Using results from my own pass(not predefined pass) into next pass - llvm

I have created a pass that pathprofiles and then stores results in different data structures such as blocks corresponding to the paths, edges in paths etc.
I have different variables and data structures for each of these.
Is there a way to use these variables directly in another pass that i write?
If yes, how? (Im not sure if getAnalysisUsage works for this?)
Urgent help required

This answer might be late, but I had the same question, ran across your post and thanks to Oak was pointed into the right direction. So I wanted to share some code here.
Suppose you have two passes, the first one is your PathProfilePass and the second one is your DoSomethingPass. The first pass contains the data that you collect and share with the second path; nothing special needs to be done here:
/// Path profiling to gather heaps of data.
class PathProfilePass: public llvm::ModulePass {
public:
virtual bool runOnModule(llvm::Module &M) {
// Create goodness for edges and paths.
...
}
std::set<Edges> edges; ///< All the edges this pass collects.
std::set<Paths> paths; ///< All the paths this pass collects.
};
The interesting stuff happens in the second pass. Two things you need to do here:
Specify the dependency of the second pass on the first pass: see the getAnalysisUsage method.
Access the data from the first pass: see the getAnalysis method.
Code-wise it would look something like this for the second pass:
/// Doing something with edge and path informations.
class DoSomethingPass: public llvm::ModulePass {
public:
/// Specify the dependency of this pass on PathProfilePass.
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.addRequired<PathProfilePass>();
}
/// Use the data of the PathProfilePass.
virtual bool runOnModule(llvm::Module &M) {
PathProfilePass &PPP = getAnalysis<PathProfilePass>();
// Get the edges and paths from the first pass.
std::set<Edges> &edges = PPP.edges;
std::set<Paths> &paths = PPP.paths;
// Now you can noodle over that data.
...
}
};
Disclaimer: I haven't compiled this code, but this is an adaptation to your example of what works for me. Hope this is useful :-)

Set a dependency from the 2nd pass to the 1st pass (via overriding getAnalysisUsage and invoking getAnalysis - see the programmer's guide to writing a pass on how to do that). Once you get an instance of the 1st pass, you can use it just like any other C++ object.

Related

load config file for game, singleton or passing down the tree or anything else?

I'm trying to create simple game in C++. At one point I want to have some setting, save and load from config file.
The config file should be read from the beginning, and should be accessible anywhere it needed.
So far I only see Singleton pattern as a solution.
Another way is to create an object an pass it down, but it can mess
up the current code.
I've also search and found something called Dependency Injection.
Is dependency injection useful in C++
Which design patterns can be applied to the configuration settings problem?
But I don't quite understand it, you still have to create an object in main and pass it down, right?
Singleton is quite simple, but some consider it antipattern, while pass it down the tree can mess up my current code. Is there any other Patterns?
P/S: I'm also curious how games load their setting.
I would suggest something simple as the following example, which circumvents any singleton-related or initialization order issue:
struct global_state
{
config _config;
};
struct game_state
{
global_state& _global_state;
};
int main()
{
global_state globals{load_config_from_file()};
game_state game{globals};
game.run();
}
Since _global_state is a member of game_state, it can be used in member functions without the need of explicitly passing it as a parameter:
void game_state::update_ui()
{
const float text_size = _global_state._config.get_float("text_size");
_some_text.set_size(text_size);
}

c++ best way to realise global switches/flags to control program behaviour without tying the classes to a common point

