This question already has answers here:
Finding all the unique permutations of a string without generating duplicates
(5 answers)
Closed 9 years ago.
I have writing a general program to generate permutation of string but removing the duplicate cases . For this I am using memorization by using .
void permute(char *a,int i, int n,set<char*> s)
{
if(i==n)
{
if(s.find(a)==s.end()){
cout<<"no dublicate"<<endl;
cout<<a<<endl;
s.insert(a)
}
}
else{
for(int j=i;j<n;j++)
{
swap(a[i],a[j]);
permute(a,i+1,n,s);
swap(a[i],a[j]);
}
}
}
int main()
{
char a[]="aba";
set <char*> s;
permute(a,0,3,s);
return 0;
}
But the result is not as desired. It prints all the permutation. Can anyone help me in figuring out the problem.
First, you pass set<> s parameter by value, which discards your each insert, because it's done in the local copy of s only. However even if you change it to pass by reference, it won't work, because every time you insert the same char* value, so only one insert will be done. To make your code work correctly I suggest to change the prototype of your function to
void permute(string a,int i, int n,set<string>& s)
and this works all right.
update: source code with described minor changes
void permute(string a,int i, int n,set<string>& s)
{
if(i==n)
{
if(s.find(a)==s.end()){
cout<<"no dublicate"<<endl;
cout<<a<<endl;
s.insert(a);
}
}
else{
for(int j=i;j<n;j++)
{
swap(a[i],a[j]);
permute(a,i+1,n,s);
swap(a[i],a[j]);
}
}
}
int main()
{
string a ="aba";
set <string> s;
permute(a,0,3,s);
return 0;
}
Related
Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed last year.
Improve this question
#include<conio.h>
#include<stdio.h>
#include<iostream>
using namespace std;
class binary_search
{
public:
int a[10],flag;
int n,i,j,index,num,temp,mid,low,high;
void getdata();
void search();
void sort_array();
};
void binary_search::sort_array()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[j]>a[j+1])
{
temp=a[j+1];
a[j+1]=a[j];
a[j]=temp;
}
}
}
}
void binary_search::getdata()
{
cout<<"number of array "<<"\n";
cin>>n;
cout<<"\nEnter array : "<<"\n";
for(i=0;i<n;i++)
{
cin>>a[i];
}
sort_array();
cout<<"\nSorted Array Elements: ";
for(i=0;i<n;i++)
{
cout<<a[i];
}
}
void binary_search::search()
{
cout<<"\nEnter value to search: ";
cin>>num;
low=0;
high=n-1;
while(low<=high)
{
mid=(low+high)/2;
if(a[mid]==num)
{
cout<<"\nNumber is found at position "<<mid;
break;
}
else if(a[mid]>num)
{
high=mid-1;
}
else if(a[mid]<num)
{
low=mid +1;
}
else if(a[mid]!=num)
{
flag=false;
}
}
if(!flag)
{
cout<<"\nNumber is not found!!!";
}
}
int main()
{
binary_search b;
b.getdata();
b.search();
getch();
return 0;
}
Program is running but the expected output is not showing.
I'm not getting the message of "not found the number". I think I am missing something if any guidance I will get it will be awesome. Someone refer me to remove conion.h and getch() ; but still the output is not showing as expected.
Actually it's a code for binary search in C++
You must be facing problem in the test cases where, number of elements in array is exactly equal to 10. Because, if you look closely, the sort_array() that you have made have some logical error.
This is your sort_array() function which is using bubble sort technique.
void binary_search::sort_array()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[j]>a[j+1])
{
temp=a[j+1];
a[j+1]=a[j];
a[j]=temp;
}
}
}
}
But, consider the case if n = 10, at this point int the inner loop code will try to access a[10], which is not present. So, it will go out of bound which will lead to undesirable results. So, try changing your function to the one below.
void binary_search::sort_array()
{
for(int i=0;i<n - 1;i++)
{
for(int j=0;j<n - i - 1;j++)
{
if(a[j]>a[j+1])
{
temp=a[j+1];
a[j+1]=a[j];
a[j]=temp;
}
}
}
}
Apart from this remove #include<conio.h> and getch()
I am facing difficulty while solving a problem where we have to check whether a string is a subsequence of another string or not.
