Passing messages between threads and memory management - c++

I'm writing a C++ application with two threads. Thread A will send messages to thread B. The message type could be:
struct MyMessageType
{
int a;
enum MyEnum b;
bool someFlag;
}
A std::queue<MyMessageType> messageQueue is shared between the threads for passing messages.
In the sending thread, I'll have something like:
struct MyMessageType newMessage;
newMessage.a = 14;
newMessage.b = someEnumeratedValue;
newMessage.someFlag = false;
GrabTheMutexProtectingTheQueue();
messageQueue.push(newMessage);
ReleaseTheMutexProtectingTheQueue();
My question is regarding memory management, and is twofold:
A) How do I ensure that the pointer to newMessage is valid when the receiving thread gets the message? What would happen, for instance, if the function that created newMessage ended and newMessage therefore went out of scope before the receiving thread processed the message?
B) Once I can ensure that the newMessage pointer is valid when the receiving thread processes it, how to I free up the memory that was used by the struct?

The std::queue push() function stores a copy of whatever you give it (see here), so you don't have to worry about it going out of scope.
The copy in the queue will survive until you delete it with pop().
So, on the sending side, it's a simple matter of (for example):
lock_mutex();
myqueue.push (something);
unlock_mutex();
// Do whatever you want with something, the queue has a copy
and, at the receiving end:
lock_mutex();
while (myqueue.empty()) {
unlock_mutex();
// possibly yield to another thread
lock_mutex();
}
something = myqueue.front();
weaveMagicWith (something);
myqueue.pop();
unlock_mutex();
Of course, you can re-engineer that to minimise the duration of the mutex lock on the receiving end (if, for example, weaving magic takes a long time), it's just a rough example showing one way to do it.

Related

C++ Threading using 2 Containers

I have the following problem. I use a vector that gets filled up with values from a temperature sensor. This function runs in one thread. Then I have another thread responsible for publishing all the values into a data base which runs once every second. Now the publishing thread will lock the vector using a mutex, so the function that fills it with values will get blocked. However, while the thread that publishes the values is using the vector I want to use another vector to save the temperature values so that I don't lose any values while the data is getting published. How do I get around this problem? I thought about using a pointer that points to the containers and then switching it to the other container once it gets locked to keep saving values, but I dont quite know how.
I tried to add a minimal reproducable example, I hope it kind of explains my situation.
void publish(std::vector<temperature> &inputVector)
{
//this function would publish the values into a database
//via mqtt and also runs in a thread.
}
int main()
{
std::vector<temperature> testVector;
std::vector<temperature> testVector2;
while(1)
{
//I am repeatedly saving values into the vector.
//I want to do this in a thread but if the vector locked by a mutex
//i want to switch over to the other vector
testVector.push_back(testSensor.getValue());
}
}
Assuming you are using std::mutex, you can use mutex::try_lock on the producer side. Something like this:
while(1)
{
if (myMutex.try_lock()) {
// locking succeeded - move all queued values and push the new value
std::move(testVector2.begin(), testVector2.end(), std::back_inserter(testVector));
testVector2.clear();
testVector.push_back(testSensor.getValue());
myMutex.unlock();
} else {
// locking failed - queue the value
testVector2.push_back(testSensor.getValue());
}
}
Of course publish() needs to lock the mutex, too.
void publish(std::vector<temperature> &inputVector)
{
std::lock_guard<std::mutex> lock(myMutex);
//this function would publish the values into a database
//via mqtt and also runs in a thread.
}
This seems like the perfect opportunity for an additional (shared) buffer or queue, that's protected by the lock.
main would be essentially as it is now, pushing your new values into the shared buffer.
The other thread would, when it can, lock that buffer and take the new values from it. This should be very fast.
Then, it does not need to lock the shared buffer while doing its database things (which take longer), as it's only working on its own vector during that procedure.
Here's some pseudo-code:
std::mutex pendingTempsMutex;
std::vector<temperature> pendingTemps;
void thread2()
{
std::vector<temperature> temps;
while (1)
{
// Get new temps if we have any
{
std::scoped_lock l(pendingTempsMutex);
temps.swap(pendingTemps);
}
if (!temps.empty())
publish(temps);
}
}
void thread1()
{
while (1)
{
std::scoped_lock l(pendingTempsMutex);
pendingTemps.push_back(testSensor.getValue());
/*
Or, if getValue() blocks:
temperature newValue = testSensor.getValue();
std::scoped_lock l(pendingTempsMutex);
pendingTemps.push_back(newValue);
*/
}
}
Usually you'd use a std::queue for pendingTemps though. I don't think it really matters in this example, because you're always consuming everything in thread 2, but it's more conventional and can be more efficient in some scenarios. It can't lose you much as it's backed by a std::deque. But you can measure/test to see what's best for you.
This solution is pretty much what you already proposed/explored in the question, except that the producer shouldn't be in charge of managing the second vector.
You can improve it by having thread2 wait to be "informed" that there are new values, with a condition variable, otherwise you're going to be doing a lot of busy-waiting. I leave that as an exercise to the reader ;) There should be an example and discussion in your multi-threaded programming book.

