I'm trying to overload the + operator in C++, but get the following error:
operators.cpp: In function ‘int main()’:
operators.cpp: 23:17: error: cannot convert ‘Operators’ to ‘int’ in initialization
This is my code:
#include <iostream>
using namespace std;
class Operators{
private:
int num1;
public:
Operators(int num1){
this->num1 = num1;
}
Operators operator+(Operators o){
return Operators(num1 + o.num1);
}
};
int main(){
Operators o1(5);
Operators o2(10);
Operators res = o1 + o2; // EDITED
cout << res;
}
Could you please help me?
I know, in this case it doesn't make sense to overload it, as I could just say 5+10, but I'm just experimenting.
UPDATE
Thanks, I've edited the int.
But now I'm getting the following error:
operators.cpp: In function ‘int main()’:
operators.cpp: 25:10: error: match for ‘operator<<’ in ‘std::cout << res’
[...]
The problem with this line:
int res = o1 + o2;
Is that your overload of operator + returns an object of type Operators. This means that you are trying to initialize an int (res) from a temporary of type Operators (the result of o1 + o2), but there is no user-defined conversion for doing that.
This is why the compiler is issuing an error. You can fix this easily by adding a conversion operator to your Operators class:
operator int () const { return num1; }
UPDATE:
It seems you have updated your question. The second line below is problematic:
Operators res = o1 + o2;
cout << res;
Unless you defined an overload of operator << for your Operators class, the compiler won't know which overload of operator << to pick for streaming your object of type Operators.
To solve the issue, you can:
Define a conversion operator to int, as suggested above
Define an overload of operator << for Operators, as follows:
friend std::ostream& operator << (std::ostream& o, Operators const& op)
{
o << op.num1;
return o;
}
Here is a live example.
As the error message is trying to tell you, o1 + o2 is of type Operators.
You can't assign that to an int
Your operator+ returns an Operators object. You then try and assign this result to int res. YOu have given no way to convert from an Operators object to an int. You could provide a conversion operator to do this:
operator int() {
return num1;
}
This defines a conversion from Operators to int.
You need to write:
int res = o1.getMethod() + o2.getMethod();
where getMethod() is a public method in your class that returns the private integer num1.
Otherwise, you don't have access to it. Try it.
Change int to Operators, and implement your own copy and default constructor.
#include <iostream>
class Operators
{
private:
int num1;
public:
Operators() = default;
Operators(Operators const& op) : num1(op.num1) {}
Operators(int num1)
{
this->num1 = num1;
}
Operators operator+(Operators o)
{
return num1 + o.num1;
}
};
int main()
{
Operators o1(5);
Operators o2(10), res;
res = o1 + o2;
std::cout << res;
}
To make this work further, create an overload of operator<< and print the sum.
Related
class B{
float floatVar;
public:
B(float a):floatVar(0.0){
floatVar = a;
}
operator int(){ // Consider this as line A
return floatVar;
}
};
int main()
{
B floatObj(5.5);
cout << floatObj; // Consider this as line B
return 0;
}
when i cout while overloading int() it displays 5 and when i replace int() with float() in line A , program displays 5.5.
I want to know how it is automatically calling the int() typecaster or the float() in cout?
There is no synthesis of default printing function or alike in C++, thus defining a class with some fields doesn't print them by default if you try to print an objet of the class.
As you didn't defined any overloaded operator << to print to some ostream (like cout) the compiler found a way to print it through the defined conversion to int.
Compiler is allowed to perform one user-defined conversion implicitly when searching for matching function overload. Since you provide conversion from B to int, compiler can use that and select operator <<(std::ostream, int) overload of the << operator for std::cout.
If you would add another conversion to a type that is accepted by operator << for std::ostream (e.g. float), compiler would say that it is ambiguous call and it cannot choose by itself.
class B{
float floatVar;
public:
B(float a):floatVar(0.0){
floatVar = a;
}
operator int(){
return floatVar;
}
operator float(){
return floatVar;
}
};
int main()
{
B floatObj(5.5);
cout << floatObj; //error: ambiguous overload for 'operator<<' (operand types are 'std::ostream' {aka 'std::basic_ostream<char>'} and 'B')
cout << static_cast<int>(floatObj); //explicit conversion, compiles
return 0;
}
I have been trying to understand operator overloading and did not get the use of return type as class type in the below program:
When I switch "overload" return type with "int" it works fine.
