trouble accessing external float array - c++

I have the following program in two files
main.cpp
float POW10[300];
main(0
{
Fill_POW10();
}
Fill.cpp
extern float *POW10;
Fill_POW10()
{
for(int i=0;i<300;i++)
{
POW10[i]=i;
}
}
This crashed with a segmentation fault. When I inspect, POW10 is NULL. However if I change Fill.cpp to
extern float POW10[];
Fill_POW10()
{
for(int i=0;i<300;i++)
{
POW10[i]=i;
}
}
the code works fine. I was thinking that POW10 is actually implemented as a pointer to floats and so the codes should be identical. Can you please explain why this is not so.

Arrays and pointers are completely different types. When you define a pointer variable, all you get is a single pointer that may or may not actually point anywhere. When you define an array, you get a contiguous sequence of objects.
You may be thinking of function argument types, where array types are transformed to pointer types. That is, void foo(int arg[]) is equivalent to void foo(int* arg). This is only true for function arguments.

First read this entry which explains your issue:
http://c-faq.com/aryptr/aryptr1.html
Then read this follow up which explains the differences between array and pointer.
http://c-faq.com/aryptr/aryptr2.html

The type of POW10 is array of 300 float. It is not pointer to float. When you change your extern declaration to match the definition the problem goes away.

Because the linker is not resolving your float * POW10 declaration to the float POW10[] definition, but actually creating a separate definition altogether, which ends up being uninitialized (NULL, as you experienced).