A thread-safe implementation of a generic container of type pair<unsigned int, boost::any> using shared_ptrs

I have created a generic message queue for use in a multi-threaded application. Specifically, single producer, multi-consumer. Main code below.
1) I wanted to know if I should pass a shared_ptr allocated with new into the enqueue method by value, or is it better to have the queue wrapper allocate the memory itself and just pass in a genericMsg object by const reference?
2) Should I have my dequeue method return a shared_ptr, have a shared_ptr passed in as a parameter by reference (current strategy), or just have it directly return a genericMsg object?
3) Will I need signal/wait in enqueue/dequeue or will the read/write locks suffice?
4) Do I even need to use shared_ptrs? Or will this depend solely on the implementation I use? I like that the shared_ptrs will free memory once all references are no longer using the object. I can easily port this to regular pointers if that's recommended, though.
5) I'm storing a pair here because I'd like to discriminate what type of message I'm dealing with else w/o having to do an any_cast. Every message type has a unique ID that refers to a specific struct. Is there a better way of doing this?
Generic Message Type:
template<typename Message_T>
class genericMsg
{
public:
genericMsg()
{
id = 0;
size = 0;
}
genericMsg (unsigned int &_id, unsigned int &_size, Message_T &_data)
{
id = _id;
size = _size;
data = _data;
}
~genericMsg()
{}
unisgned int id;
unsigned int size;
Message_T data; //All structs stored here contain only POD types
};
Enqueue Methods:
// ----------------------------------------------------------------
// -- Thread safe function that adds a new genericMsg object to the
// -- back of the Queue.
// -----------------------------------------------------------------
template<class Message_T>
inline void enqueue(boost::shared_ptr< genericMsg<Message_T> > data)
{
WriteLock w_lock(myLock);
this->qData.push_back(std::make_pair(data->id, data));
}
VS:
// ----------------------------------------------------------------
// -- Thread safe function that adds a new genericMsg object to the
// -- back of the Queue.
// -----------------------------------------------------------------
template<class Message_T>
inline void enqueue(const genericMsg<Message_T> &data_in)
{
WriteLock w_lock(myLock);
boost::shared_ptr< genericMsg<Message_T> > data =
new genericMsg<Message_T>(data_in.id, data_in.size, data_in.data);
this->qData.push_back(std::make_pair(data_in.id, data));
}
Dequeue Method:
// ----------------------------------------------------------------
// -- Thread safe function that grabs a genericMsg object from the
// -- front of the Queue.
// -----------------------------------------------------------------
template<class Message_T>
void dequeue(boost::shared_ptr< genericMsg<Message_T> > &msg)
{
ReadLock r_lock(myLock);
msg = boost::any_cast< boost::shared_ptr< genericMsg<Message_T> > >(qData.front().second);
qData.pop_front();
}
Get message ID:
inline unsigned int getMessageID()
{
ReadLock r_lock(myLock);
unsigned int tempID = qData.front().first;
return tempID;
}
Data Types:
std::deque < std::pair< unsigned int, boost::any> > qData;
Edit:
I have improved upon my design. I now have a genericMessage base class that I directly subclass from in order to derive the unique messages.
Generic Message Base Class:
class genericMessage
{
public:
virtual ~genericMessage() {}
unsigned int getID() {return id;}
unsigned int getSize() {return size;}
protected:
unsigned int id;
unsigned int size;
};
Producer Snippet:
boost::shared_ptr<genericMessage> tmp (new derived_msg1(MSG1_ID));
theQueue.enqueue(tmp);
Consumer Snippet:
boost::shared_ptr<genericMessage> tmp = theQueue.dequeue();
if(tmp->getID() == MSG1_ID)
{
boost::shared_ptr<derived_msg1> tObj = boost::dynamic_pointer_cast<derived_msg1>(tmp);
tObj->printData();
}
New Queue:
std::deque< boost::shared_ptr<genericMessage> > qData;
New Enqueue:
void mq_class::enqueue(const boost::shared_ptr<genericMessage> &data_in)
{
boost::unique_lock<boost::mutex> lock(mut);
this->qData.push_back(data_in);
cond.notify_one();
}
New Dequeue:
boost::shared_ptr<genericMessage> mq_class::dequeue()
{
boost::shared_ptr<genericMessage> ptr;
{
boost::unique_lock<boost::mutex> lock(mut);
while(qData.empty())
{
cond.wait(lock);
}
ptr = qData.front();
qData.pop_front();
}
return ptr;
}
Now, my question is am I doing dequeue correctly? Is there another way of doing it? Should I pass in a shared_ptr as a reference in this case to achieve what I want?
Edit (I added answers for parts 1, 2, and 4).