#include <iostream>
using namespace std;
class overload {
private:
int count;
public:
overload(int i)
: count(i)
{
}
overload operator++(int) //why return type is class type when i can use int
{
return (count++);
}
overload operator++() //why return type is class type when i can use int
{
count = count + 1;
return count;
}
void Display()
{
cout << "Count: " << count<<endl;
}
};
// Driver code
int main()
{
overload i(5);
overload post(5);
overload pre(5);
// this calls "function overload operator ++()" function
pre = ++i;
post = i++;
i.Display();
return 0;
}
The difference between the pre/post increment operators is that one works on the object directly (pre-increment: ++foo), and one needs to take a copy of the object and return that (post increment: foo++). A slightly more verbose way of writing this would be:
// return a new object that represents the old value
overload operator++(int)
{
overload oldValue(count); // take copy
count++; // increment this object
return oldValue;
}
// increment the count, and return a reference to this object
overload& operator++()
{
++count;
return *this;
}
Whilst you could return int (don't do that!), it will only lead to confusion. Effectively it would cause a few issues with code such as:
overload foo = ++someOtherFoo;
Which if you were to return int from ++, would effectively end up calling your constructor function (rather than copy constructor) to construct a new object. i.e.
overload foo = overload(++someOtherFoo);
That constructor might not be available, and so the code would fail.
If you want your object to automatically convert itself to an integer, then the correct way would be to overload the cast operator, e.g.
operator int () const
{
return count;
}
There are no restrictions on the return type of an overloaded operator. Here it can be int as well.
The code you show has the class type as return type to facilitate the other statements in the code as below if ever the constructor of the overload class is marked explicit;
For example with:
explicit overload(int i)
: count(i)
{
}
and
int operator++(int) //return type is int
{
return (count++);
}
int operator++() //return type is int
{
count = count + 1;
return count;
}
The following will fail to compile:
pre = ++i; //will not work
post = i++; //will not work
This is because the implicit copy assignment operator will no longer be viable for conversion from int to const overload.
See Demo
Note that the Canonical implementations of the prefix and postfix increment/decrement operators return overload& and overload respectively.
Although canonical form of pre-increment/pre-decrement returns a reference, as with any operator overload, the return type is user-defined; for example the overloads of these operators for std::atomic return by value
I am studying converting constructors and conversion operators in C++.
What I've learned so far is that any non-explicit constructor that takes only one parameter (and any number of optional default arguments) represents an implicit class-type conversion to THAT class type, for example if a class defines a constructor that has one parameter of type int I can use an int wherever an object of that class type is required:
(assuming class_type has an overloaded += operator)
class_type a;
a+=5;
in this case 5 is implicitly converted (through the converting constructor) to class_typeand the overloaded operator is called.
Now, the (at least for me) tricky part: I know I can define a conversion operator as a member function :
operator int() {....};
that converts the object of class_type to the primitive int type, and I can use that conversion like:
class_type a;
a+5;
in this case I've read that the object is converted to an int through its conversion operator and then the buil-in sum operator is called.
But what if I defined an overloaded + operator to take two class_type objects as its arguments? something like
class_type operator+(const class_type&,const class_type &c);
how is the compiler supposed to know which one to call through function matching?
does the conversion to int only happens implicitly when only the built-in operator is defined?
thanks!
edit:
actually,I've tried to write some code to effectively try it out, it turned out that my compiler (g++) doesn't issue any ambiguous call error!
this is the class header (along with the non-memeber operator+ function declaration) :
#include <iostream>
class wrapper {
friend std::ostream &operator<<(std::ostream&,const wrapper&);
public:
wrapper()=default;
wrapper(int);
int get();
operator int() const;
wrapper operator+(int);
private:
int a=10;
};
std::ostream &operator<<(std::ostream&,const wrapper&);
and this is the main code:
#include "wrapper.h"
int main()
{
using namespace std;
wrapper w1;
wrapper w2(5);
cout<<w1<<" "<<w2<<endl;
w1+1;
}
now,I've defined a converting constructor from int to wrapper AND a conversion operator from class type to int(I've also overloaded the << output operator in order to print some results), but when the compiler evaluates the expression w1+1 it seems to be fine. How could it possibly be??