Related

Why can't we use a void* to operate on the object it addresses

I am learning C++ using C++ Primer 5th edition. In particular, i read about void*. There it is written that:
We cannot use a void* to operate on the object it addresses—we don’t know that object’s type, and the type determines what operations we can perform on that object.
void*: Pointer type that can point to any nonconst type. Such pointers may not
be dereferenced.
My question is that if we're not allowed to use a void* to operate on the object it addressess then why do we need a void*. Also, i am not sure if the above quoted statement from C++ Primer is technically correct because i am not able to understand what it is conveying. Maybe some examples can help me understand what the author meant when he said that "we cannot use a void* to operate on the object it addresses". So can someone please provide some example to clarify what the author meant and whether he is correct or incorrect in saying the above statement.
My question is that if we're not allowed to use a void* to operate on the object it addressess then why do we need a void*
It's indeed quite rare to need void* in C++. It's more common in C.
But where it's useful is type-erasure. For example, try to store an object of any type in a variable, determining the type at runtime. You'll find that hiding the type becomes essential to achieve that task.
What you may be missing is that it is possible to convert the void* back to the typed pointer afterwards (or in special cases, you can reinterpret as another pointer type), which allows you to operate on the object.
Maybe some examples can help me understand what the author meant when he said that "we cannot use a void* to operate on the object it addresses"
Example:
int i;
int* int_ptr = &i;
void* void_ptr = &i;
*int_ptr = 42; // OK
*void_ptr = 42; // ill-formed
As the example demonstrates, we cannot modify the pointed int object through the pointer to void.
so since a void* has no size(as written in the answer by PMF)
Their answer is misleading or you've misunderstood. The pointer has a size. But since there is no information about the type of the pointed object, the size of the pointed object is unknown. In a way, that's part of why it can point to an object of any size.
so how can a int* on the right hand side be implicitly converted to a void*
All pointers to objects can implicitly be converted to void* because the language rules say so.
Yes, the author is right.
A pointer of type void* cannot be dereferenced, because it has no size1. The compiler would not know how much data he needs to get from that address if you try to access it:
void* myData = std::malloc(1000); // Allocate some memory (note that the return type of malloc() is void*)
int value = *myData; // Error, can't dereference
int field = myData->myField; // Error, a void pointer obviously has no fields
The first example fails because the compiler doesn't know how much data to get. We need to tell it the size of the data to get:
int value = *(int*)myData; // Now fine, we have casted the pointer to int*
int value = *(char*)myData; // Fine too, but NOT the same as above!
or, to be more in the C++-world:
int value = *static_cast<int*>(myData);
int value = *static_cast<char*>(myData);
The two examples return a different result, because the first gets an integer (32 bit on most systems) from the target address, while the second only gets a single byte and then moves that to a larger variable.
The reason why the use of void* is sometimes still useful is when the type of data doesn't matter much, like when just copying stuff around. Methods such as memset or memcpy take void* parameters, since they don't care about the actual structure of the data (but they need to be given the size explicitly). When working in C++ (as opposed to C) you'll not use these very often, though.
1 "No size" applies to the size of the destination object, not the size of the variable containing the pointer. sizeof(void*) is perfectly valid and returns, the size of a pointer variable. This is always equal to any other pointer size, so sizeof(void*)==sizeof(int*)==sizeof(MyClass*) is always true (for 99% of today's compilers at least). The type of the pointer however defines the size of the element it points to. And that is required for the compiler so he knows how much data he needs to get, or, when used with + or -, how much to add or subtract to get the address of the next or previous elements.
void * is basically a catch-all type. Any pointer type can be implicitly cast to void * without getting any errors. As such, it is mostly used in low level data manipulations, where all that matters is the data that some memory block contains, rather than what the data represents. On the flip side, when you have a void * pointer, it is impossible to determine directly which type it was originally. That's why you can't operate on the object it addresses.
if we try something like
typedef struct foo {
int key;
int value;
} t_foo;
void try_fill_with_zero(void *destination) {
destination->key = 0;
destination->value = 0;
}
int main() {
t_foo *foo_instance = malloc(sizeof(t_foo));
try_fill_with_zero(foo_instance, sizeof(t_foo));
}
we will get a compilation error because it is impossible to determine what type void *destination was, as soon as the address gets into try_fill_with_zero. That's an example of being unable to "use a void* to operate on the object it addresses"
Typically you will see something like this:
typedef struct foo {
int key;
int value;
} t_foo;
void init_with_zero(void *destination, size_t bytes) {
unsigned char *to_fill = (unsigned char *)destination;
for (int i = 0; i < bytes; i++) {
to_fill[i] = 0;
}
}
int main() {
t_foo *foo_instance = malloc(sizeof(t_foo));
int test_int;
init_with_zero(foo_instance, sizeof(t_foo));
init_with_zero(&test_int, sizeof(int));
}
Here we can operate on the memory that we pass to init_with_zero represented as bytes.
You can think of void * as representing missing knowledge about the associated type of the data at this address. You may still cast it to something else and then dereference it, if you know what is behind it. Example:
int n = 5;
void * p = (void *) &n;
At this point, p we have lost the type information for p and thus, the compiler does not know what to do with it. But if you know this p is an address to an integer, then you can use that information:
int * q = (int *) p;
int m = *q;
And m will be equal to n.
void is not a type like any other. There is no object of type void. Hence, there exists no way of operating on such pointers.
This is one of my favourite kind of questions because at first I was also so confused about void pointers.
Like the rest of the Answers above void * refers to a generic type of data.
Being a void pointer you must understand that it only holds the address of some kind of data or object.
No other information about the object itself, at first you are asking yourself why do you even need this if it's only able to hold an address. That's because you can still cast your pointer to a more specific kind of data, and that's the real power.
Making generic functions that works with all kind of data.
And to be more clear let's say you want to implement generic sorting algorithm.
The sorting algorithm has basically 2 steps:
The algorithm itself.
The comparation between the objects.
Here we will also talk about pointer functions.
Let's take for example qsort built in function
void qsort(void *base, size_t nitems, size_t size, int (*compar)(const void *, const void*))
We see that it takes the next parameters:
base − This is the pointer to the first element of the array to be sorted.
nitems − This is the number of elements in the array pointed by base.
size − This is the size in bytes of each element in the array.
compar − This is the function that compares two elements.
And based on the article that I referenced above we can do something like this:
int values[] = { 88, 56, 100, 2, 25 };
int cmpfunc (const void * a, const void * b) {
return ( *(int*)a - *(int*)b );
}
int main () {
int n;
printf("Before sorting the list is: \n");
for( n = 0 ; n < 5; n++ ) {
printf("%d ", values[n]);
}
qsort(values, 5, sizeof(int), cmpfunc);
printf("\nAfter sorting the list is: \n");
for( n = 0 ; n < 5; n++ ) {
printf("%d ", values[n]);
}
return(0);
}
Where you can define your own custom compare function that can match any kind of data, there can be even a more complex data structure like a class instance of some kind of object you just define. Let's say a Person class, that has a field age and you want to sort all Persons by age.
And that's one example where you can use void * , you can abstract this and create other use cases based on this example.
It is true that is a C example, but I think, being something that appeared in C can make more sense of the real usage of void *. If you can understand what you can do with void * you are good to go.
For C++ you can also check templates, templates can let you achieve a generic type for your functions / objects.

