QThread doesn't start - c++

Sorry for the length of this post. But I am stuck for two days now....
I am working on a Qt 4.6 Windows application that communicates with a hardware device through ActiveX.
When I send a command, the device does some stuff and when it's done (can take up to one minute) it emits a signal. I need to wait this signal to know if everything went okay (or not) and do some actions in consequence.
A command is sent to the device when a user clicks a button. And obviously, I don't want the HMI to freeze.
I am convinced I have to use threads. So I identified three threads:
the main thread corresponding to the HMI
the hardware controller (which locks after a command is sent and waits a signal)
a hardware notification listener that continuously gets signals from the hardware and unlock the thread 2
Here is the class diagram:
And a sequence diagram to show how I see things:
Explanations:
When the user launches my application, the HMI is created. The constructor of the HMI calls the constructor of the Worker. It constructs the hardware QAxObject. Then it constructs the HardwareListener giving in reference: the QAxObject, the QMutex and the QWaitCondition. Then the constructor of the Worker moves the HardwareListener object to another thread and starts it. Finally, the constructor of the HMI starts the thread of the Worker.
Then, when the user clicks a button, the HMI sends a signal to the Worker. The Worker sends a command to the hardware (that command may block the thread several seconds that's why I need the HardwareListener in another thread not to miss a signal). Then the Worker waits for a QWaitCondition (after having locked the QMutex).
After that, the hardware device sends a signal to the HardwareListener which wakes up the QWaitCondition. Therefore, the Worker thread stops waiting and finishes its actions. Finally, the Worker informs the HMI.
Problem:
The Worker and HardwareListener threads aren't created/started. Everything is done in the main thread so, obviously, it doesn't work. I don't exchange any special object between threads (so no need for qRegisterMetaType())
Question:
Is my design acceptable? There may be some other ways to do but it seems to me this is the most straightforward (taking into account the complexity).
EDIT:
I've changed my code to remove the QThread inheritance. I use the moveToThread() method instead.
Now the threads work fine. HOWEVER I have an ActiveX error: QAxBase: Error calling IDispatch member NewProject: Unknown error.
It seems the interfacing with the hardware is broken... Any idea?
Here is something interesting:
You cannot move a QAxObject to another thread once it has been created.
SOLUTION:
Here is what I have found.

Inheriting from QThread is not good design. If the work you are doing is computational heavy I would recommend using QThreadPool. I not than its better to use an asynchronous design. This means only calling function which never block and instead connect to signals notifying you that something happened.
So for example sending the command to the hardware and emitting a signal once the hardware is done. If the hardware API doesn't supply async functions than you are stuck with using threads.
QtConcurrentRun can help with that. Usually you should not need to touch threads yourself; and its a hell of a lot easier without.

Related

Cross thread call a.k.a run on main/UI thread from other thread without dependencies needed

I'm on some c++ mobile product, but I need my apps main thread is still running without any blocking when doing some heavy work on the background thread and run back on main thread. But I realized there is no runOnMainThread/runOnUIThread in c++ thread api. I trying to figure it out the issue and found that need to depend library, or create your own thread event queue. Although it is good, but i am thinking to have a behavior which can runOnUIThread.
How it does not work: the mentioned library creates a timer, installs a SIGALRM signal handler and dispatches queued tasks when signals are fired. This allows tasks being processed on the main thread even when it is busy. However POSIX permits only a small set of async-signal-safe functions to be invoked inside of signal handler. Running arbitrary с++ code inside of signal handler violates that restriction and leaves application in hopelessly doomed state.
After some research and development, I've created a library called NonBlockpp
it is a small c++ library to allow c++ mobile application able to process the heavy and time consuming task on background and back to Main thread again, It’s been tested and fired the main thread event.
It also allow to save the tasks and fire them later, all the task has no blocking each other and thread safety.
How it works:
If you found any query or suggestion, please don't hesitate to raise an issue and we can discuss it together.
The project has rectify from signal to pollEvent due to signal handler might not be safe to use.
Please take a look the new changed.
NonBlockpp
Usage

