The Python function exec() is a very good tool for programming.
For example:
/******************************************************
* we have array names={"ali","hamed"}
* goal is declare string ali="ali" and hamed="hamed"
******************************************************/
Python code:
# used for command
# below line is a syntax python
# in python we dont declare variable
list=["ali","hamed"] #python syntax
#in python we dont wite {
#python work with tab insteed of {}
for i in list:
temp = i + ' = "' + i + '"' #temp is a string
exec(temp)
My question: Is there a similar function exists in C++? If not, how to implement it in C++?
Python's exec, and similar features in other languages (i.e. eval in JavaScript) only work because those are interpreted languages where variables are defined at run time.
You can't do what you're asking in directly C++ because it's a compiled language that requires that all variables and their names are known at compile time.
You can do it, but it's not trivial, and it will only work on
systems where a C++ compiler is installed. Basically, C++ is
compiled, so if you want to execute some string which is C++,
you'll have to compile it: write it to a file (probably with
additional boilerplate like some includes), invoke the compiler
(with system) to build a DLL, and then load the DLL.
In practice, even if you went to all that effort, you'd probably
find it less useful than you think. Because C++ requires static
declarations for just about everything, it's much harder to
write small snippets like that and have them usable. (You
would, for example, have to wrap it in a function, and generate
extern for all of the variables it uses.) C++ doesn't support
this sort of thing for software engineering reasons; the very
features which make languages like Python so flexible for small,
quickly written programs, cause severe maintenance problems when
used in large scale robust software. Different languages are
designed for different purposes. It's very easy to create
a mixed language system using Python for the top level glue
(where you would want a facility such as you describe), and
calling into C++ for the heavy work (where such a facility would
allow the user to trigger core dumps at will).
Alternatively, you can implement a small language in C++. For
keeping user defined variables, for example, use std::map,
rather than declaring the variables. (That is, after all, what
Python does under the hood.)
If you are planning to use strings as parameters,it is NOT a good idea!
you can simply use an id generator function and give an id to every string that you are gonna use ,or if you are using a class you can put that function in the constructor.
no need to that exec() at all!!
Related
Well this might be a very weird question but my curiosity has striken pretty hard on this. So here it goes...
NOTE: Lets take the language C into consideration here.
As programmers we usually define a user-defined datatype(say struct) in the source code with the appropriate name.
Suppose I have a program in which I have a structure defined as:
struct Animal {
char *name;
int lifeSpan;
};
And also I have started the execution of this program.
Now, my question here is;
What if I want to define a new structure called "Plant" just like "Animal" mentioned above in my program, without writing its definition in the source code itself(which is obviously impossible currently) but rather from a user input string(or a file input) during runtime.
Lets say my program takes input string from a text file named file1.txt whose content is:
struct Plant {
char *name;
int lifeSpan;
};
What I want now is to have a new structure named "Plant" in my program which is already in execution. The program should read the file content and create a structure as written in the file and attach it to itself on-the-go.
I have checked out a solution for C++ in the discussion Declaring a data type dynamically in C++ but it doesnt seem to have a very convincing solution.
The solution I am looking for is at the compiler-linker-loader level rather than from the language itself.I would be very pleased and thankful if anyone is looking forward to sharing their ideas on this.
What you're asking about is basically "can we implement C as a scripting language?", since this is the only way code can be executed after compilation.
I'm aware that people have been writing (mostly in the comments) that it's possible in other languages but isn't possible in C, since C is a compiled language (hence data types should be defined during compile time).
However, to the best of my knowledge it's actually possible (and might not be as hard as one would imagine).
There are many possible approaches (machine code emulation (VM), JIT compilation, etc').
One approach will use a C compiler to compile the C script as an external dynamic library (.dll on windows, .so on linux, etc') and than "load" the compiled library and execute the code (this is pretty much the JIT compilation approach, for lazy people).
EDIT:
As mentioned in the comments, by using this approach, the new type is loaded as part of an external library.
The original code won't know about this new type, only the new code (or library) will be "aware" of this new type and able to properly use it.
On the other hand, I'm not sure why you're insisting on the need to use static types and a compiler-linker-loader level solution.
The language itself (the C language) can manage this task dynamically (during execution time).
Consider Ruby MRI, for example. The Ruby language supports dynamic types that can be defined during runtime...
