Testing a custom PolicyViolationHandler in FluentSecurity - unit-testing

I have written a custom policy in FluentSecurity (implement ISecurityPolicy) and a corresponding PolicyViolationHandler by implementing IPolicyViolationHandler. Everything is working perfectly with the policy and the handler, however I'm doing some back-filling by writing some unit tests to test my implementation of IPolicyViolationHandler.Handle(PolicyViolationException exception).
I know I'm doing it backwards writing the test after the implementation (admission to avoid flames).
My question is: Is there a way to generate a PolicyViolationException object as a mock that I can pass in for my test? PolicyViolationException doesn't have any public constructors (so I can't new an object), nor an abstract base, or interface to mock against (using Moq).
I took a look through the API but didn't see anything to generate one. I know I could do some reflection magic to get one, but wanted to check if I was missing something.

In releases up to and including version 2.0-alpha4 this is not possible. However, this issue will be resolved in the upcoming 2.0-beta1 release of FluentSecurity where the constructor will be made public.
https://github.com/kristofferahl/FluentSecurity/commit/09e9b69ef5a297d242f8a813babbeebd47b54818
Thanks for bringing this to my attention!

Related

Unit test and private vars

I'm writing a BDD unit test for a public method. The method changes a private property (private var) so I'd like to write an expect() and ensure it's being set correctly. Since it's private, I can't work out how access it from the unit test target.
For Objective-C, I'd just add an extension header. Are there any similar tricks in Swift? As a note, the property has a didSet() with some code as well.
(Note that Swift 2 adds the #testable attribute which can make internal methods and properties available for testing. See #JeremyP's comments below for some more information.)
No. In Swift, private is private. The compiler can use this fact to optimize, so depending on how you use that property, it is legal for the compiler to have removed it, inlined it, or done any other thing that would give the correct behavior based on the code actually in that file. (Whether the optimizer is actually that smart today or not, it's allowed to be.)
Now of course if you declare your class to be #objc, then you can break those optimizations, and you can go poking around with ObjC to read it. And there are bizarre workarounds that can let you use Swift to call arbitrary #objc exposed methods (like a zero-timeout NSTimer). But don't do that.
This is a classic testing problem, and the classic testing answer is don't test this way. Don't test internal state. If it is literally impossible to tell from the outside that something has happened, then there is nothing to test. Redesign the object so that it is testable across its public interface. And usually that means composition and mocks.
Probably the most common version of this problem is caching. It's very hard to test that something is actually cached, since the only difference may be that it is retrieved faster. But it's still testable. Move the caching functionality into another object, and let your object-under-test accept a custom caching object. Then you can pass a mock that records whether the right cache calls were made (or networking calls, or database calls, or whatever the internal state holds).
Basically the answer is: redesign so that it's easier to test.
OK, but you really, really, really need it... how to do it? OK, it is possible without breaking the world.
Create a function inside the file to be tested that exposes the thing you want. Not a method. Just a free function. Then you can put that helper function in an #if TEST, and set TEST in your testing configuration. Ideally I'd make the function actually test the thing you care about rather than exposing the variable (and in that case, maybe you can let the function be internal or even public). But either way.

Testing a unit for which a specific private method invocation is required?

I have a testing dilemma:
I'm writing a unit test for Unit A. The method I'm about to test is func(B param). In the (non testing) code the only place where the func(..) is called is in class C, it's also the only place in the project where variables of type B can be instanciated (to be sent as parameters to the func(B param), so the instanciation method is private.
Now, I'm not sure how should I create a B instance inside the Unit test.
Of cause I can change private to public in a method declaration of the method which creates B, but I don't feel right about it, since it'll expose the method to the rest of the project.
I can also simply duplicate the B creation method into the Unit test class, but I hate duplicating code.
Is there some known best practice for such cases?
Thanks a lot,
Dima
You would be looking into using a mocking framework like EasyMock or Mokito to create a "test double" object of your class B here.
As a rule of thumb, only public methods should be tested directly. By extension, public code should test all private code. Depending on what language you're using, you can also force less exposed code to be exposed to unit testing frameworks without having to change every method (e.g. InternalsVisibleTo in C#) but I accept that this option won't be available to all languages using all frameworks.
As well as unit testing, another tool in your armoury should be some sort of code coverage tool to ensure that as much of your code is being covered by said tests as possible.

