Segmentation Fault in Constructor - c++

This happens with EVERY class I try to make in C++. Migrating from java, I find problems mainly in making classes. I run valgrind and it's in the constructor, it appears to be.
==30214== Memcheck, a memory error detector
==30214== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==30214== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==30214== Command: ./CoC
==30214==
==30214==
==30214== Process terminating with default action of signal 11 (SIGSEGV)
==30214== Bad permissions for mapped region at address 0x404B4F
==30214== at 0x4C2B9EC: strcat (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==30214== by 0x404220: Model::Model(std::string) (in /home/kronus/Apollo/CoC)
==30214== by 0x402617: main (in /home/kronus/Apollo/CoC)
As you can see I'm trying to call the constructor of this model class into the main method. Here's the code for the constructor
Model::Model(std::string filename)
{
m_TotalFaces = 0;
m_model = lib3ds_file_load(filename.c_str());
// If loading the model failed, we throw an exception
if(!m_model)
{
throw strcat("Unable to load ", filename.c_str());
}
}
When it's called it closes with a segmentation fault. Important: I have declared the class inside the header file. This is when I get the error. I put the class inside the source file and it runs fine. What am I doing wrong?

strcat attempts to write the string pointed to by the second argument at the end of the string pointed to by the first argument. Since the first argument is a string literal (which should be considered read only), you get a nasty segfault.
I suggest learning C++ as though it's an entirely different language to Java, because otherwise you may think that similar features function the same. That's dangerous. A monkey can learn Java by mashing it's face on the keyboard. C++ has undefined behaviour which may appear to function correctly on your machine, but launch nuclear missiles on another.

You are appending to a constant string that is wrong:
strcat("Unable to load ", filename.c_str());
^ you can't append to constant
Read this: c++ exception : throwing std::string
You may want to avoid using strings as exception classes because they themselves can throw an exception during use.
second: What type should I catch if I throw a string literal?

Related

AccessViolationException reading memory allocated in C++ application from C++/CLI DLL

