Deleting two dimensional array use memory? - c++

I have been working on this program for quite some time. This is just two of the functions extracted that are causing a memory leak that I cant seem to debug. Any help would be fantastic!
vector<int**> garbage;
CODE for deleting the used memory
void clearMemory()
{
for(int i = 0; i < garbage.size(); i++)
{
int ** dynamicArray = garbage[i];
for( int j = 0 ; j < 100 ; j++ )
{
delete [] dynamicArray[j];
}
delete [] dynamicArray;
}
garbage.clear();
}
CODE for declaring dynamic array
void main()
{
int ** dynamicArray1 = 0;
int ** dynamicArray2 = 0;
dynamicArray1 = new int *[100] ;
dynamicArray2 = new int *[100] ;
for( int i = 0 ; i < 100 ; i++ )
{
dynamicArray1[i] = new int[100];
dynamicArray2[i] = new int[100];
}
for( int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)
{
dynamicArray1[i][j] = random();
}
}
//BEGIN MULTIPLICATION WITH SELF AND ASSIGN TO SECOND ARRAY
dynamicArray2 = multi(dynamicArray1); //matrix multiplication
//END MULTIPLICATION AND ASSIGNMENT
garbage.push_back(dynamicArray1);
garbage.push_back(dynamicArray2);
clearMemory();
}

I stared at the code for some time and I can't seem to find any leak. It looks to me there's exactly one delete for every new, as it should be.
Nonetheless, I really wanted to say that declaring an std::vector<int**> pretty much defies the point of using std::vector itself.
In C++, there are very few cases when you HAVE to use pointers, and this is not one of them.
I admit it would be a pain to declare and use an std::vector<std::vector<std::vector<int>>> but that would make sure there are no leaks in your code.
So I'd suggest you rethink your implementations in term of objects that automatically manage memory allocation.

Point 1: If you have a memory leak, use valgrind to locate it. Just like blue, I can't seem to find a memory leak in your code, but valgrind will tell you for sure what's up with your memory.
Point 2: You are effectively creating a 2x100x100 3D array. C++ is not the right language for this kind of thing. Of course, you could use an std::vector<std::vector<std::vector<int>>> with the obvious drawbacks. Or you can drop back to C:
int depth = 2, width = 100, height = 100;
//Allocation:
int (*threeDArray)[height][width] = malloc(depth*sizeof(*threeDArray));
//Use of the last element in the 3D array:
threeDArray[depth-1][height-1][width-1] = 42;
//Deallocation:
free(threeDArray);
Note that this is valid C, but not valid C++: The later language does not allow runtime sizes to array types, while the former supports that since C99. In this regard, C is more powerful than C++.

Related

How to insert an object in the array of pointers

I have an array of pointers:
Hotel *hotels[size];
for (int i = 0; i < size; ++i)
hotels[i] = new Hotel();
And I want to insert an object in this array after some object with name I know:
cin >> tmp_name;
for (int i = 0; i < size; i++) {
if (hotels[i]->get_name() == tmp_name) {
hotels[size] = new Hotel();
size += 1;
Hotel *tmp_hotel;
tmp_hotel = hotels[i+1];
hotels[i+1]->fillHotel();
for (i = i + 2; i < size; i++) {
hotels[i] = tmp_hotel;
tmp_hotel = hotels[i+1];
}
break;
}
}
What I do wrong?
UPD:
My solution:
cin >> tmp_name;
for (int i = 0, j = 0; i < size; i++, j++) {
new_hotels[j] = hotels[i];
if (hotels[i]->get_name() == tmp_name) {
new_hotels[j+1]->fillHotel();
++j;
system("clear");
}
}
hotels[size] = new Hotel();
++size;
for (int i = 0; i < size; i++) {
hotels[i] = new_hotels[i];
}
I can see different errors in your code.
For example:
Hotel *hotels[size];
size should be a constant expression and something let me think this is not the case. VLA are not part of the C++ standard. In short you cannot allocate dynamic memory on the stack. The proper initialization should be:
Hotel* hotels = new Hotel*[size];
The line in the loop:
hotels[size] = new Hotel();
you're actually accessing out of bounds of your array: size index is some memory is not included in your array and this will produce an undefined behaviour.
Another strange line is the following:
size += 1;
Despite the fact that confirms size is not a constant, you cannot increase your size of vector simply changing that variable. You're actually just changing a variable size, but the allocated memory for your array will be the same.
How resolve?
In order in increase (or change) the size of an array, the solution is almost always to create a new array, copy the old one. In your case that solution is pretty reasonable because you should copy just pointers and not entire objects.
There are a lots of question on S.O. where this topic is, for example here.
Despite of that, I strongly suggest you to use the most practical alternative, that is to use a real C++ code.
The most efficient class is std::vector which is a C++ way to handle dynamic array.
Finally, you should also consider the std::unique_ptr<T> class to handle dynamic memory and pointers.
The final solution will be a class:
std::vector<std::unique_ptr<Hotel>> hotels;

