variables.
Fewer observations will generally not decrease the size of your standard deviation.
Any time you take continuous variables (either IV or DVs) and convert them into categorical variables, you are removing variance from the equation, and including more measurement error. Sometimes there are good reasons to do this, often times there are not.
Analysis should be theory-driven whenever possible, as data driven analysis (like what you're trying to accomplish here) is more likely to produce results that can't be reproduced or generalized to other data sets, samples, or populations.

Logistic Regression with pymc3 - what's the prior for build in glm?

I could not find good explanation for what's going on exactly by using glm with pymc3 in case of logistic regression. So I compared the GLM version to an explicit pymc3 model. I started to write an ipython notebook for documentation, see:
http://christianherta.de/lehre/dataScience/machineLearning/mcmc/logisticRegressionPymc3.slides.php
What I don't understand is:
What prior is used for the Parameters in GLM? I assume they are also Normal distributed. I got different results with my explicit model in comparison to the build in GLM. (see link above)
With less data the sampling get's stuck and/or I got really poor results. With more training data I could not observe this behaviour. Is this normal for mcmc?
There are more issue in the notebook.
Thanks for your answer.
What prior is used for the Parameters in GLM
GLM is name for family of methods. Two popular priors: gaussian (corresponds to l2 regularization) and laplacian (corresponds to l1), usually the first one.
With less data the sampling get's stuck and/or I got really poor results. With more training data I could not observe this behaviour. Is this normal for mcmc?
Did you play with prior parameter? If model behaves badly with small amount of data, this may be due to strong prior (= too high regularization), which becomes the main term in optimization.

Two way clustering in ordered logit model, restricting rstudent to mitigate outlier effects

I have an ordered dependent variable (1 through 21) and continuous independent variables. I need to run the ordered logit model, clustering by firm and time, eliminating outliers with Studentized Residuals <-2.5 or > 2.5. I just know ologit command and some options for the command; however, I have no idea about how to do two way clustering and eliminate outliers with studentized residuals:
ologit rating3 securitized retained, cluster(firm)
As far as I know, two way clustering has only been extended to a few estimation commands (like ivreg2 from scc and tobit/logit/probit here). Eliminating outliers can easily be done on your own and there's no automated way of doing it.
Use the logit2.ado from the link Dimitriy gave (Mitchell Petersen's website) and modify it to use the ologit command. It's simple enough to do with a little trial and error. Good luck!
If you have a variable with 21 ordinal categories, I would have no problems treating that as a continuous one. If you want to back that up somehow, I wrote a paper on welfare measurement with ordinal variables, see DOI:10.1111/j.1475-4991.2008.00309.x. Then you can use ivreg2. You should be aware of all the issues involved with that estimator, in particular, that it implicitly assumed that the correlations are fully modeled by this two-way structure, and observations for firms i and j and times t and s are definitely uncorrelated for i!=j and t!=s. Sometimes, this is a strong assumption to make -- i.e., New York and New Jersey may be correlated in 2010, but New York 2010 is uncorrelated with New Jersey 2009.
I have no idea of what you might mean by ordinal outliers. Somebody must have piled a bunch of dissertation advice (or worse analysis requests) without really trying to make sense of every bit.