Qt: The relation between Worker thread and GUI Events

I have an ordinary GUI Thread (Main Window) and want to attach a Worker thread to it. The Worker thread will be instantiated, moved to its own thread and then fired away to run on its own independently, running a messaging routine (non-blocking).
This is where the worker is created:
void MainWindow::on_connectButton_clicked()
{
Worker* workwork;
workwork= new Worker();
connect(workwork,SIGNAL(invokeTestResultsUpdate(int,quint8)),
this,SLOT(updateTestResults(int,quint8)),Qt::QueuedConnection);
connect(this,SIGNAL(emitInit()),workwork,SLOT(init()));
workwork->startBC();
}
This is where the Worker starts:
void Worker::startBC()
{
t1553 = new QThread();
this->moveToThread(t1553);
connect(t1553,SIGNAL(started()),this,SLOT(run1553Process()));
t1553->start();
}
I have two problems here, regarding the event queue of the new thread:
The first and minor problem is that, while I can receive the signals from the Worker thread (namely: invokeTestResultsUpdate), I cannot invoke the init method by emitting the emitInit signal from MainWindow. It just doesn't fire unless I call it directly or connect it via Qt::DirectConnection . Why is this happening? Because I have to start the Worker thread's own messaging loop explicitly? Or some other thing I'm not aware of? (I really fail to wrap my head around the concept of Thread/Event Loop/Signal Slot mechanism and the relation between each other even though I try. I welcome any fresh perspective here too.)
The second and more obscure problem is: run1553process method does some heavy work. By heavy work, I mean a very high rate of data. There is a loop running, and I try to receive the data flowing from a device (real-time) as soon as it lands in the buffer, using mostly extern API functions. Then throw the mentioned invokeTestResultsUpdate signal towards the GUI each time it receives a message, updating the message number box. It's nothing more than that.
The thing I'm experiencing is weird; normally the messaging routine is mostly unhindered but when I resize the main window, move it, or hide/show the window, the Worker thread skips many messages. And the resizing action is really slow (not responds very fast). It's really giving me a cancer.
(Note: I have tried subclassing QThread before, it did not mitigate the problem.)
I've been reading all the "Thread Affinity" topics and tried to apply them but it still behaves like it is somehow interrupted by the GUI thread's events at some point. I can understand MainWindow's troubles since there are many messages at the queue to be executed (both the invoked slots and the GUI events). But I cannot see as to why a background thread is affected by the GUI events. I really need to have an extremely robust and unhindered message routine running seperately behind, firing and forgetting the signals and not giving a damn about anything.
I'm really desperate for any help right now, so any bit of information is useful for me. Please do not hesitate to throw ideas.
TL;DR: call QCoreApplication::processEvents(); periodiacally inside run1553process.
Full explanation:
Signals from the main thread are put in a queue and executed once the event loop in the second thread takes control. In your implementation you call run1553Process as soon as the thread starts. the control will not go back to the event loop until the end of that function or QCoreApplication::processEvents is manually invoked so signals will just sit there waiting for the event loop to pick them up.
P.S.
you are leaking both the worker and the thread in the code above
P.P.S.
Data streams from devices normally provide an asynchronous API instead of you having to poll them indefinetly
I finally found the problem.
The crucial mistake was connecting the QThread's built in start() signal to run1553Process() slot. I had thought of this as replacing run() with this method, and expected everything to be fine. But this caused the actual run() method to get blocked, therefore preventing the event loop to start.
As stated in qthread.cpp:
void QThread::run()
{
(void) exec();
}
To fix this, I didn't touch the original start() signal, instead connected another signal to my run1553Process() independently. First started the thread ordinarily, allowed the event loop to start, then fired my other signals. That did it, now my Worker can receive all the messages.
I think now I understand the relation between threads and events better.
By the way, this solution did not take care of the message skipping problem entirely, but I feel that's caused by another factor (like my message reading implementation).
Thanks everyone for the ideas. I hope the solution helps some other poor guy like me.