C++ function input argument by reference vs by pointer

I am new to C++ and have done only MATLAB earlier.
My Q is about the input argument of the following functions, which call variables by value,reference and pointer.
void SwapbyValue (int a, int b){
// Usual swapping code
}
void SwapbyRef (int &a, int &b){
// Usual swapping code
}
void SwapbyPoint(int *a,int *b){
//Usual swapping code
}
Since my Q isn't about how the above functions work but rather about how I call them, I've left out the code. So, I understand we call the above functions by typing SwapbyRef (i1,i2),SwapbyRef (i1,i2) and SwapbyPoint(&i1,&i2) when i1 and 12 are int.
That confuses me the life out of me. Okay, I get that the first function takes in values and makes sense. But in the second one, calling by just i1 and i2 doesn't make sense as when the function is defined, we set its input as &a and not just a but it still runs. Again in the third, we set the input argument as a pointer i.e. *a but we're passing an address &a (like 0x7956a69314d8) when we call it.
Why does it run when we pass the wrong kind of input to the function?
For example,a Matlab analogy,it looks like passing a char to a int function. Help!
int &a is a reference to an int, meaning, it will accept all int variables that already exist. What you cannot do is for example SwapbyRef(4, 5) using SwapbyRef (int &a, int &b), because 4 and 5 are temporary ints that do not exist somewhere in memory as variables.
Btw, you should probably just look up what a reference in c++ is. That would help you most, I think.

local array length is different from when it is called from a function

In the following code, std::extent<decltype(columns)>::value calculates the length of the given array. However, when the array is a function argument, the compiler behaves in different way. Could some one help me how to fix it?
output:
local array length: 5
function array length: 0
code:
#include <iostream>
#include <string>
void showcolumns_num(std::string columns[])
{
int columns_num=std::extent<decltype(columns)>::value;
std::cout<<"function array length: "<<columns_num<<std::endl;
}
int main()
{
std::string column_list[]={"col1","col2","col3","col4","col5"};
// local calculation of column number
int columns_num=std::extent<decltype(column_list)>::value;
std::cout<<"local array length: "<<columns_num<<std::endl;
// function calculation of column number
showcolumns_num(column_list);
return 0;
}
You have to pass array by reference to avoid the decay to pointer which so loses size information:
template <std::size_t N>
void showcolumns_num(std::string (&columns)[N])
Live example.
That because of the declaration:
void showcolumns_num(std::string columns[])
is the same as:
void showcolumns_num(std::string * columns)
But declaration:
std::string column_list[]={"col1","col2","col3","col4","col5"};
is the same as:
std::string column_list[5]={"col1","col2","col3","col4","col5"};
So compiler doesn't know about array size inside the function.
Just use the std::vector< std::string >.
The short answer is: Don't use arrays. Instead of string columns[N];, use vector<string> columns; or vector<string> columns(N,"");. In this answer, I'll talk a bit more about arrays, they are "interesting". But arrays are "interesting" in the way that cancer is interesting, somebody has to understand cancer, but we want to get rid of it and most people don't want to be experts.
C arrays are really weird things. They can't be passed by value, but they can be passed by reference, and C++ makes it quite easy. If you are determined - as an intellectual exercise - to pass arrays, then you can use this:
template<size_t N>
void showcolumns_num(std::string (&columns)[N])
Non-array types, like int, or struct Person, or list<vector<string>>, can be passed by value or by reference. But arrays cannot be passed by value.
If you attempt to pass an array by value, the compiler will do a trick where it will instead pass a pointer to the first element of the array. This is called pointer decay.
This means that, without warning, the compiler will rewrite your function declarations
void showcolumns_num(std::string columns[]) { // this is what you write
// changed to
void showcolumns_num(std::string* columns) { // ... but this is what you get
and every call to showcolumns_num will be changed from:
showcolumns_num(column_list); // this is what you write
// changed to
showcolumns_num(&(column_list[0])); // ... but this is what you get
The reason behind this is historical, and is related to an earlier language called B.
Variables are declared as local variables, or as global variables, or as function parameters. For local and global variables, the compiler will generally respect your wishes, but not for function parameters:
void foo(int x[5]) { // silently converted to int *x
int y[10]; // y really will be an array
}