I have a C++ client to a C++/CLI DLL, which initializes a series of C# dlls.
This used to work. The code that is failing has not changed. The code that has changed is not called before the exception is thrown. My compile environment has changed, but recompiling on a machine with an environment similar to my old one still failed. (EDIT: as we see in the answer this is not entirely true, I was only recompiling the library in the old environment, not the library and client together. The client projects had been upgraded and couldn't easily go back.)
Someone besides me recompiled the library, and we started getting memory management issues. The pointer passed in as a String must not be in the bottom 64K of the process's address space. I recompiled it, and all worked well with no code changes. (Alarm #1) Recently it was recompiled, and memory management issues with strings re-appeared, and this time they're not going away. The new error is Unhandled Exception: System.AccessViolationException: Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
I'm pretty sure the problem is not located where I see the exception, the code didn't change between the successful and failing builds, but we should review that to be complete. Ignore the names of things, I don't have much control over the design of what it's doing with these strings. And sorry for the confusion, but note that _bridge and bridge are different things. Lots of lines of code missing because this question is already too long.
Defined in library:
struct Config
{
std::string aye;
std::string bee;
std::string sea;
};
extern "C" __declspec(dllexport) BridgeBase_I* __stdcall Bridge_GetConfiguredDefaultsImplementationPointer(
const std::vector<Config> & newConfigs, /**< new configurations to apply **/
std::string configFolderPath, /**< folder to write config files in **/
std::string defaultConfigFolderPath, /**< folder to find default config files in **/
std::string & status /**< output status of config parse **/
);
In client function:
GatewayWrapper::Config bridge;
std::string configPath("./config");
std::string defaultPath("./config/default");
GatewayWrapper::Config gwtransport;
bridge.aye = "bridged.dll";
bridge.bee = "1.0";
bridge.sea = "";
configs.push_back(bridge);
_bridge = GatewayWrapper::Bridge_GetConfiguredDefaultsImplementationPointer(configs, configPath, defaultPath, status);
Note that call to library that is crashing is in the same scope as the vector declaration, struct declaration, string assignment and vector push-back
There are no threading calls in this section of code, but there are other threads running doing other things. There is no pointer math here, there are no heap allocations in the area except perhaps inside the standard library.
I can run the code up to the Bridge_GetConfiguredDefaultsImplementationPointer call in the debugger, and the contents of the configs vector look correct in the debugger.
Back in the library, in the first sub function, where the debugger don't shine, I've broken down the failing statement into several console prints.
System::String^ temp
List<CConfig^>^ configs = gcnew List<CConfig ^>((INT32)newConfigs.size());
for( int i = 0; i< newConfigs.size(); i++)
{
std::cout << newConfigs[i].aye<< std::flush; // prints
std::cout << newConfigs[i].aye.c_str() << std::flush; // prints
temp = gcnew System::String(newConfigs[i].aye.c_str());
System::Console::WriteLine(temp); // prints
std::cout << "Testing string creation" << std::endl; // prints
std::cout << newConfigs[i].bee << std::flush; // crashes here
}
I get the same exception on access of bee if I move the newConfigs[i].bee out above the assignment of temp or comment out the list declaration/assignment.
Just for reference that the std::string in a struct in a vector should have arrived at it's destination ok
Is std::vector copying the objects with a push_back?
std::string in struct - Copy/assignment issues?
http://www.cplusplus.com/reference/vector/vector/operator=/
Assign one struct to another in C
Why this exception is not caught by my try/catch
https://stackoverflow.com/a/918891/2091951
Generic AccessViolationException related questions
How to handle AccessViolationException
Programs randomly getting System.AccessViolationException
https://connect.microsoft.com/VisualStudio/feedback/details/819552/visual-studio-debugger-throws-accessviolationexception
finding the cause of System.AccessViolationException
https://msdn.microsoft.com/en-us/library/ms164911.aspx
Catching access violation exceptions?
AccessViolationException when using C++ DLL from C#
Suggestions in above questions
Change to .net 3.5, change target platform - these solutions could have serious issues with a large mult-project solution.
HandleProcessCorruptedStateExceptions - does not work in C++, this decoration is for C#, catching this error could be a very bad idea anyway
Change legacyCorruptedStateExceptionsPolicy - this is about catching the error, not preventing it
Install .NET 4.5.2 - can't, already have 4.6.1. Installing 4.6.2 did not help. Recompiling on a different machine that didn't have 4.5 or 4.6 installed did not help. (Despite this used to compile and run on my machine before installing Visual Studio 2013, which strongly suggests the .NET library is an issue?)
VSDebug_DisableManagedReturnValue - I only see this mentioned in relation to a specific crash in the debugger, and the help from Microsoft says that other AccessViolationException issues are likely unrelated. (http://connect.microsoft.com/VisualStudio/feedbackdetail/view/819552/visual-studio-debugger-throws-accessviolationexception)
Change Comodo Firewall settings - I don't use this software
Change all the code to managed memory - Not an option. The overall design of calling C# from C++ through C++/CLI is resistant to change. I was specifically asked to design it this way to leverage existing C# code from existing C++ code.
Make sure memory is allocated - memory should be allocated on the stack in the C++ client. I've attempted to make the vector be not a reference parameter, to force a vector copy into explicitly library controlled memory space, did not help.
"Access violations in unmanaged code that bubble up to managed code are always wrapped in an AccessViolationException." - Fact, not a solution.
but it was the mismatch, not the specific version that was the problem
Yes, that's black letter law in VS. You unfortunately just missed the counter-measures that were built into VS2012 to turn this mistake into a diagnosable linker error. Previously (and in VS2010), the CRT would allocate its own heap with HeapAlloc(). Now (in VS2013), it uses the default process heap, the one returned by the GetProcessHeap().
Which is in itself enough to trigger an AVE when you run your app on Vista or higher, allocating memory from one heap and releasing it from another triggers an AVE at runtime, a debugger break when you debug with the Debug Heap enabled.
This is not where it ends, another significant issue is that the std::string object layout is not the same between the versions. Something you can discover with a little test program:
#include <string>
#include <iostream>
int main()
{
std::cout << sizeof(std::string) << std::endl;
return 0;
}
VS2010 Debug : 32
VS2010 Release : 28
VS2013 Debug : 28
VS2013 Release : 24
I have a vague memory of Stephen Lavavej mentioning the std::string object size reduction, very much presented as a feature, but I can't find it back. The extra 4 bytes in the Debug build is caused by the iterator debugging feature, it can be disabled with _HAS_ITERATOR_DEBUGGING=0 in the Preprocessor Definitions. Not a feature you'd quickly want to throw away but it makes mixing Debug and Release builds of the EXE and its DLLs quite lethal.
Needless to say, the different object sizes seriously bytes when the Config object is created in a DLL built with one version of the standard C++ library and used in another. Many mishaps, the most basic one is that the code will simply read the Config::bee member from the wrong offset. An AVE is (almost) guaranteed. Lots more misery when code allocates the small flavor of the Config object but writes the large flavor of std::string, that randomly corrupts the heap or the stack frame.
Don't mix.
I believe 2013 introduced a lot of changes in the internal data formats of STL containers, as part of a push to reduce memory usage and improve perf. I know vector became smaller, and string is basically a glorified vector<char>.
Microsoft acknowledges the incompatibility:
"To enable new optimizations and debugging checks, the Visual Studio
implementation of the C++ Standard Library intentionally breaks binary
compatibility from one version to the next. Therefore, when the C++
Standard Library is used, object files and static libraries that are
compiled by using different versions can't be mixed in one binary (EXE
or DLL), and C++ Standard Library objects can't be passed between
binaries that are compiled by using different versions."
If you're going to pass std::* objects between executables and/or DLLs, you absolutely must ensure that they are using the same version of the compiler. It would be well-advised to have your client and its DLLs negotiate in some way at startup, comparing any available versions (e.g. compiler version + flags, boost version, directx version, etc.) so that you catch errors like this quickly. Think of it as a cross-module assert.
If you want to confirm that this is the issue, you could pick a few of the data structures you're passing back and forth and check their sizes in the client vs. the DLLs. I suspect your Config class above would register differently in one of the fail cases.
I'd also like to mention that it is probably a bad idea in the first place to use smart containers in DLL calls. Unless you can guarantee that the app and DLL won't try to free or reallocate the internal buffers of the other's containers, you could easily run into heap corruption issues, since the app and DLL each have their own internal C++ heap. I think that behavior is considered undefined at best. Even passing const& arguments could still result in reallocation in rare cases, since const doesn't prevent a compiler from diddling with mutable internals.
You seem to have memory corruption. Microsoft Application Verifier is invaluable in finding corruption. Use it to find your bug:
Install it to your dev machine.
Add your exe to it.
Only select Basics\Heaps.
Press Save. It doesn't matter if you keep application verifier open.
Run your program a few times.
If it crashes, debug it and this time, the crash will point to your problem, not just some random location in your program.
PS: It's a great idea to have Application Verifier enabled at all times for your development project.