Let me elaborate on the title:
I want to implement a system that would allow me to enable/disable/modify the general behavior of my program. Here are some examples:
I could switch off and on logging
I could change if my graphing program should use floating or pixel coordinates
I could change if my calculations should be based upon some method or some other method
I could enable/disable certain aspects like maybe a extension api
I could enable/disable some basic integrated profiler (if I had one)
These are some made-up examples.
Now I want to know what the most common solution for this sort of thing is.
I could imagine this working with some sort of singelton class that gets instanced globally or in some other globally available object. Another thing that would be possible would be just constexpr or other variables floating around in a namespace, again globally.
However doing something like that, globally, feels like bad practise.
second part of the question
This might sound like I cant decide what I want, but I want a way to modify all these switches/flags or whatever they are actually called in a single location, without tying any of my classes to it. I don't know if this is possible however.
Why don't I want to do that? Well I like to make my classes somewhat reusable and I don't like tying classes together, unless its required by the DRY principle and or inheritance. I basically couldn't get rid of the flags without modifying the possible hundreds of classes that used them.
What I have tried in the past
Having it all as compiler defines. This worked reasonably well, however I didnt like that I couldnt make it so if the flag file was gone there were some sort of default settings that would make the classes themselves still operational and changeable (through these default values)
Having it as a class and instancing it globally (system class). Worked ok, however I didnt like instancing anything globally. Also same problem as above
Instancing the system class locally and passing it to the classes on construction. This was kinda cool, since I could make multiple instruction sets. However at the same time that kinda ruined the point since it would lead to things that needed to have one flag set the same to have them set differently and therefore failing to properly work together. Also passing it on every construction was a pain.
A static class. This one worked ok for the longest time, however there is still the problem when there are missing dependencies.
Summary
Basically I am looking for a way to have a single "place" where I can mess with some values (bools, floats etc.) and that will change the behaviour of all classes using them for whatever, where said values either overwrite default values or get replaced by default values if said "place" isnt defined.
If a Singleton class does not work for you , maybe using a DI container may fit in your third approach? It may help with the construction and make the code more testable.
There are some DI frameworks for c++, like https://github.com/google/fruit/wiki or https://github.com/boost-experimental/di which you can use.
If you decide to use switch/flags, pay attention for "cyclometric complexity".
If you do not change the skeleton of your algorithm but only his behaviour according to the objets in parameter, have a look at "template design pattern". This method allow you to define a generic algorithm and specify particular step for a particular situation.
Here's an approach I found useful; I don't know if it's what you're looking for, but maybe it will give you some ideas.
First, I created a BehaviorFlags.h file that declares the following function:
// Returns true iff the given feature/behavior flag was specified for us to use
bool IsBehaviorFlagEnabled(const char * flagName);
The idea being that any code in any of your classes could call this function to find out if a particular behavior should be enabled or not. For example, you might put this code at the top of your ExtensionsAPI.cpp file:
#include "BehaviorFlags.h"
static const enableExtensionAPI = IsBehaviorFlagEnabled("enable_extensions_api");
[...]
void DoTheExtensionsAPIStuff()
{
if (enableExtensionsAPI == false) return;
[... otherwise do the extensions API stuff ...]
}
Note that the IsBehaviorFlagEnabled() call is only executed once at program startup, for best run-time efficiency; but you also have the option of calling IsBehaviorFlagEnabled() on every call to DoTheExtensionsAPIStuff(), if run-time efficiency is less important that being able to change your program's behavior without having to restart your program.
As far as how the IsBehaviorFlagEnabled() function itself is implemented, it looks something like this (simplified version for demonstration purposes):
bool IsBehaviorFlagEnabled(const char * fileName)
{
// Note: a real implementation would find the user's home directory
// using the proper API and not just rely on ~ to expand to the home-dir path
