I'm trying to change the test pattern of an ffmpeg streamer, Trouble syncing libavformat/ffmpeg with x264 and RTP , into familiar RGB format. My broader goal is to compute frames of a streamed video on the fly.
So I replaced its AV_PIX_FMT_MONOWHITE with AV_PIX_FMT_RGB24, which is "packed RGB 8:8:8, 24bpp, RGBRGB..." according to http://libav.org/doxygen/master/pixfmt_8h.html .
To stuff its pixel array called data, I've tried many variations on
for (int y=0; y<HEIGHT; ++y) {
for (int x=0; x<WIDTH; ++x) {
uint8_t* rgb = data + ((y*WIDTH + x) *3);
const double i = x/double(WIDTH);
// const double j = y/double(HEIGHT);
rgb[0] = 255*i;
rgb[1] = 0;
rgb[2] = 255*(1-i);
}
}
At HEIGHTxWIDTH= 80x60, this version yields
, when I expect a single blue-to-red horizontal gradient.
640x480 yields the same 4-column pattern, but with far more horizontal stripes.
640x640, 160x160, etc, yield three columns, cyan-ish / magenta-ish / yellow-ish, with the same kind of horizontal stripiness.
Vertical gradients behave even more weirdly.
Appearance was unaffected by an AV_PIX_FMT_RGBA attempt (4 not 3 bytes per pixel, alpha=255). Also unaffected by a port from C to C++.
The argument srcStrides passed to sws_scale() is a length-1 array, containing the single int HEIGHT.
Access each Pixel of AVFrame asks the same question in less detail, so far unanswered.
The streamer emits one warning, which I doubt affects appearance:
[rtp # 0x269c0a0] Encoder did not produce proper pts, making some up.
So. How do you set the RGB value of a pixel in a frame to be sent to sws_scale() (and then to x264_encoder_encode() and av_interleaved_write_frame())?
Use avpicture_fill() as described in Encoding a screenshot into a video using FFMPEG .
Instead of passing data directly to sws_scale(), do this:
AVFrame* pic = avcodec_alloc_frame();
avpicture_fill((AVPicture *)pic, data, AV_PIX_FMT_RGB24, WIDTH, HEIGHT);
and then replace the 2nd and 3rd args of sws_scale() with
pic->data, pic->linesize,
Then the gradients above work properly, at many resolutions.
The argument srcStrides passed to sws_scale() is a length-1 array, containing the single int HEIGHT.
Stride (AKA linesize) is the distance in bytes between two lines. For various reasons having mostly to do with optimization it is often larger than simply width in bytes, so there is padding on the end of each line.
In your case, without any padding, stride should be width * 3.
Related
I am having trouble encoding a video with the ffmpeg libraries as i am getting segfaults and/or out of bound memory writing when i am writing raw video data to an AVFrame. I therefore just wanted to ask if one of my assumptions was right.
Am i right to assume that the size of AVFrame.data[i] is always equal to AVFrame.linesize[i]*AVFrame.Height? Or could there be scenarios where that is not the case, and if so how can i then reliably calculate the size of AVFrame.data[i]?
It work in most of the cases, but I wouldn't relay on that for all different formats:-
AVFrame.linesize[i] = AVFrame.Width * PixelSize (where PixelSize eg. RGBA = 4bytes)
BufferSize = AVFrame.linesize[i] * AVFrame.Height
The best way, it should be by using FFmpeg's official av_image_get_buffer_size
int buffer_size = av_image_get_buffer_size(AVPixelFormat.AV_PIX_FMT_RGBA, codecCtx->width, codecCtx->height, 1);
It depends on the pixel format. For example YUV 4:4:4, yes every plane is linesizeheight. But for 4:2:2 it is linesizeheight for the Y plane, but linesize*height/2 for the U and V planes.
I am creating a program that allows you to view fractals like the Mandelbrot or Julia set. I would like to render them as quickly as possible. I would love a way to put an array of uint8_t pixel values onto the screen. The array is formatted like this...
{r0,g0,b0,r1,g1,b1,...}
(A one dimensional array or RGB color values)
I know I have the proper data because before I just set individual points and it worked...
for(int i = 0;i < height * width;++i) {
//setStroke and point are functions that I made that together just draw a colored point
r.setStroke(data[i*3],data[i*3+1],data[i*3+2]);
r.point(i % r.window.w,i / r.window.w);
}
This is a pretty slow operation especially if the screen is big (which I would like it to be)
Is there any faster way to just put all the data onto the screen.
