incorrect output RGB to HSI convertion - c++

I'm trying to convert RGB to HSI of a given image.
But i cant seem to get the correct output.
the Intensity is already right. But the Hue and Saturation kept giving the same result, -2147483648, whenever R + G + B is not equal to 765.
I checked using this calculator:
http://www.had2know.com/technology/hsi-rgb-color-converter-equations.html
and used this formulas:
http://web2.clarkson.edu/class/image_process/RGB_to_HSI.pdf
please point out what i did wrong.. Thanks.
#include <iostream>
#include <cv.h>
#include <highgui.h>
#include "rgb.h"
#include <cmath>
#include <math.h>
#include <algorithm>
using namespace std;
int main()
{
char infname[256];
cout << "Enter input image : ";
cin >> infname;
IplImage *img = cvLoadImage(infname, 0);
RgbImage pic(img);
int H = img->height;
int W = img->width;
for (int j=0;j<H;j++)
for (int i=0;i<W;i++) {
const double PI = 4.0*atan(1.0);
double norm = 0;
double R =(double) pic[j][i].r;
double G =(double) pic[j][i].g;
double B =(double) pic[j][i].b;
double omega = 0;
double intensity = 0;
double hue = 0;
double saturation = 0;
double r = 0;
double g = 0;
double b = 0;
//Intensity
intensity = (double) (R + G + B) / (3.0*255);
//norm colours
norm = sqrt(pow(r,2) + pow(g,2) + pow(b,2));
r = (double) (R / norm);
g = (double) (G / norm);
b = (double) (B / norm);
//Saturation and Hue
if (R + G + B == 765) {
saturation = 0;
hue = 0;
}
else {
double tmp = min(r, min(g, b));
saturation = 1.0 - ((3.0 * tmp)/ (double)(r + g + b));
if (saturation < 0.5 ){
saturation = 0;
}
else if (saturation >= 0.5){
saturation = 1;
}
}
if (saturation != 0) {
omega = 0.5 * ((r-g) + (r-b)) / sqrt(pow ((r-g),2) + (r-b)*(g-b));
omega = acos(omega);
if (B <= G) {
hue = omega;
}
else if (B > G) {
hue = 2 * PI - omega;
}
}
//convert it to degrees
int resultHue = (int) round((hue * 180.0) / PI);
int resultSaturation = (int) (saturation*100.0);
int resultIntensity = (int) round(intensity * 255);
cout<<"Red = "<<R<<", Green = "<<G<<", Blue = "<<B<<endl;
cout<<"Hue = "<<resultHue<<", Saturation = "<<resultSaturation<<", Intensity = "<<resultIntensity<<endl;
}
return 0;
}

You calculate norm using r, g and b, but they're always 0 at that point.

#include <iostream>
#include <cv.h>
#include <highgui.h>
#include "rgb.h"
#include <cmath>
#include <algorithm>
#include <fstream>
using namespace std;
int main()
{
char infname[256];
ofstream outputFile;
outputFile.open("RGB_HSI.txt");
cout << "Enter input image : ";
cin >> infname;
IplImage *img = cvLoadImage(infname, 0);
RgbImage pic(img);
int H = img->height;
int W = img->width;
for (int j=0;j<H;j++)
for (int i=0;i<W;i++) {
double norm = 0;
double omega = 0;
double R =(double) pic[j][i].r;
double G =(double) pic[j][i].g;
double B =(double) pic[j][i].b;
double intensity = 0;
double hue = 0;
double saturation = 0;
double r = 0;
double g = 0;
double b = 0;
int resultHue = 0;
int resultSaturation = 0;
int resultIntensity = 0;
//Intensity
intensity = (double) (R + G + B) / (3.0*255);
//norm colours
norm = sqrt((R*R) + (G*G) + (B*B));
r = (double) (R / norm);
g = (double) (G / norm);
b = (double) (B / norm);
//Saturation and Hue
if (R + G + B == 765) {
saturation = 0;
hue = 0;
}
else {
double tmp = min(r, min(g, b));
saturation = 1.0 - ((3.0 * tmp)/ (double)(r + g + b));
if (saturation < 0.5 ){
saturation = 0;
}
else if (saturation >= 0.5){
saturation = 1;
}
}
if (saturation != 0) {
omega = 0.5 * ((r-g) + (r-b)) / sqrt(((r-g) * (r-g)) + (r-b)*(g-b));
omega = acos(omega);
if (B <= G) {
hue = omega;
}
else if (B > G) {
hue = 2 * M_PI - omega;
}
}
//convert it to degrees
resultHue = (int) round((hue * 180.0) / M_PI);
resultSaturation = (int) (saturation);
resultIntensity = (int) round(intensity * 255);
if ((R == 0) && (G == 0) && ( B== 0 )) {
resultHue = 0;
resultSaturation = 0;
resultIntensity = 0;
}
outputFile<<"Red = "<<R<<", Green = "<<G<<", Blue = "<<B<<endl;
outputFile<<"Hue = "<<resultHue<<", Saturation = "<<resultSaturation<<", Intensity = "<<resultIntensity<<endl;
}
outputFile.close();
cout << "\nRGB_HSI printed as text file: RGB_HSI.text\n";
return 0;
}

Related

How to to find smallest (optimized) distance between two vectors in C++

I'm translating Python's version of 'page_dewarper' (https://mzucker.github.io/2016/08/15/page-dewarping.html) into C++. I'm going to use dlib, which is a fantastic tool, that helped me in a few optimization problems before. In line 748 of Github repo (https://github.com/mzucker/page_dewarp/blob/master/page_dewarp.py) Matt uses optimize function from Scipy, to find the minimal distance between two vectors. I think, my C++ equivalent should be solve_least_squares_lm() or solve_least_squares(). I'll give a concrete example to analyze.