How to verify method class in test class

I have a repository with a method called ConvertToBusinessEntity which converts the data from the data source to a business object. This method is supposed to be used by other methods in the repository namely the Get, GetAll, etc.
This method is unit tested. I check if the data is being retrieved correctly from the data source and the values are being put in the entity correct properties.
But now I need to test and create the GetEntity method which is supposed to call ConvertToBusinessEntity. The logic behind ConvertToBusiness is tested. I just need to know how to verify that a method in the class being tested is called (not a dependency).
Does anyone know how to do this or any alternative method?
I thought of an alternative method but I am not sure if it's the best. I could extend the class under test and have a counter increasing each time the method is called.
Another one would be to mock the class itself.
What do you think? Any other suggestions?
Having ConvertToBusinessEntity in repository is not very good idea. Responsibility of repository is working with data store (CRUD). Mapping of data types is responsibility of some mapper class. Otherwise your repository has too many responsibilities. Take a look on what you are trying to test:
I check if the data is being retrieved correctly from the data source
and the values are being put in the entity correct properties
You see this and? Your test can fail on two completely different reasons. Also you should change repository on two completely different reasons. Best approach here is persisting business entities directly. Modern ORMs allows doing that without polluting business entity with attributes or forcing it inheriting some data-access specific class.
If you really want to have data mapping logic in repository, then make it private (actually only repository should require conversion of business entity to some data-access object) and don't care how this logic is implemented. Let it be part of internal class implementation. You should care only about repository being able to accept or return filled business entities - that's the responsibility of repository. It doesn't matter how mapping is implemented in repository. You should test what repository does, instead of how. So just check that expected business objects are returned by repository.
I just need to know how to verify that a method in the class being tested is called (not a dependency).
But do you really need to do that? If your GetEntity method operates correctly, do you really care how it operates? Do you really care if it performs its function by delegating to ConvertToBusiness, or by some other means?
I recommend instead that you
Think of each method as having a specification.
That specification describes what the outputs and publicly visible manipulations it must make. That do not describe how a method performs its function; that is an implementation detail that could change.
Your unit tests check only that your methods conform to their specification.
You might nevertheless use your knowledge about the implementation to choose good test cases.
But, you might declare, if I do that I am not unit testing my method code; my test of GetEntity depends on both the GetEntity method and the ConvertToBusiness method: two units, so an integration test rather than a unit test. But do you mock the methods of the runtime environment? Of course not. The line between unit and integration testing is not so clear.
More philosophically, you can not create good mock objects in many cases. The reason is that, for most methods, the manner in which an object delegates to associated objects is undefined. Whether it does delegate, and how, is left by the specification as an implementation detail. The only requirement is that, on delegating, the method satisfies the preconditions of its delegate. In such a situation, only a fully functional (non-mock) delegate will do. If the real object checks its preconditions, failure to satisfy a precondition on delegating will cause a test failure. And debugging that test failure will be easy.

Editing T4 poco template to implement custom interface

I am using the Poco generator with EF4 and I am wondering if it is possible to edit the T4 template to force all of my entity classes to implement a custom interface. Since the pocos get blown away and recreated each time the custom tool is run, I would have to add this upon each update - I would sure like to avoid that.
I realize I could create partial classes for each poco and implement the interface there, but I was hoping to avoid all that boilerplate code.
Any suggestions would be welcome.
I think I am getting closer to a solution. I am editing the tt template by adding the implemenatation to the signature that is generated.
<#=Accessibility.ForType(entity)#> <#=code.SpaceAfter(code.AbstractOption(entity))#>partial class <#=code.Escape(entity)#> : IEntity<#=code.StringBefore(" , ", code.Escape(entity.BaseType))#>
But I have hit a bit of a snag. Some of my entities have base classes (table inheritance) that I designated in the edmx design. I have need to force all the entities to implement an interface called IEntity. The IEntity contract has no methods so there really is nothing to implement. I will need to rely on all of the entities having a common base. This is due to a completely separate implementation of a custom validation framework. I am getting the proper signatures for most of the entities, however, the entities that already have a base class are throwing a wobbly because you cant implement an interface before you inherit a base class. :IEntity, BaseClass is not allowed. I need to swap those but am not sure how I would pull that off in the template.
On perusing the code in the CodeGenerationTools class that the T4 template uses (found in the include file EF.Utility.CS.ttinclude), I came across this function StringAfter(string value, string append). Therefore, the answer is quite simple, since you state all your entities have to implement IEntity, the following should do the trick:
<#=Accessibility.ForType(entity)#> <#=code.SpaceAfter(code.AbstractOption(entity))#>partial class <#=code.Escape(entity)#> : <#=code.StringAfter(code.Escape(entity.BaseType), "," )#> IEntity
In fact, I know it does because I've tested it :-)
After the T4 template is added to your application, it becomes part of your app and as any other part of the app, you can do whatever you want with it. If for some reason, you don't want to modify the VS added template, make a copy of it and update this to include only the interface implementation. The second way would produce another set of partial files with the custom interface being implemented.
Dont know if this is near what you need but....
I´ve created a Nuget Package that scaffold tiers from T4-templates.
There are default templates for all interfaces (Repository Pattern and UnitOfWork), but you can edit these templates yourself and re-scaffold your system.
To keep it short.. You just install the package (Install-Package CodePlanner) and then define your domainmodel.. And then run "Scaffold CodePlanner.ScaffoldAll"
Its open source (codeplanner.codeplex.com)
Demo: http://average-uffe.blogspot.com/2011/11/codeplanner-011-released-on-nuget-and.html
Edit: The codeplanner package is built for MVC3!
Regards
Uffe