Void pointer values comparing C++

My actual question is it really possible to compare values contained in two void pointers, when you actually know that these values are the same type? For example int.
void compVoids(void *firstVal, void *secondVal){
if (firstVal < secondVal){
cout << "This will not make any sense as this will compare addresses, not values" << endl;
}
}
Actually I need to compare two void pointer values, while outside the function it is known that the type is int. I do not want to use comparison of int inside the function.
So this will not work for me as well: if (*(int*)firstVal > *(int*)secondVal)
Any suggestions?
Thank you very much for help!
In order to compare the data pointed to by a void*, you must know what the type is. If you know what the type is, there is no need for a void*. If you want to write a function that can be used for multiple types, you use templates:
template<typename T>
bool compare(const T& firstVal, const T& secondVal)
{
if (firstVal < secondVal)
{
// do something
}
return something;
}
To illustrate why attempting to compare void pointers blind is not feasible:
bool compare(void* firstVal, void* secondVal)
{
if (*firstVal < *secondVal) // ERROR: cannot dereference a void*
{
// do something
}
return something;
}
So, you need to know the size to compare, which means you either need to pass in a std::size_t parameter, or you need to know the type (and really, in order to pass in the std::size_t parameter, you have to know the type):
bool compare(void* firstVal, void* secondVal, std::size_t size)
{
if (0 > memcmp(firstVal, secondVal, size))
{
// do something
}
return something;
}
int a = 5;
int b = 6;
bool test = compare(&a, &b, sizeof(int)); // you know the type!
This was required in C as templates did not exist. C++ has templates, which make this type of function declaration unnecessary and inferior (templates allow for enforcement of type safety - void pointers do not, as I'll show below).
The problem comes in when you do something (silly) like this:
int a = 5;
short b = 6;
bool test = compare(&a, &b, sizeof(int)); // DOH! this will try to compare memory outside the bounds of the size of b
bool test = compare(&a, &b, sizeof(short)); // DOH! This will compare the first part of a with b. Endianess will be an issue.
As you can see, by doing this, you lose all type safety and have a whole host of other issues you have to deal with.
It is definitely possible, but since they are void pointers you must specify how much data is to be compared and how.
The memcmp function may be what you are looking for. It takes two void pointers and an argument for the number of bytes to be compared and returns a comparison. Some comparisons, however, are not contingent upon all of the data being equal. For example: comparing the direction of two vectors ignoring their length.
This question doesn't have a definite answer unless you specify how you want to compare the data.
You need to dereference them and cast, with
if (*(int*) firstVal < *(int*) secondVal)
Why do you not want to use the int comparison inside the function, if you know that the two values will be int and that you want to compare the int values that they're pointing to?
You mentioned a comparison function for comparing data on inserts; for a comparison function, I recommend this:
int
compareIntValues (void *first, void *second)
{
return (*(int*) first - *(int*) second);
}
It follows the convention of negative if the first is smaller, 0 if they're equal, positive if the first is larger. Simply call this function when you want to compare the int data.
yes. and in fact your code is correct if the type is unsigned int. casting int values to void pointer is often used even not recommended.
Also you could cast the pointers but you have to cast them directly to the int type:
if ((int)firstVal < (int)secondVal)
Note: no * at all.
You may have address model issues doing this though if you build 32 and 64 bits. Check the intptr_t type that you could use to avoid that.
if ((intptr_t)firstVal < (intptr_t)secondVal)

