how to get linux command output string and output status in c++ - c++

I want to get a Linux command's output string as well as command output status in a C++ program. I am executing Linux commands in my application.
for example:
Command:
rmdir abcd
Command output string:
rmdir: failed to remove `abcd': No such file or directory
Command Status:
1 (Which means command has been failed)
I tried using Linux function system() which gives the output status, and function popen() which gives me output string of a command, but neither function gives me both
the output string and output status of a Linux command.

The output string is in standard output or standard error descriptor (1 or 2, respectively).
You have to redirect these streams (take a look at dup and dup2 function) to a place, where you can read them (for example - a POSIX pipe).
In C I'd do something like this:
int pd[2];
int retValue;
char buffer[MAXBUF] = {0};
pipe(pd);
dup2(pd[1],1);
retValue = system("your command");
read(pd[0], buffer, MAXBUF);
Now, you have (a part of) your output in buffer and the return code in retValue.
Alternatively, you can use a function from exec (i.e. execve) and get the return value with wait or waitpid.
Update: this will redirect only standard output. To redirect standard error, use dup2(pd[1],1).

The simplest solution is to use system, and to redirect standard out and standard error to a temporarly file, which you can delete later.

Unfortunately there's no easy and simple way in C on Linux to do this. Here's an example how to read/write stdout/stderr/stdin of child process correctly.
And when you want to receive exit code you have to use waitpid (complete example is provided on the bottom of the provided page):
endID = waitpid(childID, &status, WNOHANG|WUNTRACED);
Now you just have to join those two together :)
There's also a great free book named Advanced Linux Programming (ALP) containing detailed information about these kinds of problem available here.

Building on Piotr Zierhoffer answer above, here's a function that does just that, and also restores stdout and stderr their original state.
// Execute command <cmd>, put its output (stdout and stderr) in <output>,
// and return its status
int exec_command(string& cmd, string& output) {
// Save original stdout and stderr to enable restoring
int org_stdout = dup(1);
int org_stderr = dup(2);
int pd[2];
pipe(pd);
// Make the read-end of the pipe non blocking, so if the command being
// executed has no output the read() call won't get stuck
int flags = fcntl(pd[0], F_GETFL);
flags |= O_NONBLOCK;
if(fcntl(pd[0], F_SETFL, flags) == -1) {
throw string("fcntl() failed");
}
// Redirect stdout and stderr to the write-end of the pipe
dup2(pd[1], 1);
dup2(pd[1], 2);
int status = system(cmd.c_str());
int buf_size = 1000;
char buf[buf_size];
// Read from read-end of the pipe
long num_bytes = read(pd[0], buf, buf_size);
if(num_bytes > 0) {
output.clear();
output.append(buf, num_bytes);
}
// Restore stdout and stderr and release the org* descriptors
dup2(org_stdout, 1);
dup2(org_stderr, 2);
close(org_stdout);
close(org_stderr);
return status;
}

you can use popen system call, it will redirect output to a file and from file you can redirect output to a string. like :
char buffer[MAXBUF] = {0};
FILE *fd = popen("openssl version -v", "r");
if (NULL == fd)
{
printf("Error in popen");
return;
}
fread(buffer, MAXBUF, 1, fd);
printf("%s",buffer);
pclose(fd);
For more information read man page for popen.