Unit testing factory methods which have a concrete class as a return type

So I have a factory class and I'm trying to work out what the unit tests should do. From this question I could verify that the interface returned is of a particular concrete type that I would expect.
What should I check for if the factory is returning concrete types (because there is no need - at the moment - for interfaces to be used)? Currently I'm doing something like the following:
[Test]
public void CreateSomeClassWithDependencies()
{
// m_factory is instantiated in the SetUp method
var someClass = m_factory.CreateSomeClassWithDependencies();
Assert.IsNotNull(someClass);
}
The problem with this is that the Assert.IsNotNull seems somewhat redundant.
Also, my factory method might be setting up the dependencies of that particular class like so:
public SomeClass CreateSomeClassWithDependencies()
{
return new SomeClass(CreateADependency(), CreateAnotherDependency(),
CreateAThirdDependency());
}
And I want to make sure that my factory method sets up all these dependencies correctly. Is there no other way to do this then to make those dependencies public/internal properties which I then check for in the unit test? (I'm not a big fan of modifying the test subjects to suit the testing)
Edit: In response to Robert Harvey's question, I'm using NUnit as my unit testing framework (but I wouldn't have thought that it would make too much of a difference)
Often, there's nothing wrong with creating public properties that can be used for state-based testing. Yes: It's code you created to enable a test scenario, but does it hurt your API? Is it conceivable that other clients would find the same property useful later on?
There's a fine line between test-specific code and Test-Driven Design. We shouldn't introduce code that has no other potential than to satisfy a testing requirement, but it's quite alright to introduce new code that follow generally accepted design principles. We let the testing drive our design - that's why we call it TDD :)
Adding one or more properties to a class to give the user a better possibility of inspecting that class is, in my opinion, often a reasonable thing to do, so I don't think you should dismiss introducing such properties.
Apart from that, I second nader's answer :)
If the factory is returning concrete types, and you're guaranteeing that your factory always returns a concrete type, and not null, then no, there isn't too much value in the test. It does allows you to make sure, over time that this expectation isn't violated, and things like exceptions aren't thrown.
This style of test simply makes sure that, as you make changes in the future, your factory behaviour won't change without you knowing.
If your language supports it, for your dependencies, you can use reflection. This isn't always the easiest to maintain, and couples your tests very tightly to your implementation. You have to decide if that's acceptable. This approach tends to be very brittle.
But you really seem to be trying to separate which classes are constructed, from how the constructors are called. You might just be better off with using a DI framework to get that kind of flexibility.
By new-ing up all your types as you need them, you don't give yourself many seams (a seam is a place where you can alter behaviour in your program without editing in that place) to work with.
With the example as you give it though, you could derive a class from the factory. Then override / mock CreateADependency(), CreateAnotherDependency() and CreateAThirdDependency(). Now when you call CreateSomeClassWithDependencies(), you are able to sense whether or not the correct dependencies were created.
Note: the definition of "seam" comes from Michael Feather's book, "Working Effectively with Legacy Code". It contains examples of many techniques to add testability to untested code. You may find it very useful.
What we do is create the dependancies with factories, and we use a dependancy injection framework to substitute mock factories for the real ones when the test is run. Then we set up the appropriate expectations on those mock factories.
You can always check stuff with reflection. There is no need to expose something just for unit tests. I find it quite rare that I need to reach in with reflection and it may be a sign of bad design.
Looking at your sample code, yes the Assert not null seems redundant, depending on the way you designed your factory, some will return null objects from the factory as opposed to exceptioning out.
As I understand it you want to test that the dependencies are built correctly and passed to the new instance?
If I was not able to use a framework like google guice, I would probably do it something like this (here using JMock and Hamcrest):
#Test
public void CreateSomeClassWithDependencies()
{
dependencyFactory = context.mock(DependencyFactory.class);
classAFactory = context.mock(ClassAFactory.class);
myDependency0 = context.mock(MyDependency0.class);
myDependency1 = context.mock(MyDependency1.class);
myDependency2 = context.mock(MyDependency2.class);
myClassA = context.mock(ClassA.class);
context.checking(new Expectations(){{
oneOf(dependencyFactory).createDependency0(); will(returnValue(myDependency0));
oneOf(dependencyFactory).createDependency1(); will(returnValue(myDependency1));
oneOf(dependencyFactory).createDependency2(); will(returnValue(myDependency2));
oneOf(classAFactory).createClassA(myDependency0, myDependency1, myDependency2);
will(returnValue(myClassA));
}});
builder = new ClassABuilder(dependencyFactory, classAFactory);
assertThat(builder.make(), equalTo(myClassA));
}
(if you cannot mock ClassA you can assign a non-mock version to myClassA using new)