My data:
a) dstpoints is a vector with OpenCV points - std::vector<cv::Point2f> (I have 162 points in this example, they are not changing),
b) ppts is also std::vector<cv::Point2f> and the same size as dstpoints.
std::vector<cv::Point2f> ppts = project_keypoints(params, input);
It is dependent on:
- dlib::column_vector 'input' is 2*162=324 long and is not changing,
- dlib::column_vector 'params' is 189 long and its values should be changed to get the minimal value of variable 'suma', something like this:
double suma = 0.0;
for (int i=0; i<dstpoints_size; i++)
{
suma += pow(dstpoints[i].x - ppts[i].x, 2);
suma += pow(dstpoints[i].y - ppts[i].y, 2);
}
I'm looking for 'params' vector that will give me the smallest value of 'suma' variable. Least squares algorithm seems to be a good option to solve it: http://dlib.net/dlib/optimization/optimization_least_squares_abstract.h.html#solve_least_squares, but I don't know if it is good for my case.
I think, my problem is that for every different 'params' vector I get different 'ppts' vector, not only single value, and I don't know if solve_least_squares function can match my example.
I must calculate residual for every point. I think, my 'list' from aforementioned link should be something like this:
(ppts[i].x - dstpoints[i].x, ppts[i].y - dstpoints[i].y, ppts[i+1].x - dstpoints[i+1].x, ppts[i+1].y - dstpoints[i+1].y, etc.)
, where 'ppts' vector depends on 'params' vector and then this problem can be solved with least squares algorithm. I don't know how to create data_samples with these assumptions, because it requires dlib::input_vector for every sample, as it is shown in example: http://dlib.net/least_squares_ex.cpp.html.
Am I thinking right?
I'm doing the same thing this days. My solution is writing a Powell Class by myself. It works, but really slowly. The program takes 2 minutes in dewarping linguistics_thesis.jpg.
I don't know what cause the program running so slowly. Maybe because of the algorithm or the code has some extra loop. I'm a Chinese student and my school only have java lessons. So it is normal if you find some extra codes in my codes.
Here is my Powell class.
using namespace std;
using namespace cv;
class MyPowell
{
public:
vector<vector<double>> xi;
vector<double> pcom;
vector<double> xicom;
vector<Point2d> dstpoints;
vector<double> myparams;
vector<double> params;
vector<Point> keypoint_index;
Point2d dst_br;
Point2d dims;
int N;
int itmax;
int ncom;
int iter;
double fret, ftol;
int usingAorB;
MyPowell(vector<Point2d> &dstpoints, vector<double> &params, vector<Point> &keypoint_index);
MyPowell(Point2d &dst_br, vector<double> &params, Point2d & dims);
MyPowell();
double obj(vector<double> &params);
void powell(vector<double> &p, vector<vector<double>> &xi, double ftol, double &fret);
double sign(double a);// , double b);
double sqr(double a);
void linmin(vector<double> &p, vector<double> &xit, int n, double &fret);
void mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc);
double f1dim(double x);
double brent(double ax, double bx, double cx, double & xmin, double tol);
vector<double> usePowell();
void erase(vector<double>& pbar, vector<double> &prr, vector<double> &pr);
};
#include"Powell.h"
MyPowell::MyPowell(vector<Point2d> &dstpoints, vector<double>& params, vector<Point> &keypoint_index)
{
this->dstpoints = dstpoints;
this->myparams = params;