...However, this is implemented in C and it's possible to use the code from within C to define new modules and classes. These aren't static types that can be tested during compilation (type creation and identification is performed during runtime).
This is a perfect example showing that C (as a language) can dynamically define "types".
However, this is also a poor example because Ruby's approach is slow. A custom approved can be far faster since it would avoid the huge overhead related to functionality you might not need (such as inheritance).
Is there a way out to call a function directly from the what the user inputs ?
For example : If the user inputs greet the function named greet is called.
I don't want any cases or comparison for the call to generate.
#include <iostream>
#include<string>
using namespace std;
void nameOfTheFunction(); // prototype
int main() {
string nameOfTheFunction;
getline(cin,nameOfTheFunction); // enter the name of Function
string newString = nameOfTheFunction + "()"; // !!!
cout << newString;
// now call the function nameOfTheFunction
}
void nameOfTheFunction() {
cout << "hello";
}
And is there a concept of generating the function at run time ?
You mean run time function generation ??
NO.
But you can use a map if you already know which all strings a user might give as input (i.e you are limiting the inputs).
For the above you can probably use std::map < std::string, boost::function <... > >
Check boost::function HERE
In short, no this isn't possible. Names in C++ get turned into memory offsets (addresses), and then the names are discarded**. At runtime C++ has no knowledge of the function or method names it's actually running.
** If debug symbols are compiled in, then the symbols are there, but impractical to get access to.
Generating a function at runtime has a lot of drawbacks (if it is possible at all) and there is generally no good reason to do it in a language like C++. You should leave that to scripting languages (like Perl or Python), many offer a eval() function that can interpret a string like script code and execute it.
If you really, really need to do have something like eval() in a compiled language such as C++, you have a few options:
Define your own scripting language and write a parser/interpreter for it (lots of work)
Define a very simple imperative or math language that can be easily parsed and evaluated using well-known design patterns (like Interpreter)
Use an existing scripting language that can be easily integrated into your code through a library (example: Lua)
Stuff the strings of code you want to execute at runtime through an external interpreter or compiler and execute them through the operating system or load them into your program using dlopen/LoadLibrary/etc.
(3.) is probably the easiest and best approach. If you want to keep external dependencies to a minimum or if you need direct access to functionality and state inside your main program, I suggest you should go for (2.) Note that you can have callbacks into your own code in that case, so calling native functions from the script is not a problem. See here for a tutorial
If you can opt for a language like Java or C#, there's also the option to use the compiler built into the runtime itself. Have a look here for how to do this in Java
I would like to know how to use GCC as a library to parse C/C++/Java/Objective C/Ada code for my program.
I want to bypass prepocessing and prefix all the functions that are user written with a prefix My.
like so Print(); becomes MyPrint(); I also wish to do this with the variables.
You can look here:
http://codesynthesis.com/~boris/blog/2010/05/03/parsing-cxx-with-gcc-plugin-part-1/
This is description of how to use gcc plugin interface to parse C++ code. Other language should be handled in the same manner.
Also you can try pork from mozilla:
https://wiki.mozilla.org/Pork
When I tried it (pork), I spend hour or so to fix compile problems, but then
I can write scripts like this:
rewrite SyncPrimitiveUpgrade {
type PRLock* => Mutex*
call PR_NewLock() => new Mutex()
call PR_Lock(lock) => lock->Lock()
call PR_Unlock(lock) => lock->Unlock()
call PR_DestroyLock(lock) => delete lock
}
so it found all type PRLock and replate it with Mutex, also it search call of functions
like PR_NewLock and replace it with "new Mutex".
You might wish to investigate the sparse C parser. It understands a lot of C (all the C used in the Linux kernel sources, which is a fairly good subset of legal ANSI-C and GNU-C extensions) and provides a few sample compiler backends to provide a lint-like static analysis tool for type checking.
While the code looks very clean and thorough, your task might be easier done via another mechanism -- the example.c included with the sparse source that demonstrates a compiler is 1955 lines long.
For C, you cannot do that reliably. If you skip preprocessing you will -- in general -- not have valid C code to be parsed. E.g.
#define FOO
#define BAR
#define BAZ
FOO void BAR qux BAZ(void) { }
How is the parser supposed to recognize this a function definition of qux without doing the preprocessing?
First, GCC is not a library, and is not structured to be one (in contrast to LLVM).
Why (i.e. what for) do you want to parse C, C++, Ada source code?