A man with name M is allowed to marry a woman with name W, only if M is a subsequence of W or W is a subsequence of M.
A is said to be a subsequence of B if A can be obtained by deleting some elements of B without changing the order of the remaining elements.
Example -
john and johanna will give "YES" as output
kayla and jayla will give "NO" as output
johanna and john will give "YES" as output
My code is :
#include <iostream>
#include<string>
using namespace std;
bool checksub(string a, string b)
{
int pos=0;
for(int i=0; i<a.size(); i++)
{
int flag=0;
for(int j=pos; j<b.size(); j++)
{
if(b[j]==a[i])
{
flag=1;
pos=j;
break;
}
}
if(flag==0)
{
return false;
}
}
return true;
}
int main() {
// your code goes here
int t;
cin>>t;
while(t--)
{
string a,b;
cin>>a>>b;
if(a.size()==b.size())
{
if(a==b)
{
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;}
}
else if(a.size()>b.size()){
if(checksub(b,a))
{
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;
}
}else{
if(checksub(a,b))
{
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;
}
}
}
return 0;
}
The editorial of the question uses a similar approach. Can anybody tell me what's wrong with my code?
The editorial solution is given below :
#include <cstdio>
char M[25005], W[25005];
bool contains(const char *A, const char *B){
while(*A){
if(*B==*A)
B++;
A++;
}
return !*B;
}
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%s %s", M, W);
puts(contains(M, W) || contains(W, M) ? "YES" : "NO");
}
return 0;
}
Link to the problem: https://www.codechef.com/problems/NAME2
Your code produces the wrong result with input AA BAB because it fails to account for the fact that you need to have two A in the second string.
You might be able to fix it by changing pos=j; to pos=j+1; but I'm not certain.
There really is no similarity between your code and the editoral code however. Even with my suggested fix (if it does work) your code is clearly less efficient than the editorial code because it scans the input strings repeatedly.
Got the correct answer just by changing pos=j+1 instead of pos=j. Then code will become similar to the pseudocode in the editorial. Thanks, everybody for answering.
I was trying to solve Reduce String on codechef which says
Give a string s of length l, and a set S of n sample string(s). We do reduce the string s using the set S by this way:
Wherever Si appears as a consecutive substring of the string s, you can delete (or not) it.
After each deletion, you will get a new string s by joining the part to the left and to the right of the deleted substring.
I wrote a recursive function as follows:-
Basically what i am doing in my code is either don't delete the character or delete it if it is part of any substring but it is giving wrong answer.
#include <bits/stdc++.h>
using namespace std;
#define mx 255
int dp[mx];
unordered_map<string,int> sol;
void init(int n)
{
for(int i=0;i<n;i++)
{
dp[i]=-1;
}
}
int solve(string str,int low,int high,vector<string> smp)
{
if(low>high)
{
return 0;
}
if(dp[low]!=-1)
{
return dp[low];
}
int ans=1+solve(str,low+1,high,smp);
for(int i=low;i<high;i++)
{
string tem=str.substr(low,i-low+1);
for(int j=0;j<smp.size();j++)
{
cout<<"low i high str"<<low<<" "<<i<<" "<<high<<" "<<smp[j]<<" "<<tem<<endl;
if(tem.compare(smp[j])==0)
{
ans=min(ans,solve(str,i+1,high,smp));
}
}
}
return dp[low]=ans;
}
signed main()
{
sol.clear();
string str;
vector<string> smp;
int n;
cin>>str;
cin>>n;
for(int i=0;i<n;i++)
{
string tem;
cin>>tem;
smp.push_back(tem);
}
int len=str.length();
init(len+1);
cout<<solve(str,0,len-1,smp)<<endl;
return 0;
}
PS:
link to the question
This question is toughest(seen so far) and most beautiful(again seen so far) question based on DP ON INTERVALS.