How to remediate Microsoft typeinfo.name() memory leaks?

Microsoft has a decades old bug when using its leak check gear in debug builds. The leak is reported from the allocation made by the runtime library when using C++ type information, like typeinfo.name(). Also see Memory leaks reported by debug CRT inside typeinfo.name() on Microsoft Connect.
We've been getting error reports and user list discussions because of the leaks for about the same amount of time. The Microsoft bug could also mask real leaks from user programs. The latter point is especially worrisome to me because we may not tending to real problems because of the masking.
I'd like to try to squash the leaks due to use of typeid(T) and typeinfo.name(). My question is, how can we work around Microsoft's bug? Is there a work around available?
On the line of my suggestion in the Q's comments.
For if (valueType == typeid(int)) you can use the type_index (at least since C++11)
For type_info.name() leaking memory:
Since totally eliminating the leak doesn't seem possible, the next best thing would be reduce their number (to only one leaked per type interrogation) and, secondary, to tag them for reporting purposes. Being inside some templated classes, one can hope that the 'mem leaking' report will use the class names (or at least the source file where the allocation happened) - you can subsequently use this information to filter them out from the 'all leaked memory' reports.
So instead of using typeid(<typename>), you use something like:
"file typeid_name_workaround.hpp"
template <typename T> struct get_type_name {
static const char* name() const {
static const char* ret=typeid(T).name();
return ret;
}
};
Other .cpp/.hpp file
#include "typeid_name_workaround.hpp"
struct dummy {
};
int main() {
// instead of typeid(dummy).name() you use
get_type_name<dummy>::name();
}