this->keypoint_index = keypoint_index;
N = params.size();
itmax = N * N;
usingAorB = 1;
}
MyPowell::MyPowell(Point2d & dst_br, vector<double>& params, Point2d & dims)
{
this->dst_br = dst_br;
this->myparams.push_back(dims.x);
this->myparams.push_back(dims.y);
this->params = params;
this->dims = dims;
N = 2;
itmax = N * 1000;
usingAorB = 2;
}
MyPowell::MyPowell()
{
usingAorB = 3;
}
double MyPowell::obj(vector<double> &myparams)
{
if (1 == usingAorB)
{
vector<Point2d> ppts = Dewarp::projectKeypoints(keypoint_index, myparams);
double total = 0;
for (int i = 0; i < ppts.size(); i++)
{
double x = dstpoints[i].x - ppts[i].x;
double y = dstpoints[i].y - ppts[i].y;
total += (x * x + y * y);
}
return total;
}
else if(2 == usingAorB)
{
dims.x = myparams[0];
dims.y = myparams[1];
//cout << "dims.x " << dims.x << " dims.y " << dims.y << endl;
vector<Point2d> vdims = { dims };
vector<Point2d> proj_br = Dewarp::projectXY(vdims, params);
double total = 0;
double x = dst_br.x - proj_br[0].x;
double y = dst_br.y - proj_br[0].y;
total += (x * x + y * y);
return total;
}
return 0;
}
void MyPowell::powell(vector<double> &x, vector<vector<double>> &direc, double ftol, double &fval)
{
vector<double> x1;
vector<double> x2;
vector<double> direc1;
int myitmax = 20;
if(N>500)
myitmax = 10;
else if (N > 300)
{
myitmax = 15;
}
double fx2, t, fx, dum, delta;
fval = obj(x);
int bigind;
for (int j = 0; j < N; j++)
{
x1.push_back(x[j]);
}
int iter = 0;
while (true)
{
do
{
do
{
iter += 1;
fx = fval;
bigind = 0;
delta = 0.0;
for (int i = 0; i < N; i++)
{
direc1 = direc[i];
fx2 = fval;
linmin(x, direc1, N, fval);
if (fabs(fx2 - fval) > delta)
{
delta = fabs(fx2 - fval);
bigind = i;
}
}
if (2.0 * fabs(fx - fval) <= ftol * (fabs(fx) + fabs(fval)) + 1e-7)
{
erase(direc1, x2, x1);
return;
}
if (iter >= itmax)
{
cout << "powell exceeding maximum iterations" << endl;
return;
}
if (!x2.empty())
{
x2.clear();
}
for (int j = 0; j < N; j++)
{
x2.push_back(2.0*x[j] - x1[j]);
direc1[j] = x[j] - x1[j];
x1[j] = x[j];
}
myitmax--;
cout << fx2 << endl;
fx2 = obj(x2);
if (myitmax < 0)
return;
} while (fx2 >= fx);
dum = fx - 2 * fval + fx2;
t = 2.0*dum*pow((fx - fval - delta), 2) - delta * pow((fx - fx2), 2);
} while (t >= 0.0);
linmin(x, direc1, N, fval);
direc[bigind] = direc1;
}
}
double MyPowell::sign(double a)//, double b)
{
if (a > 0.0)
{
return 1;
}
else
{
if (a < 0.0)
{
return -1;
}
}
return 0;
}
double MyPowell::sqr(double a)
{
return a * a;
}
void MyPowell::linmin(vector<double>& p, vector<double>& xit, int n, double &fret)
{
double tol = 1e-2;
ncom = n;
pcom = p;
xicom = xit;
double ax = 0.0;
double xx = 1.0;
double bx = 0.0;
double fa, fb, fx, xmin;
mnbrak(ax, xx, bx, fa, fx, fb);
fret = brent(ax, xx, bx, xmin, tol);
for (int i = 0; i < n; i++)
{
xit[i] = (xmin * xit[i]);
p[i] += xit[i];
}
}
void MyPowell::mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc)
{
const double GOLD = 1.618034, GLIMIT = 110.0, TINY = 1e-20;
double val, fw, tmp2, tmp1, w, wlim;
double denom;
fa = f1dim(ax);
fb = f1dim(bx);
if (fb > fa)
{
val = ax;
ax = bx;
bx = val;
val = fb;
fb = fa;
fa = val;
}
cx = bx + GOLD * (bx - ax);
fc = f1dim(cx);
int iter = 0;
while (fb >= fc)
{
tmp1 = (bx - ax) * (fb - fc);
tmp2 = (bx - cx) * (fb - fa);
val = tmp2 - tmp1;
if (fabs(val) < TINY)
{
denom = 2.0*TINY;
}
else
{
denom = 2.0*val;
}
w = bx - ((bx - cx)*tmp2 - (bx - ax)*tmp1) / (denom);