1) You should have a factory method that creates new genericMsgs and returns a std::unique_ptr. There is absolutely no good reason to pass genericMsg in by const reference and then have the queue wrap it in a smart pointer: Once you've passed by reference you have lost track of ownership, so if you do that the queue is going to have to construct (by copy) the entire genericMsg to wrap.
2) I can't think of any circumstance under which it would be safe to take a reference to a shared_ptr or unique_ptr or auto_ptr. shared_ptrs and unique_ptrs are for tracking ownership and once you've taken a reference to them (or the address of them) you have no idea how many references or pointers are still out there expecting the shared_ptr/unique_ptr object to contain a valid naked pointer.
unique_ptr is always preferred to a naked pointer, and is preferred to a shared_ptr in cases where you only have a single piece of code (validly) pointing to an object at a time.
https://softwareengineering.stackexchange.com/questions/133302/stdshared-ptr-as-a-last-resort
http://herbsutter.com/gotw/_103/
Bad practice to return unique_ptr for raw pointer like ownership semantics? (the answer explains why it is good practice not bad).
3) Yes, you need to use a std::condition_variable in your dequeue function. You need to test whether qData is empty or not before calling qData.front() or qData.pop_front(). If qData is empty you need to wait on a condition variable. When enqueue inserts an item it should signal the condition variable to wake up anyone who may have been waiting.
Your use of reader/writer locks is completely incorrect. Don't use reader/writer locks. Use std::mutex. A reader lock can only be used on a method that is completely const. You are modifying qData in dequeue, so a reader lock will lead to data races there. (Reader writer locks are only applicable when you have stupid code that is both const and holds locks for extended period of time. You are only keeping the lock for the period of time it takes to insert or remove from the queue, so even if you were const the added overhead of reader/writer locks would be a net lose.)
An example of implementing a (bounded) buffer using mutexes and condition_variables can be found at: Is this a correct way to implement a bounded buffer in C++.
4) unique_ptr is always preferred to naked pointers, and usually preferred to shared_ptr. (The main exception where shared_ptr might be better is for graph-like data structures.) In cases like yours where you are reading something in on side, creating a new object with a factory, moving the ownership to the queue and then moving ownership out of the queue to the consumer it sounds like you should be using unique_ptr.
5) You are reinventing tagged unions. Virtual functions were added to c++ specifically so you wouldn't need to do this. You should subclass your messages from a class that has a virtual function called do_it() (or better yet, operator()() or something like that). Then instead of tagging each struct, make each struct a subclass of your message class. When you dequeue each struct (or ptr to struct) just call do_it() on it. Strong static typing, no casts. See C++ std condition variable covering a lot of share variables for an example.
Also: if you are going to stick with the tagged unions: you can't have separate calls to get the id and the data item. Consider: If thread A calls to get the id, then thread B calls to get the id, then thread B retrieves the data item, now what happens when thread A calls to retrieve a data item? It gets a data item, but not with the type that it expected. You need to retrieve the id and the data item under the same critical section.
First of all, it's better to use 3rd-party concurrency containers than to implement them yourself, except it's for education purpose.
Your messages doesn't look to have costly constructors/destructor, so you can store them by value and forget about all your other questions. Use move semantics (if available) for optimizations.
If your profiler says "by value" is bad idea in your particular case:
I suppose your producer creates messages, puts them into your queue and loses any interest in them. In this case you don't need shared_ptr because you don't have shared ownership. You can use unique_ptr or even a raw pointer. It's implementation details and better to hide them inside the queue.
From performance point of view, it's better to implement lock-free queue. "locks vs. signals" depends completely on your application. For example, if you use thread pool and kind of a scheduler it's better to allow your clients to do something useful while queue is full/empty. In simpler cases reader/writer lock is just fine.
If I want to be thread safe, I usually use const objects and modify only on copy or create constructor. In this way you don't need to use any lock mechanism. In a threaded system, it is usually more effective than use mutexes on a single instance.
In your case only deque would need lock.