Can I use QTimer to replace QThread?

More precisely, the question should be:
What's the difference between connecting the signal QTimer::timeout to my working function and creating a worker thread with QThread?
I am writing a program which receives streaming data in main thread (the signal is generated by QIODevice::readread())and processes them concurrently. For now I start a QTimer constantly firing signal QTimer::timeout, and the signal is connected to a working function in main thread which does the data processing stuff. This is how I achieve the concurrency.
I wonder if this approach different from creating another thread with QThread, since the idea I've found in this topic is very simliar to what I've done. The only difference is that the accepted answer creates another thread and moves timer and worker class on it. Besides the difference, I can't see any necessity of using a thread in my case.
In my case (receiving data in main thread and processing them concurrently), am I doing OK using QTimer or should I create a QThread? I am quite new to multi-threading, and if I misunderstand something, please help correct me. Thank you.
[Edit]:
I don't know what's the difference/advantage of creating a new thread to process the data. For now, everything is doing in one thread: I keep storing data in a queue and dequeue them one by one in a function triggered by QTimer::timeout.
What's the difference between connecting the signal QTimer::timeout to my working
function and creating a worker thread with QThread?
When you connect some signal/slot pair from the objects which has the same thread affinity, then the connection is direct. What it means is in your case, the main thread creates the timer, and also contains the slot, so the signal will be emitted in the main thread and also will be processed in the main thread (as the slot is also in the main thread).
When you connect some signal/slot pair from the objects which has the different thread affinity, then the connection is queued. That means signal emission and slot execution will run in different threads.
You are not really achieving concurrency, the timer signal and processing slot are executing in main thread sequentially.
So here are your options:
If you want to process data in main thread, current code is ok.
If you want to emit timeout in main thread and process data in different thread then create new class with the processing method and use moveToThread with object of that class.
The link you provided really has a different situation. In your case (correct me if I am wrong), you process data only when data is available, not just after a specified time. Your situation is much like traditional producer/consumer problem. My proposal is to not use QTimer at all. Instead create a new class with a slotwhich will process data. Then emit a signal from main thread when data is available, and connect if to the processing slot. You will achieve real concurrency. In this case you will need to implement locking for shared data access, it is easy in Qt, you can just use QMutexLocker
First, a little background:
One of the fundamental ideas behind threads is that a thread can only do one thing at a time. It may be updating the GUI, or processing data, or communicating with a remote server, but it can't be doing all those things at once.
That's where multi-threading comes in. You probably want your computer to be doing many things at once (watching videos, browsing the web, listening to music, and writing code all at the same time). The computer allows you to do that by scheduling each of these tasks on a separate threads and switching between them in periodic intervals.
In the old days, before multi-core processors, this was achieved solely by multitasking (the processor would interrupt the currently executing thread, switch to another thread context and execute the other thread for a while before switching again). With modern processors, you can have several threads executing at the EXACT same time, one on each core. This is typically referred to as multiprocessing.
Now, back to your question:
A thread can only do one thing at a time and, if you use a timer, you are using the main (AKA GUI) thread to process your data. This thread is typically responsible for responding to OS events and updating the GUI (hence GUI thread). If you don't have a lot of data to process, it's typically OK to do so on the GUI thread. However, if the data processing time has a chance of growing, it is recommended to execute such processing on a separate thread to make sure that the UI remains responsive (and so that you don't get the annoying "Your program is not responding" message from the OS). Basically, if data processing can take longer than ~200ms, it is recommended to execute the processing on a separate thread so that the user doesn't feel like the GUI is "stuck".