using free(const char *) in c++ 11

In one of my c++ functions I am calling ab demangle. I want to deallocate result after changing that to string. Here is the code:
const char * realName;
string name;
const std::type_info &ti = typeid(*this);
realName = abi::__cxa_demangle(ti.name(), 0, 0, &status);
name= realName;
int index =name.find_last_of(':');
name = name.substr(index+1, name.length()-index-1);
free((void *) realName);
The code is running without problem but eclipse compiler is not happy and showing an error for using free: "Function 'free' could not be resolved".
I tried to use delete instead of free.
delete realName;
The code is running without problem and eclipse compiler is happy, however when I am profiling code with valgrind, I am getting a profiling error:
Mismatched free() / delete / delete []
So my question is:
1- Should I use free in c++ or shall I use just delete, delete []
2- If I should not use free why valgrind giving me an error
3- If I should use free why eclipse cdt comipler is giving me a compile error but when I am running code everything is ok.
4- is my code has correct style based on c++11? or is it a combination of c and old c++?
Should I use free in C++ or shall I use just delete, delete[]?
You should use the function or the operator that matches the allocation. When you allocate memory for your own use, you should use new/new[] for allocation, and delete/delete[] for deallocation.
When the memory to be deallocated comes from other sources, such as __cxa_demangle, you should read the documentation to see what functionality needs to be used on deallocation. The documentation for your function states that
the demangled name is placed in a region of memory allocated with malloc.
Therefore, you must use free to free it.
If I should use free why Eclipse cdt compiler is giving me a compile error but when I am running code everything is OK.
Function free is defined in <cstdlib> header. You need to add this header to your cpp file to make sure you code compiles fine.
You have to use free as the documentation says use free.
Perhaps you need to include the correct header file and library.
#include <stdlib.h> and maybe -lC

VALGRIND: invalid read of size 8

i have problems with valgrind,
i created this class:
class shop {
private:
vector<vector<string> > products_;
public:
shop(string ProductFile);
FindMinPrice(string product);
}
//method in the cpp file
vector<string> shop::FindMinPrice(string product){
string ProductName=(string)products_[0][0];
}
i didn't write the entire code but its work fine with the GCC compiler.
when i run valgrind check it shows:
invalid read of size 8
and in eclipse it send me to the ProductName line.
what is wrong with the design ? and how so that the GCC compile and run but VALGRIND collapse?
thank you.
It appears that your products_ vector of vectors is empty, meaning that the access of element products_[0][0] is undefined behavior.
The unfortunate thing about undefined behavior is that your program may appear to work, and may even complete without any visible problems.
Using c-style cast in c++ is not a good practise.
Your shop method doesnt return any value.

Determine the line of code that causes a segmentation fault?