I would consider (assuming a GCC 4.6 version) extending GCC either thru plugins written in C, or preferably using MELT, a high level domain specific language to extend GCC (disclaimer: I am the main author of MELT).
But using GCC as a library is not realistic at all.
I really think that for what you want to achieve, MELT is the right tool. However, it is poorly documented. Please use the gcc-melt#googlegroups.com list to ask questions.
And be aware that extending GCC does take some amount of work (more than a week perhaps), because you need to partly understand the GCC internal representations.
Our DMS Software Reengineering Toolkit can parse C, C++, Java and Ada code (not Objective C at this time) in a wide variety of dialects and carry out transformations on the code. DMS's C and C++ front ends include a preprocessor, so you can you can cause preprocessing before you parse.
I'm probably don't understand what you want to do, because it seems strange to rename every function and (global?) variable with a "My...." prefix. But you could do that with some DMS rules (a rough sketch of renames of user functions for GCC3:
domain C~GCC3.
rule rewrite_function_names(t: type_designator, i: IDENTIFIER, p: parameter_list, s: statements):
function_header->functionheader
"\t \i(\p) { \s } " -> "\t \renamed\(\i\) (\p) { \s }" ;
and a helper function "renames" that takes a tree node containing an identifer, and returns a tree node with the renamed identifier.
Because DMS patterns only match against the parse trees, you won't get any false positives.
You'd need some additional patterns to handle various different syntax cases within each langauge (e.g, for C, "void" return type, because "void" isn't a type designator in the syntax, and global variable declarations), and different rules for different languages (Ada's syntax is not the same as that of C).
This might seem like big hammer for your task, but if you really insist on doing this for a variety of languages in a reliable way, it seems hard to avoid the problem of getting decent parsers for all those languages. (And if you are really going to do this for all these languages, DMS can be taught to handle ObjectiveC the same we we have taught it to handle the other langauges).
Your alternative is some kind of string hacking solution, which might work 95% of the time. If you can live with that, then Perl or something similar is likely your answer.
forget about GCC, its made as a compiler's parser, not an analysis parser, you'd do way better using something like libclang, a C interface to clang, which can process both C & C++
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Dynamic source code in C++
is it possible to let the user type in a function and then run that function without using a lot of if's or a huge switch?
It is not possible to execute arbitrary c++ code in your program, since you than need a c++ compiler inside your program. But you could try to embed Python to your program. Boost python makes this relatively easy. The user can than write a python function that is executed and can interact with the classes and functions of your program. You need to make your functions explicitely visible to python.
What ever a user types in will be text, or a string. The only way I know to have it get mapped to a function is to use if/else or switch statements. That or the cringe inducing option of mapping each of your functions to a UI widget.
The end of the story, is it's your code. You have to write, and live with it. Just be careful, your program may be wildly successful, and you may not write code anymore, and then someone else will have to maintain your code. So be nice to the maintenance programmer who may follow you, and write code that isn't too tricky to figure out.
I assume you want something like eval from php.
You can try to play with command design pattern, but I doubt it will be an easy task. Basically you need to write simple C++ interpreter.
What type of function do you mean? A C++ function? If so, then you will have to either (1)interpret it or (2)compile and execute it. Interpretation would be the more likely choice here. I'm not sure if there are libraries out there already to do this but I'd assume there are.
If you don't like mega-if's or huge switches, you may be SoL on any solution for anything ever, but then again there is seldom one perfect way to do things. Consider looking in to various logic structures and algorithms to see how to do something that would normally be the job of a 23-case switch could be done another way. Like I said initially, however, sometimes you really do just need a million nested if's to do what you want to.
No, in C++ this is not possible. C++ is a compiled language. When the program runs, the compiler doesn't need to be accessible, or even installed on the machine that runs the program.
If you want to do this in C++, you need to write your own interpreter that parses whatever the user enters.
Here is my best idea, but it is a tad memory intensive.
First, create a class, lets call it MyFuncPtr to store a union of several different types of pointers to functions and an integer to tell which type it is. Overload the () operator to call the function stored with a variable length argument list. Make sure to include some sort of run-time argument checking.
Finally create a map of strings to MyFuncPtrs. Store your functions in this map along with their names. Then all you need to do is feed the name into the [] command to get a function that can be easily called. Templates could probably be used to aid in the making of MyFuncPtr instances.