Related

C++ redirect or disable stdio temporarily

In our C++ project under MacOS X, we are using stdio for interaction with clients. Yet, the dylib we are using is also using stdio to print "open log files". This breaks down all communication between our clients and the application. I looked at the examples of redirecting stdio to a file or temporarily disabling stdio. Yet, we could not succeed in it.
So, how can we disable or redirect stdio temporarily while interacting with the dylib.
void RedirectStandardStreamsToDEVNULL(int *_piOriginalSTDIN_FILENO, int *_piOriginalSTDOUT_FILENO, int *_piOriginalSTDERR_FILENO)
{
//flushing pending things before redirection.
//fflush(stdin);
fflush(stdout);
fflush(stderr);
*_piOriginalSTDIN_FILENO = dup(STDIN_FILENO);
*_piOriginalSTDOUT_FILENO = dup(STDOUT_FILENO);
*_piOriginalSTDERR_FILENO = dup(STDERR_FILENO);
int devnull = open("/dev/null", O_RDWR);
dup2(devnull, STDIN_FILENO);
dup2(devnull, STDOUT_FILENO);
dup2(devnull, STDERR_FILENO);
close(devnull);
}
void RestoreStandardStreams(int *_piOriginalSTDIN_FILENO, int *_piOriginalSTDOUT_FILENO, int *_piOriginalSTDERR_FILENO)
{
//flushing pending things before restoring.
//fflush(stdin);
fflush(stdout);
fflush(stderr);
dup2(*_piOriginalSTDIN_FILENO, STDIN_FILENO);
dup2(*_piOriginalSTDOUT_FILENO, STDOUT_FILENO);
dup2(*_piOriginalSTDERR_FILENO, STDERR_FILENO);
}
void myfunction()
{
int iOriginalSTDIN_FILENO = -1;
int iOriginalSTDOUT_FILENO = -1;
int iOriginalSTDERR_FILENO = -1;
RedirectStandardStreamsToDEVNULL(&iOriginalSTDIN_FILENO, &iOriginalSTDOUT_FILENO, &iOriginalSTDERR_FILENO);
//all of your code which prints to stdout or stderr will be directed to /dev/null
RestoreStandardStreams(&iOriginalSTDIN_FILENO, &iOriginalSTDOUT_FILENO, &iOriginalSTDERR_FILENO);
}
Important point is to identify the functions which are called inside dylib from your code. Now, surround such functions with Redirect and Restore functions described above.
OSX is a POSIX systems, and like all POSIX systems standard output is file descriptor STDOUT_FILENO (which is a macro defined as 1).
What you can do is duplicate STDOUT_FILENO to another file descriptor, open a temporary file and duplicating (using dup2) the temporary file as STDOUT_FILENO. Then whenever there is output to standard out (using plain write, C printf or C++ std::cout) it will be put in the temporary file.
When done with the temporary "redirection" you simply duplicate the saved standard output (from the first dup call) back into STDOUT_FILENO. and close and remove the temporary file.
Something like the following:
int saved_stdout = dup(STDOUT_FILENO);
int temp_file = open("/tmp/temp_stdout", O_WRONLY, 0600);
dup2(temp_file, STDOUT_FILENO); // Replace standard out
// Code here to write to standard output
// It should all end up in the file /tmp/temp_stdout
dup2(saved_stdout, STDOUT_FILENO); // Restore old standard out
close(temp_file)
unlink("/tmp/temp_stdout"); // Remove file

Get Gnuplot version from pipe in C++

In my C++ program (in linux), I can open a pipe for writing and set values for Gnuplot program.
FILE *pipe = NULL;
#ifdef WIN32
pipe = _popen("pgnuplot -persist", "w");
#else
pipe = popen("gnuplot", "w");
#endif
if(pipe == NULL)
error("Could not open pipe for write!");
// set title name
fprintf(pipe, "set title 'Sample Points' \n");
Now I need to get the Gnuplot version. The show version command does this but how I can send this command and then read the value. Opening a pipe for reading seems to not work for me and the code stuck in the while loop without getting any data.
FILE* pipe = popen(command, "r");
if (!pipe)
{
std::cout << "failed! (can not open pipe)" << endl;
return;
}
char buffer[128];
std::string result = "";
while(!feof(pipe))
{
if(fgets(buffer, 128, pipe) != NULL)
result += buffer;
}
pclose(pipe);
Since on my Debian/Linux/Sid/x86-64 the command gnuplot --version is outputting to stdout the following line:
gnuplot 5.0 patchlevel 1
I would simply recommend
FILE* pipversion = popen("gnuplot --version", "r");
if (!pipversion) { perror("popen gnuplot"); exit(EXIT_FAILURE); };
char lineversion[128];
memset (lineversion, 0, sizeof(lineversion));
if (!fgets(lineversion, sizeof(lineversion), pipversion) {
perror("fgets"); exit(EXIT_FAILURE);
}
/// lineversion is like: gnuplot 5.0 patchlevel 1
int majvers=0, minvers=0, pos= -1;
char* restvers = NULL;
if (sscanf(lineversion, "gnuplot %d.%d %n", &majvers, &minvers, &pos) >= 2) {
assert (pos>=0);
restvers = lineversion+pos;
};
pclose(pipversion);
pipversion = NULL;
After that, majvers contains the major version of gnuplot (e.g. 5 in my case) and minvers contains the minor version (e.g. 0), with restvers being a suffix string (e.g. "patchlevel 1" without the quotes).
There might be a potential race condition in the unusual and unlikely case that gnuplot is updated between this popen and the next one pipe = popen("gnuplot", "w");. BTW, naming a variable pipe is poor taste, since POSIX and Linux have the pipe(2) system call. But I don't think it is worth caring about that race condition.
BTW, you very probably want to replace your second pipe = popen("gnuplot", "w"); with an explicit double invocation of pipe(2) (followed by appropriate fork(2) & execvp(3) ...) to have both input and output pipes to gnuplot, and manage them in your own event loop (probably around poll(2) ... see this & that answers).
(if you application has or uses its own event loop, in particular if it is a GUI application above Qt or GTK, you want to use the same event loop for the pipes; details are specific to the library providing that event loop: g_spawn_async_with_pipes & g_source_add_unix_fd for GTK, QProcess for Qt ... )
I don't have time to explain how to do that (double piping into command + event loop) in details, but the Advanced Linux Programming book (available online) has several chapters on that. Be aware that you need some event loop.