std::string filePath = "~/MyProgram_Settings/";
filePath += fileName;
FILE * fpIn = fopen(filePath.c_str(), "r"); // i.e. does the file exist?
bool ret = (fpIn != NULL);
fclose(fpIn);
return ret;
}
The idea being that if you want to change your program's behavior, you can do so by creating a file (or folder) in the ~/MyProgram_Settings directory with the appropriate name. E.g. if you want to enable your Extensions API, you could just do a
touch ~/MyProgram_Settings/enable_extensions_api
... and then re-start your program, and now IsBehaviorFlagEnabled("enable_extensions_api") returns true and so your Extensions API is enabled.
The benefits I see of doing it this way (as opposed to parsing a .ini file at startup or something like that) are:
There's no need to modify any "central header file" or "registry file" every time you add a new behavior-flag.
You don't have to put a ParseINIFile() function at the top of main() in order for your flags-functionality to work correctly.
You don't have to use a text editor or memorize a .ini syntax to change the program's behavior
In a pinch (e.g. no shell access) you can create/remove settings simply using the "New Folder" and "Delete" functionality of the desktop's window manager.
The settings are persistent across runs of the program (i.e. no need to specify the same command line arguments every time)
The settings are persistent across reboots of the computer
The flags can be easily modified by a script (via e.g. touch ~/MyProgram_Settings/blah or rm -f ~/MyProgram_Settings/blah) -- much easier than getting a shell script to correctly modify a .ini file
If you have code in multiple different .cpp files that needs to be controlled by the same flag-file, you can just call IsBehaviorFlagEnabled("that_file") from each of them; no need to have every call site refer to the same global boolean variable if you don't want them to.
Extra credit: If you're using a bug-tracker and therefore have bug/feature ticket numbers assigned to various issues, you can creep the elegance a little bit further by also adding a class like this one:
/** This class encapsulates a feature that can be selectively disabled/enabled by putting an
* "enable_behavior_xxxx" or "disable_behavior_xxxx" file into the ~/MyProgram_Settings folder.
*/
class ConditionalBehavior
{
public:
/** Constructor.
* #param bugNumber Bug-Tracker ID number associated with this bug/feature.
* #param defaultState If true, this beheavior will be enabled by default (i.e. if no corresponding
* file exists in ~/MyProgram_Settings). If false, it will be disabled by default.
* #param switchAtVersion If specified, this feature's default-enabled state will be inverted if
* GetMyProgramVersion() returns any version number greater than this.
*/
ConditionalBehavior(int bugNumber, bool defaultState, int switchAtVersion = -1)
{
if ((switchAtVersion >= 0)&&(GetMyProgramVersion() >= switchAtVersion)) _enabled = !_enabled;
std::string fn = defaultState ? "disable" : "enable";
fn += "_behavior_";
fn += to_string(bugNumber);
if ((IsBehaviorFlagEnabled(fn))
||(IsBehaviorFlagEnabled("enable_everything")))
{
_enabled = !_enabled;
printf("Note: %s Behavior #%i\n", _enabled?"Enabling":"Disabling", bugNumber);
}
}
/** Returns true iff this feature should be enabled. */
bool IsEnabled() const {return _enabled;}
private:
bool _enabled;
};
Then, in your ExtensionsAPI.cpp file, you might have something like this:
// Extensions API feature is tracker #4321; disabled by default for now
// but you can try it out via "touch ~/MyProgram_Settings/enable_feature_4321"
static const ConditionalBehavior _feature4321(4321, false);
// Also tracker #4222 is now enabled-by-default, but you can disable
// it manually via "touch ~/MyProgram_Settings/disable_feature_4222"
static const ConditionalBehavior _feature4222(4222, true);
[...]
void DoTheExtensionsAPIStuff()
{
if (_feature4321.IsEnabled() == false) return;
[... otherwise do the extensions API stuff ...]
}
... or if you know that you are planning to make your Extensions API enabled-by-default starting with version 4500 of your program, you can set it so that Extensions API will be enabled-by-default only if GetMyProgramVersion() returns 4500 or greater:
static ConditionalBehavior _feature4321(4321, false, 4500);
[...]
... also, if you wanted to get more elaborate, the API could be extended so that IsBehaviorFlagEnabled() can optionally return a string to the caller containing the contents of the file it found (if any), so that you could do shell commands like:
echo "opengl" > ~/MyProgram_Settings/graphics_renderer
... to tell your program to use OpenGL for its 3D graphics, or etc:
// In Renderer.cpp
std::string rendererType;
if (IsDebugFlagEnabled("graphics_renderer", &rendererType))
{
printf("The user wants me to use [%s] for rendering 3D graphics!\n", rendererType.c_str());
}
else printf("The user didn't specify what renderer to use.\n");