This would be the easiest if it were plain C functions and no name mangling is performed on the symbols (use extern "C" { ... })
With some platform-specific code you can get the address of a function by its name. Then you cast the address as a function pointer which you can use to call the function.
On windows you must be using GetProcAddress and dlsym on Posix compliant platforms.
It should turn this
int Yada (int yada)
{
return yada;
}
into this
int Yada (int yada)
{
SOME_HEIDEGGER_QUOTE;
return yada;
}
but for all (or at least a big bunch of) syntactically legal C/C++ - function and method constructs.
Maybe you've heard of some Perl library that will allow me to perform these kinds of operations in a view lines of code.
My goal is to add a tracer to an old, but big C++ project in order to be able to debug it without a debugger.
Try Aspect C++ (www.aspectc.org). You can define an Aspect that will pick up every method execution.
In fact, the quickstart has pretty much exactly what you are after defined as an example:
http://www.aspectc.org/fileadmin/documentation/ac-quickref.pdf
If you build using GCC and the -pg flag, GCC will automatically issue a call to the mcount() function at the start of every function. In this function you can then inspect the return address to figure out where you were called from. This approach is used by the linux kernel function tracer (CONFIG_FUNCTION_TRACER). Note that this function should be written in assembler, and be careful to preserve all registers!
Also, note that this should be passed only in the build phase, not link, or GCC will add in the profiling libraries that normally implement mcount.
I would suggest using the gcc flag "-finstrument-functions". Basically, it automatically calls a specific function ("__cyg_profile_func_enter") upon entry to each function, and another function is called ("__cyg_profile_func_exit") upon exit of the function. Each function is passed a pointer to the function being entered/exited, and the function which called that one.
You can turn instrumenting off on a per-function or per-file basis... see the docs for details.
The feature goes back at least as far as version 3.0.4 (from February 2002).
This is intended to support profiling, but it does not appear to have side effects like -pg does (which compiles code suitable for profiling).
This could work quite well for your problem (tracing execution of a large program), but, unfortunately, it isn't as general purpose as it would have been if you could specify a macro. On the plus side, you don't need to worry about remembering to add your new code into the beginning of all new functions that are written.
There is no such tool that I am aware of. In order to recognise the correct insertion point, the tool would have to include a complete C++ parser - regular expressions are not enough to accomplish this.
But as there are a number of FOSS C++ parsers out there, such a tool could certainly be written - a sort of intelligent sed for C++ code. The biggest problem would probably be designing the specification language for the insert/update/delete operation - regexes are obviously not the answer, though they should certainly be included in the language somehow.
People are always asking here for ideas for projects - how about this for one?
I use this regex,
"(?<=[\\s:~])(\\w+)\\s*\\([\\w\\s,<>\\[\\].=&':/*]*?\\)\\s*(const)?\\s*{"
to locate the functions and add extra lines of code.
With that regex I also get the function name (group 1) and the arguments (group 2).
Note: you must filter out names like, "while", "do", "for", "switch".
This can be easily done with a program transformation system.
The DMS Software Reengineering Toolkit is a general purpose program transformation system, and can be used with many languages (C#, COBOL, Java, EcmaScript, Fortran, ..) as well as specifically with C++.
DMS parses source code (using full langauge front end, in this case for C++),
builds Abstract Syntax Trees, and allows you to apply source-to-source patterns to transform your code from one C# program into another with whatever properties you wish. THe transformation rule to accomplish exactly the task you specified would be:
domain CSharp.
insert_trace():function->function
"\visibility \returntype \fnname(int \parametername)
{ \body } "
->
"\visibility \returntype \fnname(int \parametername)
{ Heidigger(\CppString\(\methodname\),
\CppString\(\parametername\),
\parametername);
\body } "
The quote marks (") are not C++ quote marks; rather, they are "domain quotes", and indicate that the content inside the quote marks is C++ syntax (because we said, "domain CSharp"). The \foo notations are meta syntax.
This rule matches the AST representing the function, and rewrites that AST into the traced form. The resulting AST is then prettyprinted back into source form, which you can compile. You probably need other rules to handle other combinations of arguments; in fact, you'd probably generalize the argument processing to produce (where practical) a string value for each scalar argument.
It should be clear you can do a lot more than just logging with this, and a lot more than just aspect-oriented programming, since you can express arbitrary transformations and not just before-after actions.