How to read the failure log message displayed when a system call failed in C++?

I have a C++ code that calls a test. I am doing a system call to execute this test. When this test fails, it will display something like this " ERROR: One or more devices of following component type(s) could not be discovered:"
I have a C++ code that runs on Linux redhat and it is capable of detecting if the system call pass or failed. But it can not capture the error message (ERROR: One or more devices of following component type(s) could not be discovered:) and append into the log file or print it.
Can someone please tell me how to capture the error message (ERROR: One or more devices of following component type(s) could not be discovered:)?
PS: I am an intern, any help would be really nice.
#include<iostream.h>
int main ()
{
int i;
if (system(NULL))
puts ("Ok");
else
exit (1);
i=system("hpsp --discover -verbose --user Admin --oapasswd password");
printf ("The value returned was: %d.\n",i);
return false;
}
Instead of using system() use popen(). This will open a pipe capturing the standard output of the test program so that your program can read it via the pipe.
Example EDITED:
#define _BSD_SOURCE 1
#define BUFFSIZE 400
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[])
{
char *cmd = "hpsp --discover -verbose --user Admin --oapasswd password";
char buf[BUFFSIZE];
char* searchResult;
int testPassed = 0;
FILE *ptr;
if ((ptr = popen(cmd, "r")) != NULL)
while (fgets(buf, BUFFSIZE, ptr) != NULL)
{
if ((searchResult = strstr(buf, "The test passed")) != NULL )
{
testPassed = 1;
break;
}
}
if (testPassed)
printf("yea!!\n");
else
printf("boo!!\n");
pclose(ptr);
return 0;
}
You can use dup and dup2 to backup/store the stderr file descriptor to redirect to your log file. Well, I'm guessing that errors go to stderr anyways.
Here's an example if you just want to write to a log file.
//open log file, choose whatever flags you need
int logfd = open("whateveryourlogfileis", O_APPEND);
//back up stderr file descriptor
int stderr_copy = dup(STDERR_FILENO);
//redirect stderr to your opened log file
dup2(logfd, STDERR_FILENO);
//close the original file descriptor for the log file
close(logfd);
//system call here
//restore stderr
dup2(stderr_copy, STDERR_FILENO);
//close stderr copy
close(stderr_copy);
Note: dup2 closes the target file descriptor before dup2ing to it. dup just duplicates the file descriptor and returns to you the new file descriptor.

popen simultaneous read and write [duplicate]