Is it safe to modify data of pointer in vector from another thread?

Things seem to be working but I'm unsure if this is the best way to go about it.
Basically I have an object which does asynchronous retrieval of data. This object has a vector of pointers which are allocated and de-allocated on the main thread. Using boost functions a process results callback is bound with one of the pointers in this vector. When it fires it will be running on some arbitrary thread and modify the data of the pointer.
Now I have critical sections around the parts that are pushing into the vector and erasing in case the asynch retrieval object is receives more requests but I'm wondering if I need some kind of guard in the callback that is modifying the pointer data as well.
Hopefully this slimmed down pseudo code makes things more clear:
class CAsyncRetriever
{
// typedefs of boost functions
class DataObject
{
// methods and members
};
public:
// Start single asynch retrieve with completion callback
void Start(SomeArgs)
{
SetupRetrieve(SomeArgs);
LaunchRetrieves();
}
protected:
void SetupRetrieve(SomeArgs)
{
// ...
{ // scope for data lock
boost::lock_guard<boost::mutex> lock(m_dataMutex);
m_inProgress.push_back(SmartPtr<DataObject>(new DataObject)));
m_callback = boost::bind(&CAsyncRetriever::ProcessResults, this, _1, m_inProgress.back());
}
// ...
}
void ProcessResults(DataObject* data)
{
// CALLED ON ANOTHER THREAD ... IS THIS SAFE?
data->m_SomeMember.SomeMethod();
data->m_SomeOtherMember = SomeStuff;
}
void Cleanup()
{
// ...
{ // scope for data lock
boost::lock_guard<boost::mutex> lock(m_dataMutex);
while(!m_inProgress.empty() && m_inProgress.front()->IsComplete())
m_inProgress.erase(m_inProgress.begin());
}
// ...
}
private:
std::vector<SmartPtr<DataObject>> m_inProgress;
boost::mutex m_dataMutex;
// other members
};
Edit: This is the actual code for the ProccessResults callback (plus comments for your benefit)
void ProcessResults(CRetrieveResults* pRetrieveResults, CRetData* data)
{
// pRetrieveResults is delayed binding that server passes in when invoking callback in thread pool
// data is raw pointer to ref counted object in vector of main thread (the DataObject* in question)
// if there was an error set the code on the atomic int in object
data->m_nErrorCode.Store_Release(pRetrieveResults->GetErrorCode());
// generic iterator of results bindings for generic sotrage class item
TPackedDataIterator<GenItem::CBind> dataItr(&pRetrieveResults->m_DataIter);
// namespace function which will iterate results and initialize generic storage
GenericStorage::InitializeItems<GenItem>(&data->m_items, dataItr, pRetrieveResults->m_nTotalResultsFound); // this is potentially time consuming depending on the amount of results and amount of columns that were bound in storage class definition (i.e.about 8 seconds for a million equipment items in release)
// atomic uint32_t that is incremented when kicking off async retrieve
m_nStarted.Decrement(); // this one is done processing
// boost function completion callback bound to interface that requested results
data->m_complete(data->m_items);
}
As it stands, it appears that the Cleanup code can destroy an object for which a callback to ProcessResults is in flight. That's going to cause problems when you deref the pointer in the callback.
My suggestion would be that you extend the semantics of your m_dataMutex to encompass the callback, though if the callback is long-running, or can happen inline within SetupRetrieve (sometimes this does happen - though here you state the callback is on a different thread, in which case you are OK) then things are more complex. Currently m_dataMutex is a bit confused about whether it controls access to the vector, or its contents, or both. With its scope clarified, ProcessResults could then be enhanced to verify validity of the payload within the lock.
No, it isn't safe.
ProcessResults operates on the data structure passed to it through DataObject. It indicates that you have shared state between different threads, and if both threads operate on the data structure concurrently you might have some trouble coming your way.
Updating a pointer should be an atomic operation, but you can use InterlockedExchangePointer (in Windows) to be sure. Not sure what the Linux equivalent would be.
The only consideration then would be if one thread is using an obsolete pointer. Does the other thread delete the object pointed to by the original pointer? If so, you have a definite problem.