I tried doing something like this
void* pixels;
int pitch;
SDL_Texture* img = SDL_CreateTexture(ren,
SDL_GetWindowPixelFormat(win),SDL_TEXTUREACCESS_STREAMING,window.w,window.h);
SDL_LockTexture(img, NULL, &pixels, &pitch);
memcpy(pixels, data, window.w * 3 * window.h);
SDL_UnlockTexture(img);
SDL_RenderCopy(ren,img,NULL,NULL);
SDL_DestroyTexture(img);
I have no idea what I'm doing so please have mercy
Edit (thank you for comments :))
So here is what I do now
SDL_Texture* img = SDL_CreateTexture(ren, SDL_PIXELFORMAT_RGB888,SDL_TEXTUREACCESS_STREAMING,window.w,window.h);
SDL_UpdateTexture(img,NULL,&data[0],window.w * 3);
SDL_RenderCopy(ren,img,NULL,NULL);
SDL_DestroyTexture(img);
But I get this Image... which is not what it should look like
I am thinking that my data is just formatted wrong, right now it is formatted as an array of uint8_t in RGB order. Is there another way I should be formatting it (note I do not need an alpha channel)
Lets start with some code:
QByteArray OpenGLWidget::modifyImage(QByteArray imageArray, const int width, const int height){
if (vertFlip){
/* Each pixel constist of four unisgned chars: Red Green Blue Alpha.
* The field is normally 640*480, this means that the whole picture is in fact 640*4 uChars wide.
* The whole ByteArray is onedimensional, this means that 640*4 is the red of the first pixel of the second row
* This function is EXTREMELY SLOW
*/
QByteArray tempArray = imageArray;
for (int h = 0; h < height; ++h){
for (int w = 0; w < width/2; ++w){
for (int i = 0; i < 4; ++i){
imageArray.data()[h*width*4 + 4*w + i] = tempArray.data()[h*width*4 + (4*width - 4*w) + i ];
imageArray.data()[h*width*4 + (4*width - 4*w) + i] = tempArray.data()[h*width*4 + 4*w + i];
}
}
}
}
return imageArray;
}
This is the code I use right now to vertically flip an image which is 640*480 (The image is actually not guaranteed to be 640*480, but it mostly is). The color encoding is RGBA, which means that the total array size is 640*480*4. I get the images with 30 FPS, and I want to show them on the screen with the same FPS.
On an older CPU (Athlon x2) this code is just too much: the CPU is racing to keep up with the 30 FPS, so the question is: can I do this more efficient?
I am also working with OpenGL, does that have a gimmic I am not aware of that can flip images with relativly low CPU/GPU usage?
According to this question, you can flip an image in OpenGL by scaling it by (1,-1,1). This question explains how to do transformations and scaling.
You can improve at least by doing it blockwise, making use of the cache architecture. In your example one of the accesses (either the read OR the write) will be off-cache.
For a start it can help to "capture scanlines" if you're using two loops to loop through the pixels of an image, like so:
for (int y = 0; y < height; ++y)
{
// Capture scanline.
char* scanline = imageArray.data() + y*width*4;
for (int x = 0; x < width/2; ++x)
{
const int flipped_x = width - x-1;
for (int i = 0; i < 4; ++i)
swap(scanline[x*4 + i], scanline[flipped_x*4 + i]);
}
}
Another thing to note is that I used swap instead of a temporary image. That'll tend to be more efficient since you can just swap using registers instead of loading pixels from a copy of the entire image.
But also it generally helps if you use a 32-bit integer instead of working one byte at a time if you're going to be doing anything like this. If you're working with pixels with 8-bit types but know that each pixel is 32-bits, e.g., as in your case, you can generally get away with a case to uint32_t*, e.g.
for (int y = 0; y < height; ++y)
{
uint32_t* scanline = (uint32_t*)imageArray.data() + y*width;
std::reverse(scanline, scanline + width);
}
At this point you might parellelize the y loop. Flipping an image horizontally (it should be "horizontal" if I understood your original code correctly) in this way is a little bit tricky with the access patterns, but you should be able to get quite a decent boost using the above techniques.
I am also working with OpenGL, does that have a gimmic I am not aware
of that can flip images with relativly low CPU/GPU usage?
Naturally the fastest way to flip images is to not touch their pixels at all and just save the flipping for the final part of the pipeline when you render the result. For this you might render a texture in OGL with negative scaling instead of modifying the pixels of a texture.