How does one determine where the mistake is in the code that causes a segmentation fault?
Can my compiler (gcc) show the location of the fault in the program?
GCC can't do that but GDB (a debugger) sure can. Compile you program using the -g switch, like this:
gcc program.c -g
Then use gdb:
$ gdb ./a.out
(gdb) run
<segfault happens here>
(gdb) backtrace
<offending code is shown here>
Here is a nice tutorial to get you started with GDB.
Where the segfault occurs is generally only a clue as to where "the mistake which causes" it is in the code. The given location is not necessarily where the problem resides.
Also, you can give valgrind a try: if you install valgrind and run
valgrind --leak-check=full <program>
then it will run your program and display stack traces for any segfaults, as well as any invalid memory reads or writes and memory leaks. It's really quite useful.
You could also use a core dump and then examine it with gdb. To get useful information you also need to compile with the -g flag.
Whenever you get the message:
Segmentation fault (core dumped)
a core file is written into your current directory. And you can examine it with the command
gdb your_program core_file
The file contains the state of the memory when the program crashed. A core dump can be useful during the deployment of your software.
Make sure your system doesn't set the core dump file size to zero. You can set it to unlimited with:
ulimit -c unlimited
Careful though! that core dumps can become huge.
There are a number of tools available which help debugging segmentation faults and I would like to add my favorite tool to the list: Address Sanitizers (often abbreviated ASAN).
Modern¹ compilers come with the handy -fsanitize=address flag, adding some compile time and run time overhead which does more error checking.
According to the documentation these checks include catching segmentation faults by default. The advantage here is that you get a stack trace similar to gdb's output, but without running the program inside a debugger. An example:
int main() {
volatile int *ptr = (int*)0;
*ptr = 0;
}
$ gcc -g -fsanitize=address main.c
$ ./a.out
AddressSanitizer:DEADLYSIGNAL
=================================================================
==4848==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x5654348db1a0 bp 0x7ffc05e39240 sp 0x7ffc05e39230 T0)
==4848==The signal is caused by a WRITE memory access.
==4848==Hint: address points to the zero page.
#0 0x5654348db19f in main /tmp/tmp.s3gwjqb8zT/main.c:3
#1 0x7f0e5a052b6a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x26b6a)
#2 0x5654348db099 in _start (/tmp/tmp.s3gwjqb8zT/a.out+0x1099)
AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV /tmp/tmp.s3gwjqb8zT/main.c:3 in main
==4848==ABORTING
The output is slightly more complicated than what gdb would output but there are upsides:
There is no need to reproduce the problem to receive a stack trace. Simply enabling the flag during development is enough.
ASANs catch a lot more than just segmentation faults. Many out of bounds accesses will be caught even if that memory area was accessible to the process.
¹ That is Clang 3.1+ and GCC 4.8+.
All of the above answers are correct and recommended; this answer is intended only as a last-resort if none of the aforementioned approaches can be used.
If all else fails, you can always recompile your program with various temporary debug-print statements (e.g. fprintf(stderr, "CHECKPOINT REACHED # %s:%i\n", __FILE__, __LINE__);) sprinkled throughout what you believe to be the relevant parts of your code. Then run the program, and observe what the was last debug-print printed just before the crash occurred -- you know your program got that far, so the crash must have happened after that point. Add or remove debug-prints, recompile, and run the test again, until you have narrowed it down to a single line of code. At that point you can fix the bug and remove all of the temporary debug-prints.
It's quite tedious, but it has the advantage of working just about anywhere -- the only times it might not is if you don't have access to stdout or stderr for some reason, or if the bug you are trying to fix is a race-condition whose behavior changes when the timing of the program changes (since the debug-prints will slow down the program and change its timing)
Lucas's answer about core dumps is good. In my .cshrc I have:
alias core 'ls -lt core; echo where | gdb -core=core -silent; echo "\n"'
to display the backtrace by entering 'core'. And the date stamp, to ensure I am looking at the right file :(.
Added: If there is a stack corruption bug, then the backtrace applied to the core dump is often garbage. In this case, running the program within gdb can give better results, as per the accepted answer (assuming the fault is easily reproducible). And also beware of multiple processes dumping core simultaneously; some OS's add the PID to the name of the core file.
This is a crude way to find the exact line after which there was the segmentation fault.
Define line logging function
#include \<iostream>
void log(int line) {
std::cout << line << std::endl;
}
find and replace all the semicolon after the log function with "; log(_LINE_);"
Make sure that the semicolons replaced with functions in the for (;;) loops are removed
If you have a reproducible exception like segmentation fault, you can use a tool like a debugger to reproduce the error.
I used to find source code location for even non-reproducible error. It's based on the Microsoft compiler tool chain. But it's based on a idea.
Save the MAP file for each binary (DLL,EXE) before you give it to the customer.
If an exception occurs, lookup the address in the MAP file and determine the function whose start address is just below the exception address. As a result you know the function, where the exception occurred.
Subtract the function start address from the exception address. The result is the offset in the function.
Recompile the source file containing the function with assembly listing enabled. Extract the function's assembly listing.
The assembly includes the offset of each instruction in the function. Lookup the source code line, that matches the offset in the function.
Evaluate the assembler code for the specific source code line. The offset points exactly the assembler instruction that caused the thrown exception. Evaluate the code of this single source code line. With a bit of experience with the compiler output you can say what caused the exception.
Be aware the reason for the exception might be at a totally different location. e.g. the code dereferenced a NULL pointer, but the actual reason, why the pointer is NULL can be somewhere else.
The steps 6. and 7. are beneficial since you asked only for the line of code. But I recommend that you should be aware of it.
I hope you get a similar environment with the GCC compiler for your platform. If you don't have a usable MAP file, use the tool chain tools to get the addresses of the the function. I am sure the ELF file format supports this.
In case any of you (like me!) were looking for this same question but with gfortran, not gcc, the compiler is much more powerful these days and before resorting to the use of the debugger, you can also try out these compile options. For me, this identified exactly the line of code where the error occurred and which variable I was accessing out of bounds to cause the segmentation fault error.
-O0 -g -Wall -fcheck=all -fbacktrace