Thread-Safe implementation of an object that deletes itself

I have an object that is called from two different threads and after it was called by both it destroys itself by "delete this".
How do I implement this thread-safe? Thread-safe means that the object never destroys itself exactly one time (it must destroys itself after the second callback).
I created some example code:
class IThreadCallBack
{
virtual void CallBack(int) = 0;
};
class M: public IThreadCallBack
{
private:
bool t1_finished, t2_finished;
public:
M(): t1_finished(false), t2_finished(false)
{
startMyThread(this, 1);
startMyThread(this, 2);
}
void CallBack(int id)
{
if (id == 1)
{
t1_finished = true;
}
else
{
t2_finished = true;
}
if (t1_finished && t2_finished)
{
delete this;
}
}
};
int main(int argc, char **argv) {
M* MObj = new M();
while(true);
}
Obviously I can't use a Mutex as member of the object and lock the delete, because this would also delete the Mutex. On the other hand, if I set a "toBeDeleted"-flag inside a mutex-protected area, where the finised-flag is set, I feel unsure if there are situations possible where the object isnt deleted at all.
Note that the thread-implementation makes sure that the callback method is called exactly one time per thread in any case.
Edit / Update:
What if I change Callback(..) to:
void CallBack(int id)
{
mMutex.Obtain()
if (id == 1)
{
t1_finished = true;
}
else
{
t2_finished = true;
}
bool both_finished = (t1_finished && t2_finished);
mMutex.Release();
if (both_finished)
{
delete this;
}
}
Can this considered to be safe? (with mMutex being a member of the m class?)
I think it is, if I don't access any member after releasing the mutex?!
Use Boost's Smart Pointer. It handles this automatically; your object won't have to delete itself, and it is thread safe.
Edit:
From the code you've posted above, I can't really say, need more info. But you could do it like this: each thread has a shared_ptr object and when the callback is called, you call shared_ptr::reset(). The last reset will delete M. Each shared_ptr could be stored with thread local storeage in each thread. So in essence, each thread is responsible for its own shared_ptr.
Instead of using two separate flags, you could consider setting a counter to the number of threads that you're waiting on and then using interlocked decrement.
Then you can be 100% sure that when the thread counter reaches 0, you're done and should clean up.
For more info on interlocked decrement on Windows, on Linux, and on Mac.
I once implemented something like this that avoided the ickiness and confusion of delete this entirely, by operating in the following way:
Start a thread that is responsible for deleting these sorts of shared objects, which waits on a condition
When the shared object is no longer being used, instead of deleting itself, have it insert itself into a thread-safe queue and signal the condition that the deleter thread is waiting on
When the deleter thread wakes up, it deletes everything in the queue
If your program has an event loop, you can avoid the creation of a separate thread for this by creating an event type that means "delete unused shared objects" and have some persistent object respond to this event in the same way that the deleter thread would in the above example.
I can't imagine that this is possible, especially within the class itself. The problem is two fold:
1) There's no way to notify the outside world not to call the object so the outside world has to be responsible for setting the pointer to 0 after calling "CallBack" iff the pointer was deleted.
2) Once two threads enter this function you are, and forgive my french, absolutely fucked. Calling a function on a deleted object is UB, just imagine what deleting an object while someone is in it results in.
I've never seen "delete this" as anything but an abomination. Doesn't mean it isn't sometimes, on VERY rare conditions, necessary. Problem is that people do it way too much and don't think about the consequences of such a design.
I don't think "to be deleted" is going to work well. It might work for two threads, but what about three? You can't protect the part of code that calls delete because you're deleting the protection (as you state) and because of the UB you'll inevitably cause. So the first goes through, sets the flag and aborts....which of the rest is going to call delete on the way out?
The more robust implementation would be to implement reference counting. For each thread you start, increase a counter; for each callback call decrease the counter and if the counter has reached zero, delete the object. You can lock the counter access, or you could use the Interlocked class to protect the counter access, though in that case you need to be careful with potential race between the first thread finishing and the second starting.
Update: And of course, I completely ignored the fact that this is C++. :-) You should use InterlockExchange to update the counter instead of the C# Interlocked class.