This question already has answers here:
Can popen() make bidirectional pipes like pipe() + fork()?
(6 answers)
Closed 3 years ago.
Is it possible to read and write to a file descriptor returned by popen. I have an interactive process I'd like to control through C. If this isn't possible with popen, is there any way around it?
As already answered, popen works in one direction. If you need to read and write, You can create a pipe with pipe(), span a new process by fork() and exec functions and then redirect its input and outputs with dup2(). Anyway I prefer exec over popen, as it gives you better control over the process (e.g. you know its pid)
EDITED:
As comments suggested, a pipe can be used in one direction only. Therefore you have to create separate pipes for reading and writing. Since the example posted before was wrong, I deleted it and created a new, correct one:
#include<unistd.h>
#include<sys/wait.h>
#include<sys/prctl.h>
#include<signal.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
int main(int argc, char** argv)
{
pid_t pid = 0;
int inpipefd[2];
int outpipefd[2];
char buf[256];
char msg[256];
int status;
pipe(inpipefd);
pipe(outpipefd);
pid = fork();
if (pid == 0)
{
// Child
dup2(outpipefd[0], STDIN_FILENO);
dup2(inpipefd[1], STDOUT_FILENO);
dup2(inpipefd[1], STDERR_FILENO);
//ask kernel to deliver SIGTERM in case the parent dies
prctl(PR_SET_PDEATHSIG, SIGTERM);
//replace tee with your process
execl("/usr/bin/tee", "tee", (char*) NULL);
// Nothing below this line should be executed by child process. If so,
// it means that the execl function wasn't successfull, so lets exit:
exit(1);
}
// The code below will be executed only by parent. You can write and read
// from the child using pipefd descriptors, and you can send signals to
// the process using its pid by kill() function. If the child process will
// exit unexpectedly, the parent process will obtain SIGCHLD signal that
// can be handled (e.g. you can respawn the child process).
//close unused pipe ends
close(outpipefd[0]);
close(inpipefd[1]);
// Now, you can write to outpipefd[1] and read from inpipefd[0] :
while(1)
{
printf("Enter message to send\n");
scanf("%s", msg);
if(strcmp(msg, "exit") == 0) break;
write(outpipefd[1], msg, strlen(msg));
read(inpipefd[0], buf, 256);
printf("Received answer: %s\n", buf);
}
kill(pid, SIGKILL); //send SIGKILL signal to the child process
waitpid(pid, &status, 0);
}
The reason popen() and friends don't offer bidirectional communication is that it would be deadlock-prone, due to buffering in the subprocess. All the makeshift pipework and socketpair() solutions discussed in the answers suffer from the same problem.
Under UNIX, most commands cannot be trusted to read one line and immediately process it and print it, except if their standard output is a tty. The reason is that stdio buffers output in userspace by default, and defers the write() system call until either the buffer is full or the stdio stream is closed (typically because the program or script is about to exit after having seen EOF on input). If you write to such a program's stdin through a pipe, and now wait for an answer from that program's stdout (without closing the ingress pipe), the answer is stuck in the stdio buffers and will never come out - This is a deadlock.
You can trick some line-oriented programs (eg grep) into not buffering by using a pseudo-tty to talk to them; take a look at libexpect(3). But in the general case, you would have to re-run a different subprocess for each message, allowing to use EOF to signal the end of each message and cause whatever buffers in the command (or pipeline of commands) to be flushed. Obviously not a good thing performance-wise.
See more info about this problem in the perlipc man page (it's for bi-directional pipes in Perl but the buffering considerations apply regardless of the language used for the main program).
