I'm trying to code a model that can solve the Multiple Choice Knapsack Problem (MCKP) as described in Knapsack Problems involving dimensions, demands and multiple
choice constraints: generalization and transformations between
formulations (Found here, see figures 8 an 9). You can find an example GMPL model of the basic knapsack problem here. For anyone looking for a quick explanation of the knapsack problem read the following illustration:
You are an adventurer and have stumbled upon a treasure trove. There are hundreds of wonderful items 'i' that each have a weight 'w' and a profit 'p'. Say you have a knapsack with weight capacity as 'c' and you want to make the most profit without overfilling your knapsack. What is the best combination of items such that you make the most profit?
In code:
maximize obj :
sum{(i,w,p) in I} p*x[i];
Where 'I' is the basket of items, and x[i] is the binary variable (0 = not chosen, 1 = chosen)
The problem that I am having trouble with is the addition of multiple groups. MCKP requires exactly one item to be selected from each group. So, for example, lets say we have three groups from which to choose. They could be represented as follows (ignore actual values):
# Items: index, weight, profit
set ONE :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
# Items: index, weight, profit
set TWO :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
# Items: index, weight, profit
set THREE :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
I am confused on how I can iterate over each group and how I would define the variable x. I assume it would look something like:
var x{i,j} binary;
Where i is the index of items in j of groups. This assumes I define a set of sets:
set Groups{ONE,TWO,THREE}
Then I'd iterate over the groups of items:
sum{j in Groups, (i,w,p) in Groups[j]} p*x[i,j];
But I am concerned because I believe GMPL does not support ordered sets. I have seen this related question where the answer suggests defining a set within a set. However, I am not sure how it would apply in this particular scenario.
My main question, to be clear: In GMPL, how can I iterate over sets of sets (in this case a set of groups where each group has a set of items)?
Unlike AMPL, GMPL doesn't support sets of sets. Here's how to do it in AMPL:
set Groups;
set Items{Groups} dimen 3;
# define x and additional constraints
# ...
maximize obj: sum{g in Groups, (i,w,p) in Items[g]} p*x[i];
data;
set Groups := ONE TWO THREE;
# Items: index, weight, profit
set Items[ONE] :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
# Items: index, weight, profit
set Items[TWO] :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
# Items: index, weight, profit
set Items[THREE] :=
1 10 10
2 10 10
3 15 15
4 20 20
5 20 20
6 24 24
7 24 24
8 50 50;
If you have no more than 300 variables, you can use a free student version of AMPL and solvers (e.g. CPLEX or Gurobi).
Based on this gnu mailing list thread, I believe GMPL/MathProg has support for what you want to do. Here's their example:
set WORKERS;
param number_of_shifts, integer, >= 1;
set WORKER_CLIQUE{1..number_of_shifts}, within WORKERS;
data;
set WORKERS := Jack Kate Sawyer Sun Juliet Richard Desmond Hugo;
param number_of_shifts := 2;
set WORKER_CLIQUE[1] := Sawyer, Juliet;
set WORKER_CLIQUE[2] := Jack, Kate, Hugo;
In your example, I assume you'd use something like, set Items{1..3}, within Groups; with the data block from #vitaut's answer.
Related
I begin to use Power BI, and I don't know how to group lines.
I have this kind of data :
api user 01/07/21 02/07/21 03/07/21 ...
a 25 null 3 4
b 25 1 null 2
c 25 1 4 5
a 30 4 3 5
b 30 3 2 2
c 30 1 1 3
And I would like to have the sum of the values per user, not by api and user
user 01/07/21 02/07/21 03/07/21 ...
25 2 7 11
30 8 6 10
Do you know how to do it please ?
I created a table with your sample data (make sure your values are treated as numbers):
Then create a Matrix visual, with "user" in Rows and your desired columns in the Values section:
I have a set of individuals with characteristics. Each individual belongs to one or more group. I need to merge individuals to group characteristics, by firstly duplicating each row of individual data set as many times as is given by n_groups.
The data looks like
id age n_groups
1 50 2
2 46 1
3 51 3
4 44 2
I need to have
id age n_groups group_index
1 50 2 1
1 50 2 2
2 46 1 1
3 51 3 1
3 51 3 2
3 51 3 3
4 44 2 1
4 44 2 1
It seems like a very easy task, and I need some variation of expand with variable number of duplicates. Any ideas if there is a simple command for this?
Thanks!
Appears the solution is very standard. The expand command indeed allows for expanding based on variable: expand n_groups solved the question.
I have a Calc sheet listing a cut-list for plywood in two columns with a quantity in a third column. I would like to remove duplicate matching pairs of dimensions and total the quantity. Starting with:
A B C
25 35 2
25 40 1
25 45 3
25 45 2
35 45 1
35 50 3
40 25 1
40 25 1
Ending with:
A B C
25 35 2
25 40 1
25 45 5
35 45 1
35 50 3
40 25 2
I'm trying to automate this. Currently I have multiple lists which occupy the same page which need to be totaled independently of each other.
Put a unique different ListId, ListCode or ListNumber for each of the lists. Let all rows falling into the same list, have the same value for this field.
Concatenate A & B and form a new column, say, PairAB.
If the list is small and handlable, filter for PairAB and collect totals.
Otherwise, use Grouping and subtotals to get totals for each list and each pair, grouping on ListId and PairAB.
If the list is very large, you are better off taking it to CSV, and onward to a database, such things are simple child's play in SQL.
I have used SAS PROC RANK to rank a population based on score and create groups of equal size. I would like to create groups such that there is a minimum number of target variable (Goods and Bads) in each bin. Is there a way to do that using PROC RANK? I understand that the size of each bin would be different.
For example in the table below, I have created 10 groups based on a certain score. As you can see the Non cures in the lower deciles are sparse. I would like to create groups such there there are at least 10 Non cures in each group.
Cures and Non cures are based on same variable: Cure = 1 and Cure = 0.
Decile cures non cures
0 262 94
1 314 44
2 340 19
3 340 13
4 353 10
5 373 5
6 308 3
7 342 3
8 440 4
9 305 3
Imagine a number guessing game where one person thinks of a number and another person has to guess it. The game is over if the correct number was guessed.
The models might look like this
class SecretNumber(models.Model):
number = models.IntegerField()
class Guess(models.Model)
secretnumber = models.Foreignkey(SecretNumber)
guess = models.IntegerField()
After having played four times, the database might look like this:
id number
==========
1 10
2 54
3 68
4 25
id secretnumber_id guess
=============================
1 1 50
2 1 30
3 1 10
4 2 99
5 2 60
6 2 54
7 3 1
8 3 68
9 4 73
10 4 34
11 4 86
12 4 51
13 4 25
As you can see, the guesser was very lucky: it took him 3, 3, 2 and 4 guesses. But that's just to keep this example short.
Now I need to come up with a query which will allow to display the following data:
Nb. guesses Count
=====================
2 1
3 2
4 1
A manual SQL statement would look something like this:
SELECT inner_count AS 'Nb. guesses', count(inner_count) AS 'Count' FROM (
SELECT secretnumber_id, count(id) AS inner_count FROM guess GROUP BY secretnumber_id
) GROUP BY inner_count
I thought about annotating an annotation, but this seems not to be possible.
Any ideas?
If you're using django (ie models instead of classes), you want to use the QuerySet aggregate functions
e.g.
from django.db.models import Count
guesses = Guess.objects.values('secretnumber').annotate(Count('secretnumber'))
This will give you a queryset with a list of objects, which have a secretnumber and a count value.