Initializing multidimensional dynamical array in c++

I'm having problems declaring a multidimensional dynamical array in c style. I want to declare dynamically an array like permutazioni[variable][2][10], the code i'm using is as following (carte is a class i defined):
#include "carte.h"
//other code that works
int valide;
carte *** permutazioni=new carte**[valide];
for (int i=0; i<valide; i++){
permutazioni[i]=new carte*[2];
for (int j=0; j<2; j++) permutazioni[i][j]=new carte[10];
}
the problem is, whenever i take valide=2 or less than 2, the code just stops inside the last for (int i=0; i<valide; i++) iteration, but if i take valide=3 it runs clear without any problem. There's no problem as well if i declare the array permutazioni[variable][10][2] with the same code and any value of valide. I really have no clue on what the problem could be and why it works differently when using the two different 3d array i mentioned before
You show a 3D array declared as permutazioni[variable][10][2] but when you tried to dynamical allocate that you switched the last two dimensions.
You can do something like this:
#include <iostream>
#define NVAL 3
#define DIM_2 10 // use some more meaningfull name
#define DIM_3 2
// assuming something like
struct Card {
int suit;
int val;
};
int main() {
// You are comparing a 3D array declared like this:
Card permutations[NVAL][DIM_2][DIM_3];
// with a dynamical allocated one
int valid = NVAL;
Card ***perm = new Card**[valid];
// congrats, you are a 3 star programmer and you are about to become a 4...
for ( int i = 0; i < valid; i++ ){
perm[i] = new Card*[DIM_2];
// you inverted this ^^^ dimension with the inner one
for (int j = 0; j < DIM_2; j++)
// same value ^^^^^
perm[i][j] = new Card[DIM_3];
// inner dimension ^^^^^
}
// don't forget to initialize the data and to delete them
return 0;
}
A live example here.
Apart from that it is always a good idea to check the boundaries of the inddecs used to access to the elements of the array.
How about using this syntax? Haven't tested fully with 3 dimensional arrays, but I usually use this style for 2 dimensional arrays.
int variable = 30;
int (*three_dimension_array)[2][10] = new int[variable][2][10];
for(int c = 0; c < variable; c++) {
for(int x = 0; x < 2; x++) {
for(int i = 0; i < 10; i++) {
three_dimension_array[c][x][i] = i * x * c;
}
}
}
delete [] three_dimension_array;
Obviously this could be c++ 11/14 improved. Could be worth a shot.

c++ deallocate 2d int array error

I get very frustrating error in following piece of code. Thats my array.
int **tab2 = new int*[3];
I allocate this like it.
for(i = 0; i < 10; i++) {
tab2[i] = new int[3];
tab2[i][0] = 40;
tab2[i][1] = 10;
tab2[i][2] = 100;
}
Then after using it i want to destroy it.
for(i = 0; i < 10; i++) {
delete [] tab2[i];
}
delete [] tab2;
And this causes core dump every single time. I tried many different ways to destroy it and every time get this error. What im making wrong here ?
This
int **tab2 = new int*[3];
does not do what you think it does.
You want an array that will contain TEN (10) pointers, each to an array of THREE ints.
new int*[3] is an array that contain THREE pointers.
What you want is this (live at coliru):
#include <iostream>
int main() {
int **tab2 = new int*[10];
for(int i = 0; i < 10; i++) {
tab2[i] = new int[3];
tab2[i][0] = 40;
tab2[i][1] = 10;
tab2[i][2] = 100;
}
for(int i = 0; i < 10; i++) {
delete [] tab2[i];
}
delete [] tab2;
}
With
int **tab2 = new int*[3];
you allocate an array of pointers of size 3. But than with
for(i = 0; i < 10; i++) {
tab2[i] = new int[3];
//...
}
you access it with up to index 9. That will surely go wrong.
The deletion process looks fine to me. To fix it, you should allocate an array of pointers with size 10instead of 3, e.g.
int **tab2 = new int*[10];
Looks like what you're trying to do is to create an N by M array, where N is known at runtime and M is fixed (in this case, 3).
Why not just do this?
{
std::array<int, 3> defaults = {{ 40, 10, 100 }};
std::vector<std::array<int, 3>> thing(10, defaults);
}
The vector, thing is automatically deallocated when it goes out of scope, and its size can be set at runtime. You still access the structure in the same way:
thing[1][2] = 3
Manual memory management can be easily avoided by using standard containers and smart pointers. Doing so will keep you code cleaner, and have fewer opportunities for dangling pointers and memory leaks.