wlim = bx + GLIMIT * (cx - bx);
if ((bx - w) * (w - cx) > 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
ax = bx;
fa = fb;
bx = w;
fb = fw;
return;
}
else if (fw > fb)
{
cx = w;
fc = fw;
return;
}
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
else
{
if ((cx - w)*(w - wlim) >= 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
bx = cx;
cx = w;
w = cx + GOLD * (cx - bx);
fb = fc;
fc = fw;
fw = f1dim(w);
}
}
else if ((w - wlim)*(wlim - cx) >= 0.0)
{
w = wlim;
fw = f1dim(w);
}
else
{
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
}
ax = bx;
bx = cx;
cx = w;
fa = fb;
fb = fc;
fc = fw;
}
}
double MyPowell::f1dim(double x)
{
vector<double> xt;
for (int j = 0; j < ncom; j++)
{
xt.push_back(pcom[j] + x * xicom[j]);
}
return obj(xt);
}
double MyPowell::brent(double ax, double bx, double cx, double & xmin, double tol = 1.48e-8)
{
const double CGOLD = 0.3819660, ZEPS = 1.0e-4;
int itmax = 500;
double a = MIN(ax, cx);
double b = MAX(ax, cx);
double v = bx;
double w = v, x = v;
double deltax = 0.0;
double fx = f1dim(x);
double fv = fx;
double fw = fx;
double rat = 0, u = 0, fu;
int iter;
int done;
double dx_temp, xmid, tol1, tol2, tmp1, tmp2, p;
for (iter = 0; iter < 500; iter++)
{
xmid = 0.5 * (a + b);
tol1 = tol * fabs(x) + ZEPS;
tol2 = 2.0*tol1;
if (fabs(x - xmid) <= (tol2 - 0.5*(b - a)))
break;
done = -1;
if (fabs(deltax) > tol1)
{
tmp1 = (x - w) * (fx - fv);
tmp2 = (x - v) * (fx - fw);
p = (x - v) * tmp2 - (x - w) * tmp1;
tmp2 = 2.0 * (tmp2 - tmp1);
if (tmp2 > 0.0)
p = -p;
tmp2 = fabs(tmp2);
dx_temp = deltax;
deltax = rat;
if ((p > tmp2 * (a - x)) && (p < tmp2 * (b - x)) &&
fabs(p) < fabs(0.5 * tmp2 * dx_temp))
{
rat = p / tmp2;
u = x + rat;
if ((u - a) < tol2 || (b - u) < tol2)
{
rat = fabs(tol1) * sign(xmid - x);
}
done = 0;
}
}
if(done)
{
if (x >= xmid)
{
deltax = a - x;
}
else
{
deltax = b - x;
}
rat = CGOLD * deltax;
}
if (fabs(rat) >= tol1)
{
u = x + rat;
}
else
{
u = x + fabs(tol1) * sign(rat);
}
fu = f1dim(u);
if (fu > fx)
{
if (u < x)
{
a = u;
}
else
{
b = u;
}
if (fu <= fw || w == x)
{
v = w;
w = u;
fv = fw;
fw = fu;
}
else if (fu <= fv || v == x || v == w)
{
v = u;
fv = fu;
}
}
else
{
if (u >= x)
a = x;
else
b = x;
v = w;
w = x;
x = u;
fv = fw;
fw = fx;
fx = fu;
}
}
if(iter > itmax)
cout << "\n Brent exceed maximum iterations.\n\n";
xmin = x;
return fx;
}
vector<double> MyPowell::usePowell()
{
ftol = 1e-4;
vector<vector<double>> xi;
for (int i = 0; i < N; i++)
{
vector<double> xii;
for (int j = 0; j < N; j++)
{
xii.push_back(0);
}
xii[i]=(1.0);
xi.push_back(xii);
}
double fret = 0;
powell(myparams, xi, ftol, fret);
//for (int i = 0; i < xi.size(); i++)
//{
// double a = obj(xi[i]);
// if (fret > a)
// {
// fret = a;
// myparams = xi[i];
// }
//}
cout << "final result" << fret << endl;
return myparams;
}
void MyPowell::erase(vector<double>& pbar, vector<double>& prr, vector<double>& pr)
{
for (int i = 0; i < pbar.size(); i++)
{
pbar[i] = 0;
}
for (int i = 0; i < prr.size(); i++)
{
prr[i] = 0;
}
for (int i = 0; i < pr.size(); i++)
{
pr[i] = 0;
}
}
I used PRAXIS library, because it doesn't need derivative information and is fast.
I modified the code a little to my needs and now it is faster than original version written in Python.

Converting RGB to HSL in C++

Currently trying to convert RGB to HSL. Can't figure out where I'm going wrong but my H & S values shows as 0 which is the problem.