Returning an array ... rather a reference or pointer to an array

I am a bit confused. There are two ways to return an array from a method. The first suggests the following:
typedef int arrT[10];
arrT *func(int i);
However, how do I capture the return which is an int (*)[]?
Another way is through a reference or pointer:
int (*func(int i)[10];
or
int (&func(int i)[10];
The return types are either int (*)[] or int (&)[].
The trouble I am having is how I can assign a variable to accept the point and I continue to get errors such as:
can't convert int* to int (*)[]
Any idea what I am doing wrong or what is lacking in my knowledge?
If you want to return an array by value, put it in a structure.
The Standard committee already did that, and thus you can use std::array<int,10>.
std::array<int,10> func(int i);
std::array<int,10> x = func(77);
This makes it very straightforward to return by reference also:
std::array<int,10>& func2(int i);
std::array<int,10>& y = func2(5);
First, the information you give is incorrect.
You write,
“There are two ways to return an array from a method”
and then you give as examples of the ways
typedef int arrT[10];
arrT *func(int i);
and
int (*func(int i))[10];
(I’ve added the missing right parenthesis), where you say that this latter way, in contrast to the first, is an example of
“through a reference or pointer”
Well, these two declarations mean exactly the same, to wit:
typedef int A[10];
A* fp1( int i ) { return 0; }
int (*fp2( int i ))[10] { return 0; }
int main()
{
int (*p1)[10] = fp1( 100 );
int (*p2)[10] = fp2( 200 );
}
In both cases a pointer to the array is returned, and this pointer is typed as "pointer to array". Dereferencing that pointer yields the array itself, which decays to a pointer to itself again, but now typed as "pointer to item". It’s a pointer to the first item of the array. At the machine code level these two pointers are, in practice, exactly the same. Coming from a Pascal background that confused me for a long time, but the upshot is, since it’s generally impractical to carry the array size along in the type (which precludes dealing with arrays of different runtime sizes), most array handling code deals with the pointer-to-first-item instead of the pointer-to-the-whole-array.
I.e., normally such a low level C language like function would be declared as just
int* func()
return a pointer to the first item of an array of size established at run time.
Now, if you want to return an array by value then you have two choices:
Returning a fixed size array by value: put it in a struct.
The standard already provides a templated class that does this, std::array.
Returning a variable size array by value: use a class that deals with copying.
The standard already provides a templated class that does this, std::vector.
For example,
#include <vector>
using namespace std;
vector<int> foo() { return vector<int>( 10 ); }
int main()
{
vector<int> const v = foo();
// ...
}
This is the most general. Using std::array is more of an optimization for special cases. As a beginner, keep in mind Donald Knuth’s advice: “Premature optimization is the root of all evil.” I.e., just use std::vector unless there is a really really good reason to use std::array.
using arrT10 = int[10]; // Or you can use typedef if you want
arrT10 * func(int i)
{
arrT10 a10;
return &a10;
// int a[10];
// return a; // ERROR: can't convert int* to int (*)[]
}
This will give you a warning because func returns an address of a local variable so we should NEVER code like this but I'm sure this code can help you.