Another thing that's really useful in video and image processing is to represent an image to process like this for all your image operations:
struct Image32
{
uint32_t* pixels;
int32_t width;
int32_t height;
int32_t x_stride;
int32_t y_stride;
};
The stride fields are what you use to get from one scanline (row) of an image to the next vertically and one column to the next horizontally. When you use this representation, you can use negative values for the stride and offset the pixels accordingly. You can also use the stride fields to, say, render only every other scanline of an image for fast interactive half-res scanline previews by using y_stride=height*2 and height/=2. You can quarter-res an image by setting x stride to 2 and y stride to 2*width and then halving the width and height. You can render a cropped image without making your blit functions accept a boatload of parameters by just modifying these fields and keeping the y stride to width to get from one row of the cropped section of the image to the next:
// Using the stride representation of Image32, this can now
// blit a cropped source, a horizontally flipped source,
// a vertically flipped source, a source flipped both ways,
// a half-res source, a quarter-res source, a quarter-res
// source that is horizontally flipped and cropped, etc,
// and all without modifying the source image in advance
// or having to accept all kinds of extra drawing parameters.
void blit(int dst_x, int dst_y, Image32 dst, Image32 src);
// We don't have to do things like this (and I think I lost
// some capabilities with this version below but it hurts my
// brain too much to think about what capabilities were lost):
void blit_gross(int dst_x, int dst_y, int dst_w, int dst_h, uint32_t* dst,
int src_x, int src_y, int src_w, int src_h,
const uint32_t* src, bool flip_x, bool flip_y);
By using negative values and passing it to an image operation (ex: a blit operation), the result will naturally be flipped without having to actually flip the image. It'll end up being "drawn flipped", so to speak, just as with the case of using OGL with a negative scaling transformation matrix.
I'm using OpenCV for object detection and one of the operations I would like to be able to perform is a per-pixel square root. I imagine the loop would be something like:
IplImage* img_;
...
for (int y = 0; y < img_->height; y++) {
for(int x = 0; x < img_->width; x++) {
// Take pixel square root here
}
}
My question is how can I access the pixel value at coordinates (x, y) in an IplImage object?
Assuming img_ is of type IplImage, and assuming 16 bit unsigned integer data, I would say
unsigned short pixel_value = ((unsigned short *)&(img_->imageData[img_->widthStep * y]))[x];
See also here for IplImage definition.
OpenCV IplImage is a one dimensional array. You must create a single index to get at image data. The position of your pixel will be based on the color depth, and number of channels in your image.
// width step
int ws = img_->withStep;
// the number of channels (colors)
int nc = img_->nChannels;
// the depth in bytes of the color
int d = img_->depth&0x0000ffff) >> 3;
// assuming the depth is the size of a short
unsigned short * pixel_value = (img_->imageData)+((y*ws)+(x*nc*d));
// this gives you a pointer to the first color in a pixel
//if your are rolling grayscale just dereference the pointer.
You can pick a channel (color) by moving over pixel pointer pixel_value++. I would suggest using a look up table for square roots of pixels if this is going to be any sort of real time application.
please use the CV_IMAGE_ELEM macro.
Also, consider using cvPow with power=0.5 instead of working on pixels yourself, which should be avoided anyways
You may find several ways of reaching image elements in Gady Agam's nice OpenCV tutorial here.
I'm using JNI to obtain raw image data in the following format:
The image data is returned in the format of a DATA32 (32 bits) per pixel in a linear array ordered from the top left of the image to the bottom right going from left to right each line. Each pixel has the upper 8 bits as the alpha channel and the lower 8 bits are the blue channel - so a pixel's bits are ARGB (from most to least significant, 8 bits per channel). You must put the data back at some point.
The DATA32 format is essentially an unsigned int in C.
So I obtain an int[] array and then try to create a Buffered Image out of it by
int w = 1920;
int h = 1200;
BufferedImage b = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
int[] f = (new Capture()).capture();
for(int i = 0; i < f.length; i++){;
b.setRGB(x, y, f[i]);
}
f is the array with the pixel data.
According to the Java documentation this should work since BufferedImage.TYPE_INT_ARGB is:
Represents an image with 8-bit RGBA color components packed into integer pixels. The image has a DirectColorModel with alpha. The color data in this image is considered not to be premultiplied with alpha. When this type is used as the imageType argument to a BufferedImage constructor, the created image is consistent with images created in the JDK1.1 and earlier releases.
Unless by 8-bit RGBA, them mean that all components added together are encoded in 8bits? But this is impossible.
This code does work, but the image that is produced is not at all like the image that it should produce. There are tonnes of artifacts. Can anyone see something obviously wrong in here?
Note I obtain my pixel data with
imlib_context_set_image(im);
data = imlib_image_get_data();
in my C code, using the library imlib2 with api http://docs.enlightenment.org/api/imlib2/html/imlib2_8c.html#17817446139a645cc017e9f79124e5a2
i'm an idiot.
This is merely a bug.
I forgot to include how I calculate x,y above.
Basically I was using
int x = i%w;
int y = i/h;
in the for loop, which is wrong. SHould be
int x = i%w;
int y = i/w;
Can't believe I made this stupid mistake.