Here is what I have:
#include <iostream>
#include <cstdlib>
#include <cmath>
float Min( float fR, float fG, float fB )
{
float fMin = fR;
if (fG < fMin)
{
fMin = fG;
}
if (fB < fMin)
{
fMin = fB;
}
return fMin;
}
float Max( float fR, float fG, float fB)
{
float fMax = fR;
if (fG > fMax)
{
fMax = fG;
}
if (fB > fMax)
{
fMax = fB;
}
return fMax;
}
void RGBToHSL( int R, int G, int B, int& H, int& S, int& L )
{
int r = 100.0;
int g = 100.0;
int b = 200.0;
float fR = r / 255.0;
float fG = g / 255.0;
float fB = b / 255.0;
float fCMin = Min(fR, fG, fB);
float fCMax = Max(fR, fG, fB);
L = 50 * (fCMin + fCMax);
if (fCMin = fCMax)
{
S = 0;
H = 0;
return;
}
else if (L < 50)
{
S = 100 * (fCMax - fCMin) / (fCMax + fCMin);
}
else
{
S = 100 * (fCMax - fCMin) / (2.0 - fCMax - fCMin);
}
if (fCMax == fR)
{
H = 60 * (fG - fB) / (fCMax - fCMin);
}
if (fCMax == fG)
{
H = 60 * (fB - fR) / (fCMax - fCMin) + 120;
}
if (fCMax == fB)
{
H = 60 * (fR - fG) / (fCMax - fCMin) + 240;
}
if (H < 0)
{
H = H + 360;
}
}
Lightness value is 58 which is fine but I'm expecting to see a value of 240 for Hue and 47 for Saturation.
Any help would be highly appreciated.
Thanks.
if (fCMin = fCMax)
should be
if (fCMin == fCMax)

How to optimize YUV to RGB color conversion code

I have written a function to convert an image in YUV420P to RGB but it is taking 30 millisecond to convert an image (size: 1280 x 720) into RGB, but when I am using ffmpeg function ( as this) to convert YUV image into RGB its taking only 2 millisecond for the same image. What is the problem with my code ? How can I optimize the code that I have written ??
My code is given below
int step = origImage->widthStep;
uchar *data = (uchar *)origImage->imageData;
int size = origImage->width * origImage->height;
IplImage* img1 = cvCreateImage(cvGetSize(origImage), IPL_DEPTH_8U, 3);
for (int i = 0; i<origImage->height; i++)
{
for (int j=0; j<origImage->width; j++)
{
float Y = data[i*step + j];
float U = data[ (int)(size + (i/2)*(step/2) + j/2) ];
float V = data[ (int)(size*1.25 + (i/2)*(step/2) + j/2)];
float R = Y + 1.402 * (V - 128);
float G = Y - 0.344 * (U - 128) - 0.714 * (V - 128);
float B = Y + 1.772 * (U - 128);
if (R < 0){ R = 0; } if (G < 0){ G = 0; } if (B < 0){ B = 0; }
if (R > 255 ){ R = 255; } if (G > 255) { G = 255; } if (B > 255) { B = 255; }
cvSet2D(img1, i, j,cvScalar(B,G,R));
}
}
Here, try this(should reduce to 25 milliseconds):
int step = origImage->widthStep;
uchar *data = (uchar *)origImage->imageData;
int size = origImage->width * origImage->height;
IplImage* img1 = cvCreateImage(cvGetSize(origImage), IPL_DEPTH_8U, 3);
int stepDb2=step /2;
float sizeMb1d25=size*1.25 ;
int origImagePTheight=origImage->height;
int origImagePTwidth=origImage->width;
for (int i = 0; i<origImagePTheight; i++)
{
float idb2=i/2;
int iStep=i*step;
for (int j=0; j<origImagePTwidth; j++)
{
float variable=idb2*stepDb2 + j/2;
float Y = data[iStep + j];
float U = -128 + data[ (int)(size + variable) ];
float V = -128 + data[ (int)(sizeMb1d25 + variable)];
float R = Y + 1.402 * V ;
float G = Y - 0.344 * U - 0.714 * V;
float B = Y + 1.772 * U;
R= R * !(R<0);
G= G * !(G<0);
B= B * !(B<0);
R=R*(!(R>255)) + 255 * (R>255);
G=G*(!(G>255)) + 255 * (G>255);
B=B*(!(B>255)) + 255 * (B>255);
cvSet2D(img1, i, j,cvScalar(B,G,R));
}
}

RGB to HSI and HSI to RGB conversion

I am trying to covert RGB to HSI and revert it. (The task is required to have it from scratch.)
In RGB to HSI convertion, Saturation and Intensity outputs are fine. But I don't seem to get the problem in the formulation of Hue.
example output:
Red = 255, Green = 255, Blue = 255
Hue = -2147483648, Saturation = 0, Intensity = 255
Red = 252, Green = 255, Blue = 255
Hue = 3, Saturation = 0.00787402, Intensity = 254
I use this calculator to check my outputs.
Please let me know what's wrong. Thanks.