You want something often called popen2. Here's a basic implementation without error checking (found by a web search, not my code):
// http://media.unpythonic.net/emergent-files/01108826729/popen2.c
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include "popen2.h"
int popen2(const char *cmdline, struct popen2 *childinfo) {
pid_t p;
int pipe_stdin[2], pipe_stdout[2];
if(pipe(pipe_stdin)) return -1;
if(pipe(pipe_stdout)) return -1;
//printf("pipe_stdin[0] = %d, pipe_stdin[1] = %d\n", pipe_stdin[0], pipe_stdin[1]);
//printf("pipe_stdout[0] = %d, pipe_stdout[1] = %d\n", pipe_stdout[0], pipe_stdout[1]);
p = fork();
if(p < 0) return p; /* Fork failed */
if(p == 0) { /* child */
close(pipe_stdin[1]);
dup2(pipe_stdin[0], 0);
close(pipe_stdout[0]);
dup2(pipe_stdout[1], 1);
execl("/bin/sh", "sh", "-c", cmdline, NULL);
perror("execl"); exit(99);
}
childinfo->child_pid = p;
childinfo->to_child = pipe_stdin[1];
childinfo->from_child = pipe_stdout[0];
close(pipe_stdin[0]);
close(pipe_stdout[1]);
return 0;
}
//#define TESTING
#ifdef TESTING
int main(void) {
char buf[1000];
struct popen2 kid;
popen2("tr a-z A-Z", &kid);
write(kid.to_child, "testing\n", 8);
close(kid.to_child);
memset(buf, 0, 1000);
read(kid.from_child, buf, 1000);
printf("kill(%d, 0) -> %d\n", kid.child_pid, kill(kid.child_pid, 0));
printf("from child: %s", buf);
printf("waitpid() -> %d\n", waitpid(kid.child_pid, NULL, 0));
printf("kill(%d, 0) -> %d\n", kid.child_pid, kill(kid.child_pid, 0));
return 0;
}
#endif
popen() can only open the pipe in read or write mode, not both. Take a look at this thread for a workaround.
In one of netresolve backends I'm talking to a script and therefore I need to write to its stdin and read from its stdout. The following function executes a command with stdin and stdout redirected to a pipe. You can use it and adapt it to your liking.
static bool
start_subprocess(char *const command[], int *pid, int *infd, int *outfd)
{
int p1[2], p2[2];
if (!pid || !infd || !outfd)
return false;
if (pipe(p1) == -1)
goto err_pipe1;
if (pipe(p2) == -1)
goto err_pipe2;
if ((*pid = fork()) == -1)
goto err_fork;
if (*pid) {
/* Parent process. */
*infd = p1[1];
*outfd = p2[0];
close(p1[0]);
close(p2[1]);
return true;
} else {
/* Child process. */
dup2(p1[0], 0);
dup2(p2[1], 1);
close(p1[0]);
close(p1[1]);
close(p2[0]);
close(p2[1]);
execvp(*command, command);
/* Error occured. */
fprintf(stderr, "error running %s: %s", *command, strerror(errno));
abort();
}
err_fork:
close(p2[1]);
close(p2[0]);
err_pipe2:
close(p1[1]);
close(p1[0]);
err_pipe1:
return false;
}
https://github.com/crossdistro/netresolve/blob/master/backends/exec.c#L46
(I used the same code in Can popen() make bidirectional pipes like pipe() + fork()?)
Use forkpty (it's non-standard, but the API is very nice, and you can always drop in your own implementation if you don't have it) and exec the program you want to communicate with in the child process.
Alternatively, if tty semantics aren't to your liking, you could write something like forkpty but using two pipes, one for each direction of communication, or using socketpair to communicate with the external program over a unix socket.
You can't use popen to use two-way pipes.
In fact, some OSs don't support two-way pipes, in which case a socket-pair (socketpair) is the only way to do it.
popen works for me in both directions (read and write)
I have been using a popen() pipe in both directions..
Reading and writing a child process stdin and stdout with the file descriptor returned by popen(command,"w")
It seems to work fine..
I assumed it would work before I knew better, and it does.
According posts above this shouldn't work.. which worries me a little bit.
gcc on raspbian (raspbery pi debian)