If you have for example the following class declaration that contains a conversion constructor and a conversion operator
struct A
{
A( int x ) : x( x ) {}
operator int() const { return x; }
int x;
};
const A operator +( const A &a1, const A &a2 )
{
return A( a1.x + a2.x );
}
then statement
a1 + a2;
where a1 and a2 are declared like for example
A a1( 10 );
A a2( 20 );
will be well-formed because there is no need to call a conversion function. The both operands match the parameter declarations of the operator +.
However if you will write for example
a1 + 20;
when the compiler issues an error because there is an ambiguity. The compiler can either apply conversion constructor A( int ) to convert the second operand to type A and call the operator defined for objects of type A. Or it can apply the conversion operator operator int to convert the first operand to type int and call the built-in operator + for objects of type int.
To avoid this ambiguity you could declare either the constructor or the operator (or the both) with function specifier explicit.
For example
explicit A( int x ) : x( x ) {}
or
explicit operator int() const { return x; }
In this case only one implicit conversion would exist and there was not an ambigiuty.
I would like to append the above description that sometimes some converion operators can be called implicitly even if they are declared with the function specifier explicit.
For example According to the C++ Standard (6.4 Selection statements)
...The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other
than switch;
and (5.16 Conditional operator)
1 Conditional expressions group right-to-left. The first expression is
contextually converted to bool (Clause 4).
So for example if the above class has the following conversion operator declared with the function specifier explicit
explicit operator bool() const { return x != 0; }
nevertheless it will be called implicitly for example in the following statement
A a( 10 );
std::cout << ( a ? "true" : "false" ) << std::endl;
Here a will be converted to an object of type bool in the conditional operator.
EDIT: After you updated your question this expression
w1+1;
is an exact match for operator
wrapper operator+(int);
Neither conversion are required. So the code compiles successfully.
This is something you can easily try and see what the compiler does:
#include <iostream>
struct ABC {
int v;
ABC(int x) : v(x) { }
operator int() const { return v; }
void operator +=(ABC const &that) {
v += that.v;
}
};
ABC operator+(ABC const &lhs, ABC const &rhs) {
return { lhs.v + rhs.v };
}
int main() {
ABC a(5);
std::cout << a + 1 << '\n';
a += 10;
std::cout << a << '\n';
}
what if I defined an overloaded + operator to take two class_type objects as its arguments?
GCC
error: ambiguous overload for 'operator+' (operand types are 'ABC' and 'int')
The compiler sees two candidates: operator+(int, int) <built-in> and ABC operator+(const ABC&, const ABC&). This means it could implicitly convert not only the 5 in a + 5 to a but also the a to int. Post these conversions both operator+ functions become potential matches.
How is the compiler supposed to know which one to call through function matching?
It doesn't know hence the error.
does the conversion to int only happens implicitly when only the built-in operator is defined?
Yes, otherwise it doesn't automatically convert class_type to int. However, int to class_type would happen implicitly unless you make class_type's constructor explicit:
explicit ABC(int x) : v(x) { }
If you've access to C++11, then you also make the conversion function explicit:
explicit operator int() const { return v; }
I have this class definition:
class foo{
public:
foo();
foo(const int& var);
foo(const foo& var);
~foo();
const foo operator +(const foo& secondOp) const;
private:
int a;
//plus other values, pointers, e.t.c.
};
Also I have made this implementation for '+' operator overloading:
const foo foo::operator +(const foo& secondOp) const{
//I want here to check if i have one operand or two...
if ((FIRST_OPERAND.a!=0) && (secondOp.a==0)){
cout << "ERROR, second operand is zero";
return FIRST_OPERAND;
}
else if ((FIRST_OPERAND.a==0) && (secondOp.a!=0)){
cout << "ERROR, first operand is zero";
return secondOp;
}
}
When i write in main():
foo a(2);
foo b;
foo c;
//I want here to print the ERROR and
//return only the values of a
c = a + b;
Ηow can i return the value of the first operand if the second operand is zero and vice versa?
You're almost there. Since it's a member function, the first operand is *this, so replace FIRST_OPERAND.a with this->a or just a.
However, it might be better to make it a non-member function to allow conversions on both operands (i.e. to be able to write a + 2 or 2 + a). It will need to be a friend in order to access the private member(s).
friend foo operator +(const foo& firstOp, const foo& secondOp);
Also, it's best not to return a const value as that prevents moving from the return value.