Deleting pointer sometimes results in heap corruption

I have a multithreaded application that runs using a custom thread pool class. The threads all execute the same function, with different parameters.
These parameters are given to the threadpool class the following way:
// jobParams is a struct of int, double, etc...
jobParams* params = new jobParams;
params.value1 = 2;
params.value2 = 3;
int jobId = 0;
threadPool.addJob(jobId, params);
As soon as a thread has nothing to do, it gets the next parameters and runs the job function. I decided to take care of the deletion of the parameters in the threadpool class:
ThreadPool::~ThreadPool() {
for (int i = 0; i < this->jobs.size(); ++i) {
delete this->jobs[i].params;
}
}
However, when doing so, I sometimes get a heap corruption error:
Invalid Address specified to RtlFreeHeap
The strange thing is that in one case it works perfectly, but in another program it crashes with this error. I tried deleting the pointer at other places: in the thread after the execution of the job function (I get the same heap corruption error) or at the end of the job function itself (no error in this case).
I don't understand how deleting the same pointers (I checked, the addresses are the same) from different places changes anything. Does this have anything to do with the fact that it's multithreaded?
I do have a critical section that handles the access to the parameters. I don't think the problem is about synchronized access. Anyway, the destructor is called only once all threads are done, and I don't delete any pointer anywhere else. Can pointer be deleted automatically?
As for my code. The list of jobs is a queue of a structure, composed of the id of a job (used to be able to get the output of a specific job later) and the parameters.
getNextJob() is called by the threads (they have a pointer to the ThreadPool) each time they finished to execute their last job.
void ThreadPool::addJob(int jobId, void* params) {
jobData job; // jobData is a simple struct { int, void* }
job.ID = jobId;
job.params = params;
// insert parameters in the list
this->jobs.push(job);
}
jobData* ThreadPool::getNextJob() {
// get the data of the next job
jobData* job = NULL;
// we don't want to start a same job twice,
// so we make sure that we are only one at a time in this part
WaitForSingleObject(this->mutex, INFINITE);
if (!this->jobs.empty())
{
job = &(this->jobs.front());
this->jobs.pop();
}
// we're done with the exclusive part !
ReleaseMutex(this->mutex);
return job;
}
Let's turn this on its head: Why are you using pointers at all?
class Params
{
int value1, value2; // etc...
}
class ThreadJob
{
int jobID; // or whatever...
Params params;
}
class ThreadPool
{
std::list<ThreadJob> jobs;
void addJob(int job, const Params & p)
{
ThreadJob j(job, p);
jobs.push_back(j);
}
}
No new, delete or pointers... Obviously some of the implementation details may be cocked, but you get the overall picture.
Thanks for extra code. Now we can see a problem -
in getNextJob
if (!this->jobs.empty())
{
job = &(this->jobs.front());
this->jobs.pop();
After the "pop", the memory pointed to by 'job' is undefined. Don't use a reference, copy the actual data!
Try something like this (it's still generic, because JobData is generic):
jobData ThreadPool::getNextJob() // get the data of the next job
{
jobData job;
WaitForSingleObject(this->mutex, INFINITE);
if (!this->jobs.empty())
{
job = (this->jobs.front());
this->jobs.pop();