#include <iostream>
#include <cv.h>
#include <highgui.h>
#include "rgb.h"
#include <cmath>
#include <algorithm>
#include <fstream>
using namespace std;
int main()
{
char infname[256];
ofstream outputFile, outputFile2;
outputFile.open("RGB_HSI.txt");
outputFile2.open("HSI_RGB.txt");
cout << "Enter input image : ";
cin >> infname;
IplImage *img = cvLoadImage(infname, 1);
RgbImage pic(img);
int H = img->height;
int W = img->width;
for (int j=0;j<H;j++)
for (int i=0;i<W;i++) {
double temp = 0;
double R =(double) pic[j][i].r;
double G =(double) pic[j][i].g;
double B =(double) pic[j][i].b;
double intensity = 0;
double hue = 0;
double saturation = 0;
int resultHue = 0;
double resultSaturation = 0;
int resultIntensity = 0;
intensity = (R + G + B) / 3;
if ((R + G + B) == 765) {
saturation = 0;
hue = 0;
}
double minimum = min(R, min(G, B));
if (intensity > 0) {
saturation = 1 - minimum / intensity;
}
else if (intensity == 0) {
saturation = 0;
}
temp = (R - (G/2) - (B/2)) / (sqrt((R*R) + (G*G) + (B*B) - (R*G) - (R*B) - (G*B)));
if (G >= B) {
hue = acos(temp);
outputFile<<"1. temp = "<<temp<<", H = "<<hue<<endl;
}
else if (B > G) {
hue = 360 - acos(temp);
outputFile<<"2. temp = "<<temp<<", H = "<<hue<<endl;
}
resultHue = (int) hue;
resultSaturation = saturation;
resultIntensity = (int) intensity;
//outputFile2<<"image = "<<pic[j][i]<<endl;
outputFile<<"Red = "<<R<<", Green = "<<G<<", Blue = "<<B<<endl;
outputFile<<"Hue = "<<resultHue<<", Saturation = "<<resultSaturation<<", Intensity = "<<resultIntensity<<endl;
//converting HSI to RGB
int backR = 0, backG = 0, backB = 0;
if (resultHue == 0){
backR = (int) (resultIntensity + (2 * resultIntensity * resultSaturation));
backG = (int) (resultIntensity - (resultIntensity * resultSaturation));
backB = (int) (resultIntensity - (resultIntensity * resultSaturation));
}
else if ((0 < resultHue) && (resultHue < 120)) {
backR = (int) (resultIntensity + (resultIntensity * resultSaturation) * cos(resultHue) / cos(60-resultHue));
backG = (int) (resultIntensity + (resultIntensity * resultSaturation) * (1 - cos(resultHue) / cos(60-resultHue)));
backB = (int) (resultIntensity - (resultIntensity * resultSaturation));
}
else if ( resultHue == 120 ){
backR = (int) (resultIntensity - (resultIntensity * resultSaturation));
backG = (int) (resultIntensity + (2 * resultIntensity * resultSaturation));
backB = (int) (resultIntensity - (resultIntensity * resultSaturation));
}
else if ((120 < resultHue) && (resultHue < 240)) {
backR = (int) (resultIntensity - (resultIntensity * resultSaturation));
backG = (int) (resultIntensity + (resultIntensity * resultSaturation) * cos(resultHue-120) / cos(180-resultHue));
backB = (int) (resultIntensity + (resultIntensity * resultSaturation) * (1 - cos(resultHue-120) / cos(180-resultHue)));
}
else if (resultHue == 240) {
backR = (int) (resultIntensity - (resultIntensity * resultSaturation));
backG = (int) (resultIntensity - (resultIntensity * resultSaturation));
backB = (int) (resultIntensity + (2 * resultIntensity * resultSaturation));
}
else if ((240 < resultHue) && (resultHue < 360)) {
backR = (int) (resultIntensity + (resultIntensity * resultSaturation) * (1 - cos(resultHue-240) / cos(300-resultHue)));
backG = (int) (resultIntensity - (resultIntensity * resultSaturation));
backB = (int) (resultIntensity + (resultIntensity * resultSaturation) * cos(resultHue-240) / cos(300-resultHue));
}
//outputpic[j][i] = (int) (R + G + B);
//outputFile2<<"output = "<<outputpic[j][i]<<endl;
outputFile2<<"Hue = "<<resultHue<<", Saturation = "<<resultSaturation<<", Intensity = "<<resultIntensity<<endl;
outputFile2<<"Red = "<<backR<<", Green = "<<backG<<", Blue = "<<backB<<endl;
}
outputFile.close();
cout << "\nRGB_HSI values printed as text file: RGB_HSI.text\n";
outputFile2.close();
cout << "\nHSI_RGB values printed as text file: HSI_RGB.text\n";
return 0;
}
The problem is in this line:
temp = (R - (G/2) - (B/2)) / (sqrt((R*R) + (G*G) + (B*B) - (R*G) - (R*B) - (G*B)));
When R = G = B, then you have a division by zero:
R² - G² - B² - RG - RB - GB = R² + R² + R² - R² - R² - R² = 0
I'm actually surprised it didn't crashed...
In that case, just assign 0 to the hue. From your link:
Neutral colors--white, gray, and black--are set to 0° for convenience.