It is the compiler that checks the syntaxical correctness of the program. It is unable to distinguish whether you indeed wanted to write
c = a;
that is to do the assignment or you wanted to write
c = a + b;
The both statements are correct.
It is a so-called logical error. The compiler is unable to see what we thoght.
For your line c = a; The assignment operator is implemented by the compiler (just shallow copying the object memory).
That is the reason your code compiles "without the second operand".
If you wish to disallow using the assignment operator - hide it. E.g. by implementing with the private access modifier.
You have to define this function as a friend function
friend Int operator + (int first, Int &second);
this function can perform obj + 2 or 2 + obj.
Int operator + (int first, Int& second){
second.a += first;
return second;
}
I know that there is no legal overload based on return type in C++; i.e.
you cannot do something like:
int operator ++ getOwner();
char operator ++ getOwner();
However, I stumbled upon the following:
https://stackoverflow.com/a/9569120/1376317
class Proxy
{
My const* myOwner;
public:
Proxy( My const* owner ) : myOwner( owner ) {}
operator int() const
{
return myOwner->getInt();
}
operator char() const
{
return myOwner->getChar();
}
};
My question is how does operator overload work in this configuration. How do you call this in your main.cpp to get this kind of overloading. How does the compiler deduce , how to call the right overload?
My question is how does operator overload work in this configuration.
These operators provide implicit conversions. That means that this class can be used in many contexts where an int or char is expected, and will use these operators to provide the expected value.
How do you call this in your main.cpp to get this kind of overloading.
Here are a few examples of implicit conversions:
Proxy p = whatever();
int i = p; // convert to int
char c = p; // convert to char
long l = p; // ERROR: ambiguous
void f(int);
f(p); // convert to int
void g(int);
void g(char);
g(p); // ERROR: ambiguous
You can also request explicit conversions using the usual cast notations:
long l = static_cast<int>(p); // convert to int, then to long
g((char)p); // convert to char
How does the compiler deduce , how to call the right overload?
Whenever there's a type mismatch, the compiler looks for a conversion sequence. The rules are quite complicated, but basically the sequence can include at most one user-defined conversion (using either an operator like this, or a converting construction), as well as standard conversions such as int to long.
This is sometimes called the Return Type Resolver idiom or "overload on return type". The conversion operator to call is selected thanks to the context of use where an implicit conversion is needed (for example based on the type of an object to initialize or assign to). For example:
#include <stdio.h>
class RtR {
public:
operator int() const
{
puts("operator int()");
return 42;
}
operator double() const
{
puts("operator double()");
return 3.14;
}
};
void f(int) {}
int main()
{
RtR x;
int i = x; // or int i = RtR();
double d = x;
f(x);
}
output:
operator int()
operator double()
operator int()
See it live.
In 13.1 Overloadable declarations:
Function declarations that differ only in the return type cannot be
overloaded. [ Note: ... It does not apply to sets of functions
fabricated as a result of name lookup (e.g., because of using-directives) or overload resolution (e.g.,
for operator functions) ... ]
Hence this is valid:
struct X {
// Conversion function:
operator int () { return 1; }
operator double () { return 2; }
};
In addition (not relating directly to the question):
struct Y
{
// Operator (Function call):
int operator () (int) { return 1; }
double operator () (double) { return 2; }
// Operator (Subscripting):
int operator [] (int) { return 1; }
double operator [] (double) { return 2; }
// Operator (Shift):
int operator << (int) { return 1; }
double operator << (double) { return 2; }
// and more ...
};
The above code is for operator type conversions and provide an implicit way to cast the Proxy type to int and char.
The compiler "knows" based on the context of the conversion calls, for instance:
Proxy p;
// p_int will be set equal to p.my_owner->getInt()
int p_int = p;
// p_char will be set equal to p.my_owner->getChar()
char p_char = p;
The fact that it's a proxy is irrelevant; the same thing works for any class. Those are conversion operators, and the compiler does select the right version based on how it's used in the calling code.
struct S {
operator int() const { return 1; }
operator double() const { return 2.0; }
};
int main() {
S s;
int i = s;
double d = s;
std::cout << i << ' ' << d << '\n';
return 0;
}