The initial code would definitely not work since it only considers single pass on the string and would not consider remaining string after deleting the patterns again and again.
There are 3 cases:-
Case 1 Either character is not deleted.
Case 2It is deleted as a part of contiguous substring.
Case 3It is deleted as a part of subsequence that matches any word given in the set of patterns and everything that is not part of that subsequence is deleted first as a substring(which again belongs to set of words).
The third part is the most tricky and requires enough thinking and is even tougher to implement too.
So for every substring we need to check whether this substring can be completely destroyed or not.
The function compute_full_recur() is the function that ensures that whether substring can be deleted either in Case 2 or Case 3.
The function compute_full takes care of Case 1.And finally this code will not run on codechef link since all the function are recursive with memoization but to verify the code is working i Have run it on Problem Reducto of Hackerrank which is exact similar with lower constraints.Download test cases and then run on test cases on your PC for verifying.
#include <iostream>
#include <vector>
#include <string>
using namespace std;
#define mx 252
#define nx 40
bool full[mx][mx],vis[mx][mx],full_recur[mx][mx][nx][nx];
int ans[mx];
void init()
{
for(int i=0;i<mx;i++)
{
for(int j=0;j<mx;j++)
{
full[i][j]=false,vis[i][j]=false;
}
}
for(int i=0;i<mx;i++)
{
ans[i]=-1;
}
for(int i=0;i<mx;i++)
{
for(int j=0;j<mx;j++)
{
for(int k=0;k<nx;k++)
{
for(int l=0;l<nx;l++)
{
full_recur[i][j][k][l]=false;
}
}
}
}
}
bool compute_full_recur(string str,int low,int high,vector<string> pat,int idx,int len)
{
if(low>high&&len==pat[idx].length())
{
return true;
}
if(low>high&&len<pat[idx].length())
{
full_recur[low][high][idx][len]=false;
return false;
}
if(str[low]==pat[idx][len]&&compute_full_recur(str,low+1,high,pat,idx,len+1))
{
return full_recur[low][high][idx][len]=true;
}
for(int i=low+1;i<=high;i++)
{
if(str[low]==pat[idx][len]&&full[low+1][i]&&compute_full_recur(str,i+1,high,pat,idx,len+1))
{
return full_recur[low][high][idx][len]=true;
}
}
full_recur[low][high][idx][len]=false;
return false;
}
void compute_full(string str,int low,int high,vector<string> pats)
{
if(low>high)
{
return;
}
if(vis[low][high])
{
return;
}
vis[low][high]=true;
compute_full(str,low+1,high,pats);
compute_full(str,low,high-1,pats);
for(int i=0;i<pats.size();i++)
{
if(!full[low][high])
full[low][high]=compute_full_recur(str,low,high,pats,i,0);
}
}
int compute_ans(string str,int low,int high)
{
if(low>high)
{
return 0;
}
if(ans[low]!=-1)
{
return ans[low];
}
int sol=1+compute_ans(str,low+1,high);
for(int i=low+1;i<=high;i++)
{
if(full[low][i]==true)
{
sol=min(sol,compute_ans(str,i+1,high));
}
}
return ans[low]=sol;
}
signed main()
{
int t;
cin>>t;
while(t--)
{
string str;
int n;
vector<string> pats;
cin>>n>>str;
for(int i=0;i<n;i++)
{
string tem;
cin>>tem;
pats.push_back(tem);
}
init();
compute_full(str,0,str.length()-1,pats);
cout<<compute_ans(str,0,str.length()-1)<<endl;
}
return 0;
}
I have used Dynamic Programming to find longest common sub-sequence b/w two strings. What is wrong in the code. Why it always gives answer as 0?