From others answer it looks like there is a divide by zero issue when R = G = B when you calculate temp but also from what I can tell you are using degrees with the trigonometric function but they are expecting radians i.e.:
#include <cmath>
#include <iostream>
int main()
{
double pi = atan(1)*4 ;
std::cout << cos(180) << std::endl ;
std::cout << cos(360) << std::endl ;
std::cout << cos(pi) << std::endl ;
std::cout << cos(2*pi) << std::endl ;
}

bandpass butterworth filter implementation in C++

I am implementing an image analysis algorithm using openCV and c++, but I found out openCV doesnt have any function for Butterworth Bandpass filter officially.
in my project I have to pass a time series of pixels into the Butterworth 5 order filter and the function will return the filtered time series pixels. Butterworth(pixelseries,order, frequency), if you have any idea to help me of how to start please let me know. Thank you
EDIT :
after getting help, finally I come up with the following code. which can calculate the Numerator Coefficients and Denominator Coefficients, but the problem is that some of the numbers is not as same as matlab results. here is my code:
#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
using namespace std;
#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.14159
double *ComputeLP( int FilterOrder )
{
double *NumCoeffs;
int m;
int i;
NumCoeffs = (double *)calloc( FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
NumCoeffs[0] = 1;
NumCoeffs[1] = FilterOrder;
m = FilterOrder/2;
for( i=2; i <= m; ++i)
{
NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
NumCoeffs[FilterOrder-i]= NumCoeffs[i];
}
NumCoeffs[FilterOrder-1] = FilterOrder;
NumCoeffs[FilterOrder] = 1;
return NumCoeffs;
}
double *ComputeHP( int FilterOrder )
{
double *NumCoeffs;
int i;
NumCoeffs = ComputeLP(FilterOrder);
if(NumCoeffs == NULL ) return( NULL );
for( i = 0; i <= FilterOrder; ++i)
if( i % 2 ) NumCoeffs[i] = -NumCoeffs[i];
return NumCoeffs;
}
double *TrinomialMultiply( int FilterOrder, double *b, double *c )
{
int i, j;
double *RetVal;
RetVal = (double *)calloc( 4 * FilterOrder, sizeof(double) );
if( RetVal == NULL ) return( NULL );
RetVal[2] = c[0];
RetVal[3] = c[1];
RetVal[0] = b[0];
RetVal[1] = b[1];
for( i = 1; i < FilterOrder; ++i )
{
RetVal[2*(2*i+1)] += c[2*i] * RetVal[2*(2*i-1)] - c[2*i+1] * RetVal[2*(2*i-1)+1];
RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];
for( j = 2*i; j > 1; --j )
{
RetVal[2*j] += b[2*i] * RetVal[2*(j-1)] - b[2*i+1] * RetVal[2*(j-1)+1] +
c[2*i] * RetVal[2*(j-2)] - c[2*i+1] * RetVal[2*(j-2)+1];
RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
}
RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
RetVal[0] += b[2*i];
RetVal[1] += b[2*i+1];
}
return RetVal;
}
double *ComputeNumCoeffs(int FilterOrder)
{
double *TCoeffs;
double *NumCoeffs;
int i;
NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
TCoeffs = ComputeHP(FilterOrder);
if( TCoeffs == NULL ) return( NULL );
for( i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
free(TCoeffs);
return NumCoeffs;
}
double *ComputeDenCoeffs( int FilterOrder, double Lcutoff, double Ucutoff )
{
int k; // loop variables
double theta; // PI * (Ucutoff - Lcutoff) / 2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *RCoeffs; // z^-2 coefficients
double *TCoeffs; // z^-1 coefficients
double *DenomCoeffs; // dk coefficients
double PoleAngle; // pole angle
double SinPoleAngle; // sine of pole angle
double CosPoleAngle; // cosine of pole angle
double a; // workspace variables
cp = cos(PI * (Ucutoff + Lcutoff) / 2.0);
theta = PI * (Ucutoff - Lcutoff) / 2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
RCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
TCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
for( k = 0; k < FilterOrder; ++k )
{
PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
SinPoleAngle = sin(PoleAngle);
CosPoleAngle = cos(PoleAngle);
a = 1.0 + s2t*SinPoleAngle;
RCoeffs[2*k] = c2t/a;
RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
}
DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs );
free(TCoeffs);
free(RCoeffs);
DenomCoeffs[1] = DenomCoeffs[0];
DenomCoeffs[0] = 1.0;
for( k = 3; k <= 2*FilterOrder; ++k )
DenomCoeffs[k] = DenomCoeffs[2*k-2];
return DenomCoeffs;
}
void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
int i,j;
y[0]=b[0] * x[0];
for (i=1;i<ord+1;i++)
{
y[i]=0.0;
for (j=0;j<i+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<i;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
for (i=ord+1;i<np+1;i++)
{
y[i]=0.0;
for (j=0;j<ord+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<ord;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
}
int main(int argc, char *argv[])
{
//Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band
//First value is lower cutoff and second value is higher cutoff
double FrequencyBands[2] = {0.25,0.375};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
//and therefore should lie in the range [0 1]
//Filter Order
int FiltOrd = 5;
//Pixel Time Series
/*int PixelTimeSeries[N];
int outputSeries[N];
*/
//Create the variables for the numerator and denominator coefficients
double *DenC = 0;
double *NumC = 0;
//Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same
NumC = ComputeNumCoeffs(FiltOrd);
for(int k = 0; k<11; k++)
{
printf("NumC is: %lf\n", NumC[k]);
}
//is A in matlab function and the numbers are correct
DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
for(int k = 0; k<11; k++)
{
printf("DenC is: %lf\n", DenC[k]);
}
double y[5];
double x[5]={1,2,3,4,5};
filter(5, DenC, NumC, 5, x, y);
return 1;
}
I get this resutls for my code :
B= 1,0,-5,0,10,0,-10,0,5,0,-1
A= 1.000000000000000, -4.945988709743181, 13.556489496973796, -24.700711850327743,
32.994881546824828, -33.180726698160655, 25.546126213403539, -14.802008410165968,
6.285430089797051, -1.772929809750849, 0.277753012228403
but if I want to test the coefficinets in same frequency band in MATLAB, I get the following results:
>> [B, A]=butter(5, [0.25,0.375])
B = 0.0002, 0, -0.0008, 0, 0.0016, 0, -0.0016, 0, 0.0008, 0, -0.0002
A = 1.0000, -4.9460, 13.5565, -24.7007, 32.9948, -33.1806, 25.5461, -14.8020, 6.2854, -1.7729, 0.2778
I have test this website :http://www.exstrom.com/journal/sigproc/ code, but the result is equal as mine, not matlab. anybody knows why? or how can I get the same result as matlab toolbox?
I know this is a post on an old thread, and I would usually leave this as a comment, but I'm apparently not able to do that.
In any case, for people searching for similar code, I thought I would post the link from where this code originates (it also has C code for other types of Butterworth filter coefficients and some other cool signal processing code).
The code is located here:
http://www.exstrom.com/journal/sigproc/
Additionally, I think there is a piece of code which calculates said scaling factor for you already.
/**********************************************************************
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwbp( int n, double f1f, double f2f )
{
int k; // loop variables
double ctt; // cotangent of theta
double sfr, sfi; // real and imaginary parts of the scaling factor
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a, b, c; // workspace variables
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
sfr = 1.0;
sfi = 0.0;
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = ctt + sin(parg);
cparg = cos(parg);
a = (sfr + sfi)*(sparg - cparg);
b = sfr * sparg;
c = -sfi * cparg;
sfr = b - c;
sfi = a - b - c;
}
return( 1.0 / sfr );
}
I finally found it.
I just need to implement the following code from matlab source code to c++ . "the_mandrill" were right, I need to add the normalizing constant into the coefficient:
kern = exp(-j*w*(0:length(b)-1));
b = real(b*(kern*den(:))/(kern*b(:)));
EDIT:
and here is the final edition, which the whole code will return numbers exactly equal to MATLAB :
double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
double *TCoeffs;
double *NumCoeffs;
std::complex<double> *NormalizedKernel;
double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
int i;
NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
if( NumCoeffs == NULL ) return( NULL );
NormalizedKernel = (std::complex<double> *)calloc( 2*FilterOrder+1, sizeof(std::complex<double>) );
if( NormalizedKernel == NULL ) return( NULL );
TCoeffs = ComputeHP(FilterOrder);
if( TCoeffs == NULL ) return( NULL );
for( i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
double cp[2];
double Bw, Wn;
cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
cp[1] = 2*2.0*tan(PI * Ucutoff / 2.0);
Bw = cp[1] - cp[0];
//center frequency
Wn = sqrt(cp[0]*cp[1]);
Wn = 2*atan2(Wn,4);
double kern;
const std::complex<double> result = std::complex<double>(-1,0);
for(int k = 0; k<11; k++)
{
NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
}
double b=0;
double den=0;
for(int d = 0; d<11; d++)
{
b+=real(NormalizedKernel[d]*NumCoeffs[d]);
den+=real(NormalizedKernel[d]*DenC[d]);
}
for(int c = 0; c<11; c++)
{
NumCoeffs[c]=(NumCoeffs[c]*den)/b;
}
free(TCoeffs);
return NumCoeffs;
}
There are code which could be found online implementing butterworth filter. If you use the source code to try to get result matching MATLAB results, there will be the same problem.Basically the result you got from the code hasn't been normalized, and in the source code there is a variable sff in bwhp.c. If you set that to 1, the problem will be easily solved.
I recommend you to use this source code and
the source code and usage could be found here
I added the final edition of function ComputeNumCoeffs to the program and fix "FilterOrder" (k<11 to k<2*FiltOrd+1). