I wanna do something like:
string result;
char* a[100];
a[0]=result;
it seems that result.c_str() has to be const char*. Is there any way to do this?
You can take the address of the first character in the string.
a[0] = &result[0];
This is guaranteed to work in C++11. (The internal string representation must be contiguous and null-terminated like a C-style string)
In C++03 these guarantees do not exist, but all common implementations will work.
string result;
char a[100] = {0};
strncpy(a, result.c_str(), sizeof(a) - 1);
There is a member function (method) called "copy" to have this done.
but you need create the buffer first.
like this
string result;
char* a[100];
a[0] = new char[result.length() + 1];
result.copy(a[0], result.length(), 0);
a[0][result.length()] = '\0';
(references: http://www.cplusplus.com/reference/string/basic_string/copy/ )
by the way, I wonder if you means
string result;
char a[100];
You can do:
char a[100];
::strncpy(a, result.c_str(), 100);
Be careful of null termination.
The old fashioned way:
#include <string.h>
a[0] = strdup(result.c_str()); // allocates memory for a new string and copies it over
[...]
free(a[0]); // don't forget this or you leak memory!
If you really, truly can't avoid doing this, you shouldn't throw away all that C++ offers, and descend to using raw arrays and horrible functions like strncpy.
One reasonable possibility would be to copy the data from the string to a vector:
char const *temp = result.c_str();
std::vector<char> a(temp, temp+result.size()+1);
You can usually leave the data in the string though -- if you need a non-const pointer to the string's data, you can use &result[0].
Related
I'd like to initialise a string and then modify the resultant char array. I did:
std::string str = "hello world";
const char* cstr = str.c_str();
// Modify contents of cstr
However, because cstr is const, I cannot modify the elements. If I remove const, I cannot use c_str().
What is the best way to achieve this?
Just modify str using the std::string member functions.
These functions include operator[].
Since C++11 (and assuming a compliant implementation), &str[0] is the pointer that you want.
The best and most straight forward way to do this is to just directly modify the std::string using its own operator[]:
str[0] = 'G'; // "Gello world"
If you truly need to copy the C-string, for whatever reason, then you have to create a new buffer, eg:
char* buffer = new char[str.length() + 1];
strcpy(buffer, str.c_str());
delete[] buffer;
The obvious flaw here is dynamic allocation. Just stick with modifying the std::string directly, it's what the class is written for, to make your life easier.
I have a struct that needs to store const char * for later. The string gets destroyed by then. The code that i have till now for the same is
HttpRequest* send(string reply)
{
int len = strlen(reply.c_str());
char *buffer = new char[len+1];
strncpy(buffer, reply.c_str(), len);
cout << "LEN:"<<reply.length()<<endl;
cout << "OG:"<<reply<<endl<<"TC:"<<buffer<<endl<<"CS"<<reply.c_str()<<endl;
this->res.response = "test";
return this;
};
res.response is the char * that i want to store the value in. The output from cout that i am getting is
LEN:5
OG:hello
TC:hello�������������������q{
CShello
This behavior is pretty strange to me. Can someone please explain what i am doing wrong. Also the above code shows me using strlen but i am getting the same result using length() in c++ also.
Also it is worth mentioning that this happens only the first time that i invoke this, after that it goes fine.
You never put the null terminator:
char *buffer = new char[len+1];
strncpy(buffer, reply.c_str(), len);
buffer[len] = 0; // <-- HERE
strncpy doesn't add it.
Your arguments to strncpy() make the function misunderstand that there is no space for terminating null-character, so it isn't written. Correct the argument like
strncpy(buffer, reply.c_str(), len+1);
In this code, it is guaranteed that the length of buffer is sufficient to store the string, so you can simply use strcpy() instead of the strncpy() like this:
strcpy(buffer, reply.c_str());
You can use strdup() function if your system supports it. Using it, the lines
int len = strlen(reply.c_str());
char *buffer = new char[len+1];
strncpy(buffer, reply.c_str(), len);
can be replaced with
char *buffer = strdup(reply.c_str());
Note that strdup() is a function from C and it uses malloc() internally, so you must use free(), not delete[], to free the memory allocated via strdup().