cpp two dimensional dynamic array

I'm using c++ and I want to use two dimensional dynamic array. I tried this:
#include<iostream.h>
using namespace std;
void main(){
int const w=2;
int size;
cout<<"enter number of vertex:\n";
cin>>size;
int a[size][w];
for(int i=0; i<size; i++)
for(int j=0; j<w; j++){
cin>>a[i][j];
}
}
but not worded.
and I tried this:
int *a = new a[size][w];
instead of
int a[size][w];
but not worked!
could you help me plz.
thanks a lot.
The correct approach here would be to encapsulate some of the standard containers, that will manage memory for you, inside a class that provides a good interface. The common approach there would be an overload of operator() taking two arguments that determine the row and column in the matrix.
That aside, what you are trying to create manually is an array of dynamic size of arrays of constant size 2. With the aid of typedef you can write that in a simple to understand manner:
const int w = 2;
typedef int array2int[w];
int size = some_dynamic_value();
array2int *p = new array2int[size];
Without the typedef, the syntax is a bit more convoluted, but doable:
int (*p)[w] = new int [size][w];
In both cases you would release memory with the same simple statement:
delete [] p;
The difference with the approaches doing double pointers (int **) is that the memory layout of the array is really that of an array of two dimensions, rather than a jump table into multiple separately allocated unidimensional arrays, providing better locality of data. The number of allocations is lower: one allocation vs. size + 1 allocations, reducing the memory fragmentation. It also reduces the potential from memory leaks (a single pointer is allocated, either you leak everything or you don't leak at all).
For a dynamic sized array you must dynamically allocate it. Instead of
int *a = new a[size][w];
Use
int** a = new int*[size];
for(int i = 0; i < size; i++)
a[i] = new int[w];
OP is saying he wants to create a 2 dimensional array where one dimension is already known and constant and the other dimension is dynamic.. Not sure if I got it right but here goes:
int main() {
const int w = 2;
int size = 10;
int* arr[w];
for (int i = 0; i < w; ++i)
arr[i] = new int[size];
//do whatever with arr..
//std::cout<<arr[0][0];
for (int i = 0; i < w; ++i)
for (int j = 0; j < size; ++j)
std::cout<<arr[i][j];
for (int i = 0; i < w; ++i)
delete[] arr[i];
return 0;
}
You can not do that in c++, please read about dynamic memory allocation
the code below should work
int* twoDimentionalArray = new [size*w]

Initializing array of pointers

I have a Deck object (deck of cards) which is a double-ended queue implemented as a doubly-linked list. I would like to be able to shuffle the queue at will, but the way I would go about it is beyond me. So instead I've opted to pre-shuffle an array a pointers to the cards and enqueue them after the fact. Problem is, the code I have now doesn't seem to be initializing the pointers at all.
void BuildDeck(Deck* deck) {
Card** cards = new Card*[20];
const size_t MAX_INTEGER_LENGTH = sizeof(int) * 4;
char szPostfix[] = "_Card.bmp";
for(int i = 1; i < 21; i++) {
char path[MAX_INTEGER_LENGTH + sizeof(szPostfix) + 1];
sprintf(path,"%d%s",i, szPostfix);
cards[i-1] = new Card(i,path);
}
ShuffleArray(cards);
for (int i = 0; i < 20; i++) {
deck->PushTop(cards[i]);
}
}
void Swap(Card* a, Card* b) {
Card temp = *a;
*a = *b;
*b = temp;
}
void ShuffleArray(Card** cardArray) {
srand(dbTimer());
for (int i = 0; i < 20; i++)
Swap(cardArray[i],cardArray[rand()%20]);
}
I think where I screwed up is in the card[i] = new Card(...) line, but it somehow looks right to me.
Any suggestions would be appreciated.
DISCLAIMER: I know I should be using the standard library for most of this stuff, but I'm trying to teach myself the hard stuff first. It's just the way I learn.
EDIT: I fixed the index problem. Now I've just gotta figure out why some image aren't drawing now... :/ Thanks for the help!
Your code has many problems
You are looping with 1 <= i <= 20 but for an array of 20 elements indexing goes from 0 <= index <= 19. You need to use cards[i-1] = new Card(i,path);
You are allocating the array of pointers cards but you are not deallocating it (memory leak). Either deallocate it with delete[] cards; once you are done or just use a stack based array with Card *cards[20]; instead of allocating it with new.
The way you compute MAX_INTEGER_LENGTH shows you don't really understand what sizeof does.
This is the reason for which the cards don't get shuffled. You wrote a function that swaps two pointers, but the pointers it is swapping are local variables (parameters) of the function, not the elements of the array. One solution is to pass the parameters as pointer references by declaring swap with void Swap(Card *& a, Card *& b), another solution would be passing pointers to pointers (but this would require a more complex syntax of the implementation because of the double indirection and would also require a change in the way you call the function).
In the first for loop your starting index is 0, while in the second for loop the starting index is 0. That could be the problem.
Your code:
for(int i = 1; i < 21; i++) {
char path[MAX_INTEGER_LENGTH + sizeof(szPostfix) + 1];
sprintf(path,"%d%s",i, szPostfix);
cards[i] = new Card(i,path);
}
Here the loop should start from 0 to 20 as:
for(int i = 1 ; i < 21; i++) //incorrect - original code
for(int i = 0 ; i < 20; i++) //correct - fix
And after the fix, you could use i+1 instead of i in :
sprintf(path,"%d%s",i+1, szPostfix);
cards[i] = new Card(i+1,path);
if that is required.