Capturing stdout from a system() command optimally [duplicate]

This question already has answers here:
How do I execute a command and get the output of the command within C++ using POSIX?
(12 answers)
Closed 7 years ago.
I'm trying to start an external application through system() - for example, system("ls"). I would like to capture its output as it happens so I can send it to another function for further processing. What's the best way to do that in C/C++?
From the popen manual:
#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);
Try the popen() function. It executes a command, like system(), but directs the output into a new file. A pointer to the stream is returned.
FILE *lsofFile_p = popen("lsof", "r");
if (!lsofFile_p)
{
return -1;
}
char buffer[1024];
char *line_p = fgets(buffer, sizeof(buffer), lsofFile_p);
pclose(lsofFile_p);
EDIT: misread question as wanting to pass output to another program, not another function. popen() is almost certainly what you want.
System gives you full access to the shell. If you want to continue using it, you can
redirect it's output to a temporary file, by system("ls > tempfile.txt"), but choosing a secure temporary file is a pain. Or, you can even redirect it through another program: system("ls | otherprogram");
Some may recommend the popen() command. This is what you want if you can process the output yourself:
FILE *output = popen("ls", "r");
which will give you a FILE pointer you can read from with the command's output on it.
You can also use the pipe() call to create a connection in combination with fork() to create new processes, dup2() to change the standard input and output of them, exec() to run the new programs, and wait() in the main program to wait for them. This is just setting up the pipeline much like the shell would. See the pipe() man page for details and an example.
The functions popen() and such don't redirect stderr and such; I wrote popen3() for that purpose.
Here's a bowdlerised version of my popen3():
int popen3(int fd[3],const char **const cmd) {
int i, e;
int p[3][2];
pid_t pid;
// set all the FDs to invalid
for(i=0; i<3; i++)
p[i][0] = p[i][1] = -1;
// create the pipes
for(int i=0; i<3; i++)
if(pipe(p[i]))
goto error;
// and fork
pid = fork();
if(-1 == pid)
goto error;
// in the parent?
if(pid) {
// parent
fd[STDIN_FILENO] = p[STDIN_FILENO][1];
close(p[STDIN_FILENO][0]);
fd[STDOUT_FILENO] = p[STDOUT_FILENO][0];
close(p[STDOUT_FILENO][1]);
fd[STDERR_FILENO] = p[STDERR_FILENO][0];
close(p[STDERR_FILENO][1]);
// success
return 0;
} else {
// child
dup2(p[STDIN_FILENO][0],STDIN_FILENO);
close(p[STDIN_FILENO][1]);
dup2(p[STDOUT_FILENO][1],STDOUT_FILENO);
close(p[STDOUT_FILENO][0]);
dup2(p[STDERR_FILENO][1],STDERR_FILENO);
close(p[STDERR_FILENO][0]);
// here we try and run it
execv(*cmd,const_cast<char*const*>(cmd));
// if we are there, then we failed to launch our program
perror("Could not launch");
fprintf(stderr," \"%s\"\n",*cmd);
_exit(EXIT_FAILURE);
}
// preserve original error
e = errno;
for(i=0; i<3; i++) {
close(p[i][0]);
close(p[i][1]);
}
errno = e;
return -1;
}
The most efficient way is to use stdout file descriptor directly, bypassing FILE stream:
pid_t popen2(const char *command, int * infp, int * outfp)
{
int p_stdin[2], p_stdout[2];
pid_t pid;
if (pipe(p_stdin) == -1)
return -1;
if (pipe(p_stdout) == -1) {
close(p_stdin[0]);
close(p_stdin[1]);
return -1;
}
pid = fork();
if (pid < 0) {
close(p_stdin[0]);
close(p_stdin[1]);
close(p_stdout[0]);
close(p_stdout[1]);
return pid;
} else if (pid == 0) {
close(p_stdin[1]);
dup2(p_stdin[0], 0);
close(p_stdout[0]);
dup2(p_stdout[1], 1);
dup2(::open("/dev/null", O_WRONLY), 2);
/// Close all other descriptors for the safety sake.
for (int i = 3; i < 4096; ++i) {
::close(i);
}
setsid();
execl("/bin/sh", "sh", "-c", command, NULL);
_exit(1);
}
close(p_stdin[0]);
close(p_stdout[1]);
if (infp == NULL) {
close(p_stdin[1]);
} else {
*infp = p_stdin[1];
}
if (outfp == NULL) {
close(p_stdout[0]);
} else {
*outfp = p_stdout[0];
}
return pid;
}
To read output from child use popen2() like this:
int child_stdout = -1;
pid_t child_pid = popen2("ls", 0, &child_stdout);
if (!child_pid) {
handle_error();
}
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
To both write and read:
int child_stdin = -1;
int child_stdout = -1;
pid_t child_pid = popen2("grep 123", &child_stdin, &child_stdout);
if (!child_pid) {
handle_error();
}
const char text = "1\n2\n123\n3";
ssize_t bytes_written = write(child_stdin, text, sizeof(text) - 1);
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
The functions popen() and pclose() could be what you're looking for.
Take a look at the glibc manual for an example.
In Windows, instead of using system(), use CreateProcess, redirect the output to a pipe and connect to the pipe.
I'm guessing this is also possible in some POSIX way?
Actually, I just checked, and:
popen is problematic, because the process is forked. So if you need to wait for the shell command to execute, then you're in danger of missing it. In my case, my program closed even before the pipe got to do it's work.
I ended up using system call with tar command on linux. The return value from system was the result of tar.
So: if you need the return value, then not no only is there no need to use popen, it probably won't do what you want.
In this page: capture_the_output_of_a_child_process_in_c describes the limitations of using popen vs. using fork/exec/dup2/STDOUT_FILENO approach.
I'm having problems capturing tshark output with popen.
And I'm guessing that this limitation might be my problem:
It returns a stdio stream as opposed to a raw file descriptor, which
is unsuitable for handling the output asynchronously.
I'll come back to this answer if I have a solution with the other approach.
I'm not entirely certain that its possible in standard C, as two different processes don't typically share memory space. The simplest way I can think of to do it would be to have the second program redirect its output to a text file (programname > textfile.txt) and then read that text file back in for processing. However, that may not be the best way.