Callback in user-mode from another process, w/o extra thread

I wonder if anyone familiar with a synchronization mechanism in user-mode, by which an app can register a "callback" function that would be called when another app signals it ... i don't mind the callback to be in an arbitraty thread.
Suppose i'm having lots of "Worker" processes in parallel, And one wants to notify them of a change (no payloaded data needed), by which every process will have to do some internal updates.
The immediate approach to this was to create another thread in each of them, and have an infinite loop that waits for a global event and call the callback function right afterwards. To signal this, one process would only need to signal this global event.
The problem is that i'll have lots of parallel processes in this project, i don't want to add thread*nProcesses to the system just to implement this, even if they're mostly paused.
The current "workaround" i found for this would be to hold my own "dummy" registry key, and every process will "register registery notification callback", when one app wants to notify the others it will just trigger a write to this key... and windows will callback every process which registered to this notification.
Any other ideas?
The nicer solution, which doesn't pollute the registry, would be to use a shared pipe. All workers can connect to the named pipe server, and do an async read. When the server wants to kick the workers, it just writes a byte. This triggers the completion routine of the worker. Basic example
Still, this notification has the same drawback as most other Windows notifications. If all of your worker threads are running worker code, there's no thread on which your notification can arrive - and you didn't create a special thread for that purpose either. The only solution around that is CreateRemoteThread, but that's a very big hammer.
thank you all for the useful ideas,
Eventually, I accidentally came across RegisterWaitForSingleObject which seems to do just that.
I'm still taking in account #MSalters comment about not having enough free worker threads at a given time since i'm assuming this callback mechanism relies on the same callback mechanism most Win32API does

Question on using multithreading to periodically and forcefully check for updates on software

I'm working on an application that has a main thread performing some work (message loop of the UI etc.), but I would also like a second thread, which would periodically test if there are any updates available to download. I would also like the possibility for the main thread to ask the secondary thread to force checking for updates, and for the secondary thread to ask the main thread for confirmation on downloading updates.
I don't have that much experience with IPC and multithreading in real life situations, so I'm not sure how I should go about designing this. I would like to eventually have this work on both Windows and POSIX, but let us focus on POSIX for now. Here's my idea so far:
Secondary thread pseudocode:
repeat forever:
check_for_updates()
if (are_any_updates()) {
put the list of available updates on some message queue
send signal SIGUSER1 to main thread
wait for response from that message queue
if (response is positive) download_updates()
}
unblock signal SIGUSER1 on secondary thread
Sleep(one hour)
block signal SIGUSER1
if (any_signal_was_received_while_sleeping)
any_signal_was_received_while_sleeping := false
Sleep(one more hour)
SIGUSER1 handler on secondary thread (main thread has requested us to check for updates):
block signal SIGUSER1 (making sure we don't get signal in signal)
any_signal_was_received_while_sleeping := true
check_for_updates()
...
unblock signal SIGUSER1
Basically, main thread uses SIGUSER1 to ask the secondary thread to force checking for updates, while secondary thread uses SIGUSER1 to ask the main thread to look into the message queue for the available updates and to confirm whether they should be downloaded or not.
I'm not sure if this is a good design or if it would even work properly. One of my problems is related to handling SIGUSER1 received in the main thread, because it's a pretty big application and I'm not really sure when is the right time to block and unblock it (I assume it should be somewhere in the message loop).
Any opinion is appreciated, including advice on what IPC features should I use on Windows (maybe RPC instead of signals?). I could completely remove the use of message queue if I settled on threads, but I might consider using processes instead. I'll clearly use threads on Windows, but I'm not sure about POSIX yet.
You should strongly consider using boost::thread to solve your problem. It is far more comprehensible than directly using posix and is cross platform. Take the time to use a better tool and you will end up saving yourself a great deal of effort.
In particular I think you will find that a condition variable would neatly facilitate your simple interaction.
EDIT:
You can do almost anything with the correct use of mutexes and condition variables. Another piece of advice would be to encapsulate your threads inside class objects. This allows you to write functions that act on the thread and it's data. In your case the main thread could have a method like requestUpdateConfirmation(), inside this you can block the calling thread and wait for the main thread to deal with the request before releasing the caller.