Is there a final Visit method to the Clang RecursiveASTVisitor?

I couldn't find one looking at the API, but essentially I want the following: after all of the Visit* methods, I'd call a final method that does some postprocessing on my data members. I'd assume it'd be something similar to visiting a TranslationUnitDecl, except instead of being the first visit method, it'd be the last.
You can add do this within a HandleTranslationUnit method.
void MyVisitor::HandleTranslationUnit(ASTContext &Context) {
...
TraverseDecl(Context.getTranslationUnitDecl());
// Do post-processing here
}

A neat way to apply many (300) methods to one data

I need to apply a lot of functions to the same piece of data in arbitrary order. Different people add different functions. I have created a system, that, after simplification, looks like that:
abstract_filter.h
class AbstractFilter {
void filter(data) = 0;
}
blue_filter.h
class BlueFilter: public AbstractFilter ...
red_filter.h ...
green_filter.h ...
parser.cpp
#include "blue_filter.h"
#include "red_filter.h" //so on
void Parse(const Data data) {
RedFilter redFilter();
redFilter.filter(data);
BlueFilter blueFilter();
blueFilter.filter(data);
....
}
I have hundreds of filters and people always forget to add them to the list or configure. Is it possible to write something like "take all classes from that group/folder and instantiate and put in array...."? I can't make them static or register filters in their constructors because several filtering stacks can be active in the same time.
All I want is to not have to manually enumerate all filters. Would be great to put them in place by just adding them to the project.
Write a python script which parses the filter directory entries an adds them to a generic factory or processing class. If the script runs on every build process the filters will always be taken care of.

C++ - Where to store a global counter?

The diagram http://www.freeimagehosting.net/uploads/2fd3f4161c.png
Here's the Minimalist-UML diagram of an app I've been working on. It's supposed to simulate the management of a bunch of sensors relating to different measurements.
Please ignore the House class, the diagram is outdated...
However, I have trouble. Each sensor (sound, contact, heat, pressure, gas - All of these inherit from sensor) has an unique ID, starting at 0 for the first one and ending at the total number of sensors - 1.
For good practices' sake, where shall I store the total number of sensors, so the classes I'm using for input/output of files (saving and loading) and insertion of new sensors can access and increment that counter?
Thank you for your time!
One option would be to create a static function in your Sensor class that increments and returns a static counter variable. The constructor for Sensor could call this function to get an ID.
// header file
class Sensor
{
...
protected:
static int getId() { return id++; }
private:
static int id;
int myId;
};
// .cpp file
int Sensor::id = 0;
Sensor::Sensor(...)
: myId(getId())
...
{}
I'm ignoring threading and persistence issues here. But hopefully this gives you a better idea.
Whatever object creates the sensors should assign the identifiers to the sensors.
If multiple objects create sensors, then they should be assigned a pointer or reference to a provider of identifiers when they are created and they should query that provider for a new unique identifier as they create new sensor objects.
Your unique ID, like a database table ID will likely have some issues.
You will probably find, eventually, that your ID needs to persist across sessions--that your window's ID is used in some other relationship.
You may, some day, also find that it needs to be unique across multiple server/client sets.
I'm just suggesting that you should consider these issues off the bat.
As for where the ID should be generated, since all your "Sensor" classes inherit from one base class, I think I'd generate it via a threadsafe method in that base class--and I'd store it there as well.
what's the problem? do you use a Vector to store your sensors? define a Vector of holding sensor-objects in the house.
can access and increment that counter
you don't have to do this, the Vector does it for you
Have a look at the Singleton pattern assuming you don't want to do it with a database of some sort.