}
// we're done with the exclusive part !
ReleaseMutex(this->mutex);
return job;
}
Also, while you're adding jobs to the queue you must ALSO lock the mutex, to prevent list corruption. AFAIK std::lists are NOT inherently thread-safe...?
Using operator delete on pointer to void results in undefined behavior according to the specification.
Chapter 5.3.5 of the draft of the C++ specification. Paragraph 3.
In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.73)
And corresponding footnote.
This implies that an object cannot be deleted using a pointer of type void* because there are no objects of type void
All access to the job queue must be synchronized, i.e. performed only from 1 thread at a time by locking the job queue prior to access. Do you already have a critical section or some similar pattern to guard the shared resource? Synchronization issues often lead to weird behaviour and bugs which are hard to reproduce.
It's hard to give a definitive answer with this amount of code. But generally speaking, multithreaded programming is all about synchronizing access to data that might be accessed from multiple threads. If there is no long or other synchronization primitive protecting access to the threadpool class itself, then you can potentially have multiple threads reaching your deletion loop at the same time, at which point you're pretty much guaranteed to be double-freeing memory.
The reason you're getting no crash when you delete a job's params at the end of the job function might be because access to a single job's params is already implicitly serialized by your work queue. Or you might just be getting lucky. In either case, it's best to think about locks and synchronization primitive as not being something that protects code, but as being something that protects data (I've always thought the term "critical section" was a bit misleading here, as it tends to lead people to think of a 'section of lines of code' rather than in terms of data access).. In this case, since you want to access your jobs data from multiple thread, you need to be protecting it via a lock or some other synchronization primitive.
If you try to delete an object twice, the second time will fail, because the heap is already freed. This is the normal behavior.
Now, since you are in a multithreading context... it might be that the deletions are done "almost" in parallel, which might avoid the error on the second deletion, because the first one is not yet finalized.
Use smart pointers or other RAII to handle your memory.
If you have access to boost or tr1 lib you can do something like this.
class ThreadPool
{
typedef pair<int, function<void (void)> > Job;
list< Job > jobList;
HANDLE mutex;
public:
void addJob(int jobid, const function<void (void)>& job) {
jobList.push_back( make_pair(jobid, job) );
}
Job getNextJob() {
struct MutexLocker {
HANDLE& mutex;
MutexLocker(HANDLE& mutex) : mutex(mutex){
WaitForSingleObject(mutex, INFINITE);
}
~MutexLocker() {
ReleaseMutex(mutex);
}
};
Job job = make_pair(-1, function<void (void)>());
const MutexLocker locker(this->mutex);
if (!this->jobList.empty()) {
job = this->jobList.front();
this->jobList.pop();
}
return job;
}
};
void workWithDouble( double value );
void workWithInt( int value );
void workWithValues( int, double);
void test() {
ThreadPool pool;
//...
pool.addJob( 0, bind(&workWithDouble, 0.1));
pool.addJob( 1, bind(&workWithInt, 1));
pool.addJob( 2, bind(&workWithValues, 1, 0.1));
}