Don't use strncpy until you've read and understood its documentation. And then don't use it. It's a very specialized function, and there's no need to deal with its quirks here. The code in the question allocates enough space for the result, so just use strcpy.
The problem is that this statement
strncpy(buffer, reply.c_str(), len);
does not copy the terminating zero ( '\0' ) of the original string to buffer.
You should use the standard C function strlen with objects of type std::string only in case when the objects contain embedded zeroes. Otherwise use member functions of the class std::string size or length.
Instead of the standard C function strncpy you could use standard C function strcpy to copy the zero-terminated string in the buffer.
For example
char *buffer = new char[len+1];
strcpy( buffer, reply.c_str() );
I have been working with C++ strings and trying to load char * strings into std::string by using C functions such as strcpy(). Since strcpy() takes char * as a parameter, I have to cast it which goes something like this:
std::string destination;
unsigned char *source;
strcpy((char*)destination.c_str(), (char*)source);
The code works fine and when I run the program in a debugger, the value of *source is stored in destination, but for some odd reason it won't print out with the statement
std::cout << destination;
I noticed that if I use
std::cout << destination.c_str();
The value prints out correctly and all is well. Why does this happen? Is there a better method of copying an unsigned char* or char* into a std::string (stringstreams?) This seems to only happen when I specify the string as foo.c_str() in a copying operation.
Edit: To answer the question "why would you do this?", I am using strcpy() as a plain example. There are other times that it's more complex than assignment. For example, having to copy only X amount of string A into string B using strncpy() or passing a std::string to a function from a C library that takes a char * as a parameter for a buffer.
Here's what you want
std::string destination = source;
What you're doing is wrong on so many levels... you're writing over the inner representation of a std::string... I mean... not cool man... it's much more complex than that, arrays being resized, read-only memory... the works.
This is not a good idea at all for two reasons:
destination.c_str() is a const pointer and casting away it's const and writing to it is undefined behavior.
You haven't set the size of the string, meaning that it won't even necessealy have a large enough buffer to hold the string which is likely to cause an access violation.
std::string has a constructor which allows it to be constructed from a char* so simply write:
std::string destination = source
Well what you are doing is undefined behavior. Your c_str() returns a const char * and is not meant to be assigned to. Why not use the defined constructor or assignment operator.
std::string defines an implicit conversion from const char* to std::string... so use that.
You decided to cast away an error as c_str() returns a const char*, i.e., it does not allow for writing to its underlying buffer. You did everything you could to get around that and it didn't work (you shouldn't be surprised at this).
c_str() returns a const char* for good reason. You have no idea if this pointer points to the string's underlying buffer. You have no idea if this pointer points to a memory block large enough to hold your new string. The library is using its interface to tell you exactly how the return value of c_str() should be used and you're ignoring that completely.
Do not do what you are doing!!!
I repeat!
DO NOT DO WHAT YOU ARE DOING!!!
That it seems to sort of work when you do some weird things is a consequence of how the string class was implemented. You are almost certainly writing in memory you shouldn't be and a bunch of other bogus stuff.
When you need to interact with a C function that writes to a buffer there's two basic methods:
std::string read_from_sock(int sock) {
char buffer[1024] = "";
int recv = read(sock, buffer, 1024);
if (recv > 0) {
return std::string(buffer, buffer + recv);
}
return std::string();
}
Or you might try the peek method:
std::string read_from_sock(int sock) {
int recv = read(sock, 0, 0, MSG_PEEK);
if (recv > 0) {
std::vector<char> buf(recv);
recv = read(sock, &buf[0], recv, 0);
return std::string(buf.begin(), buf.end());
}
return std::string();
}
Of course, these are not very robust versions...but they illustrate the point.
First you should note that the value returned by c_str is a const char* and must not be modified. Actually it even does not have to point to the internal buffer of string.
In response to your edit:
having to copy only X amount of string A into string B using strncpy()
If string A is a char array, and string B is std::string, and strlen(A) >= X, then you can do this:
B.assign(A, A + X);
passing a std::string to a function from a C library that takes a char
* as a parameter for a buffer
If the parameter is actually const char *, you can use c_str() for that. But if it is just plain char *, and you are using a C++11 compliant compiler, then you can do the following:
c_function(&B[0]);
However, you need to ensure that there is room in the string for the data(same as if you were using a plain c-string), which you can do with a call to the resize() function. If the function writes an unspecified amount of characters to the string as a null-terminated c-string, then you will probably want to truncate the string afterward, like this:
B.resize(B.find('\0'));
The reason you can safely do this in a C++11 compiler and not a C++03 compiler is that in C++03, strings were not guaranteed by the standard to be contiguous, but in C++11, they are. If you want the guarantee in C++03, then you can use std::vector<char> instead.
I would like to perform the above mentioned operation, however I would like to make sure that the char array is exactly the same size with the string at hand.
So the real question is, how can I make an array with a size that is going to be determined in the run time?
allocating memory on the free store, and copying the string in one go:
std::string s("abcdef");
...
char* chars=strdup(s.c_str());
You need to free the memory manually, of course. Documentation e.g. on the man page. As #Loki mentions: freeing this memory is done through free(chars), not through delete. Also, you need to include the <cstring> header.
If you want to stay in the c++ world, use a vector; it can be created with two iterators to copy it's data from, and will allocate on the heap, and will cleanup by itself. Isn't that a treat?
std::vector<char> vec( s.begin(), s.end() );
You can create an array of size known at runtime with the "new" operator:
char* res = new char[str.size()+1];
strncpy(res, str.c_str(), str.size()+1);
std::string s = "hello";
char* c = new char[s.length() + 1]; // '+ 1' is for trailing NULL character.
strcpy(c, s.c_str());
#include <string>
int main(int argc, char *argv[])
{
std::string random_data("This is a string");
char *array=new char[random_data.size()+1];
// do stuff
delete[] array;
return 0;
}
Try:
char* res = new char[str.size()+1](); // Note the () makes sure it is '0' filled.
std::copy(str.begin(), str.end(), res); // Don't need to copy the '\0' as underlying
// array already has '\0' at the end position.
...
delete [] res; // Must not forget to delete.
Or: (preferably)
std::vector<char> res(str.begin(), str.end());
Or: If all you want to do is call a C-unction:
str.c_str()
Use strlen() to find the length of the string, then malloc() a char array of that size.
Const-correctness in C++ is still giving me headaches. In working with some old C code, I find myself needing to assign turn a C++ string object into a C string and assign it to a variable. However, the variable is a char * and c_str() returns a const char []. Is there a good way to get around this without having to roll my own function to do it?
edit: I am also trying to avoid calling new. I will gladly trade slightly more complicated code for less memory leaks.
C++17 and newer:
foo(s.data(), s.size());
C++11, C++14:
foo(&s[0], s.size());
However this needs a note of caution: The result of &s[0]/s.data()/s.c_str() is only guaranteed to be valid until any member function is invoked that might change the string. So you should not store the result of these operations anywhere. The safest is to be done with them at the end of the full expression, as my examples do.
Pre C++-11 answer:
Since for to me inexplicable reasons nobody answered this the way I do now, and since other questions are now being closed pointing to this one, I'll add this here, even though coming a year too late will mean that it hangs at the very bottom of the pile...
With C++03, std::string isn't guaranteed to store its characters in a contiguous piece of memory, and the result of c_str() doesn't need to point to the string's internal buffer, so the only way guaranteed to work is this:
std::vector<char> buffer(s.begin(), s.end());
foo(&buffer[0], buffer.size());
s.assign(buffer.begin(), buffer.end());
This is no longer true in C++11.
There is an important distinction you need to make here: is the char* to which you wish to assign this "morally constant"? That is, is casting away const-ness just a technicality, and you really will still treat the string as a const? In that case, you can use a cast - either C-style or a C++-style const_cast. As long as you (and anyone else who ever maintains this code) have the discipline to treat that char* as a const char*, you'll be fine, but the compiler will no longer be watching your back, so if you ever treat it as a non-const you may be modifying a buffer that something else in your code relies upon.
If your char* is going to be treated as non-const, and you intend to modify what it points to, you must copy the returned string, not cast away its const-ness.
I guess there is always strcpy.
Or use char* strings in the parts of your C++ code that must interface with the old stuff.
Or refactor the existing code to compile with the C++ compiler and then to use std:string.