#include<bits/stdc++.h>
using namespace std;
int dp[20][20];
void initialize()
{
for(int i=0;i<20;i++)
for(int j=0;j<20;j++)
dp[i][j]=-1;
}
int lcs(string a,string b,int m,int n)
{
if(m==0||n==0)
return 0;
if(dp[m][n]!=-1)
return dp[m][n];
if(a[m-1]==b[n-1])
return dp[m-1][n-1] = 1+lcs(a,b,m-1,n-1);
if(a[m-1]!=b[n-1])
return dp[n-1][m-1]=max(dp[n][m-1]=lcs(a,b,n,m-1),dp[n-1][m]=lcs(a,b,n-1,m));
}
int main()
{
string a="AGGTAB",b="GXTXAYB";
cout<<lcs(a,b,a.length(),b.length());
}
You've forgotten to call initialize()
18th line, it should be dp[m][n], not dp[m-1][n-1]
Commented 19th line code, as it is no need & for make the code compatible for all compilers
i.e., some compiler may give warning: control reaches end of non-void function [-Wreturn-type]
Made some code change in 20th line, as it seems you confused with variables m & n.
Code:
#include<bits/stdc++.h>
using namespace std;
int dp[20][20];
void initialize()
{
for(int i=0;i<20;i++)
for(int j=0;j<20;j++)
dp[i][j]=-1;
}
int lcs(string a,string b,int m,int n)
{
if(m==0||n==0)
return 0;
if(dp[m][n]!=-1)
return dp[m][n];
if(a[m-1]==b[n-1])
return dp[m][n] = 1+lcs(a,b,m-1,n-1);
//if(a[m-1]!=b[n-1])
return dp[m][n]=max(lcs(a,b,m-1,n),lcs(a,b,m,n-1));
}
int main()
{
string a="AGGTAB",b="GXTXAYB";
initialize();
cout<<lcs(a,b,a.length(),b.length());
}
Output:
4
My aim is to construct a binomial heap. Here is my code which i have written right now:
#include<iostream>
using namespace std;
void maxheapify(int a[],int length,int i)
{
int left=2*i;
int right=2*i+1;
int largest=i;
if(left<length && a[left]>a[largest])
{
largest=left;
}
if ( right<length && a[right]>a[largest])
{
largest=right;
}
if(largest!=i)
{
int temp=a[i];
a[i]=a[largest];
a[largest]=temp;
maxheapify(a,length,largest);
}
}
void buildmax(int a[],int length)
{
for(int i=(length-1)/2;i>=0;i--)
{
maxheapify(a,length,i);
}
}
/*void heapsort(int a[],int length)
{
buildmax(a,length);
for(int i=length-1;i>0;i--)
{
int temp=a[i];
a[i]=a[0];
a[0]=temp;
maxheapify(a,i,0);
}
}
*/
void combine_heap(int a[],int n,int b[],int m,int c[])
{
}
int main()
{
int a[100];
int n=sizeof(a)/sizeof(a[0]);
int b[100];
int m=sizeof(b)/sizeof(b[0]);
int c[200];
int length=sizeof(a)/sizeof(a[0]);
for(int i=0;i<length;i++){
a[i]=34+rand()%(length-33);
b[i]=rand()%(i+1);
}
/*heapsort(a,length);*/
/*for(int i=0;i<length;i++)
cout<<a[i]<<" ";*/
return 0;
}
i think trivial solution would be to combine two array into third one and then call buildmax procedure,but i think it is not efficient,i have tried to implement this pseudo code from wikipedia
function merge(p, q)
while not( p.end() and q.end() )
tree = mergeTree(p.currentTree(), q.currentTree())
if not heap.currentTree().empty()
tree = mergeTree(tree, heap.currentTree())
heap.addTree(tree)
else
heap.addTree(tree)
heap.next() p.next() q.next()
but i dont know how to implement it,because in generally how to access subtrees?another variant is construct priority queue and by using insert function insert first from one array and then from another array,but is this optimal?please help me to write code to combine these two max heap into one efficiently
This is a good example of Binomial Heap but it is in c. You will get the basic logic to implement binomial heap. See Example here
Or get video tutorial to here to understand algorithm.