There's always const_cast...
std::string s("hello world");
char *p = const_cast<char *>(s.c_str());
Of course, that's basically subverting the type system, but sometimes it's necessary when integrating with older code.
If you can afford extra allocation, instead of a recommended strcpy I would consider using std::vector<char> like this:
// suppose you have your string:
std::string some_string("hello world");
// you can make a vector from it like this:
std::vector<char> some_buffer(some_string.begin(), some_string.end());
// suppose your C function is declared like this:
// some_c_function(char *buffer);
// you can just pass this vector to it like this:
some_c_function(&some_buffer[0]);
// if that function wants a buffer size as well,
// just give it some_buffer.size()
To me this is a bit more of a C++ way than strcpy. Take a look at Meyers' Effective STL Item 16 for a much nicer explanation than I could ever provide.
You can use the copy method:
len = myStr.copy(cStr, myStr.length());
cStr[len] = '\0';
Where myStr is your C++ string and cStr a char * with at least myStr.length()+1 size. Also, len is of type size_t and is needed, because copy doesn't null-terminate cStr.
Just use const_cast<char*>(str.data())
Do not feel bad or weird about it, it's perfectly good style to do this.
It's guaranteed to work in C++11. The fact that it's const qualified at all is arguably a mistake by the original standard before it; in C++03 it was possible to implement string as a discontinuous list of memory, but no one ever did it. There is not a compiler on earth that implements string as anything other than a contiguous block of memory, so feel free to treat it as such with complete confidence.
If you know that the std::string is not going to change, a C-style cast will work.
std::string s("hello");
char *p = (char *)s.c_str();
Of course, p is pointing to some buffer managed by the std::string. If the std::string goes out of scope or the buffer is changed (i.e., written to), p will probably be invalid.
The safest thing to do would be to copy the string if refactoring the code is out of the question.
std::string vString;
vString.resize(256); // allocate some space, up to you
char* vStringPtr(&vString.front());
// assign the value to the string (by using a function that copies the value).
// don't exceed vString.size() here!
// now make sure you erase the extra capacity after the first encountered \0.
vString.erase(std::find(vString.begin(), vString.end(), 0), vString.end());
// and here you have the C++ string with the proper value and bounds.
This is how you turn a C++ string to a C string. But make sure you know what you're doing, as it's really easy to step out of bounds using raw string functions. There are moments when this is necessary.
If c_str() is returning to you a copy of the string object internal buffer, you can just use const_cast<>.
However, if c_str() is giving you direct access tot he string object internal buffer, make an explicit copy, instead of removing the const.
Since c_str() gives you direct const access to the data structure, you probably shouldn't cast it. The simplest way to do it without having to preallocate a buffer is to just use strdup.
char* tmpptr;
tmpptr = strdup(myStringVar.c_str();
oldfunction(tmpptr);
free tmpptr;
It's quick, easy, and correct.
In CPP, if you want a char * from a string.c_str()
(to give it for example to a function that only takes a char *),
you can cast it to char * directly to lose the const from .c_str()
Example:
launchGame((char *) string.c_str());
C++17 adds a char* string::data() noexcept overload. So if your string object isn't const, the pointer returned by data() isn't either and you can use that.
Is it really that difficult to do yourself?
#include <string>
#include <cstring>
char *convert(std::string str)
{
size_t len = str.length();
char *buf = new char[len + 1];
memcpy(buf, str.data(), len);
buf[len] = '\0';
return buf;
}
char *convert(std::string str, char *buf, size_t len)
{
memcpy(buf, str.data(), len - 1);
buf[len - 1] = '\0';
return buf;
}
// A crazy template solution to avoid passing in the array length
// but loses the ability to pass in a dynamically allocated buffer
template <size_t len>
char *convert(std::string str, char (&buf)[len])
{
memcpy(buf, str.data(), len - 1);
buf[len - 1] = '\0';
return buf;
}
Usage:
std::string str = "Hello";
// Use buffer we've allocated
char buf[10];
convert(str, buf);
// Use buffer allocated for us
char *buf = convert(str);
delete [] buf;
// Use dynamic buffer of known length
buf = new char[10];
convert(str, buf, 10);
delete [] buf;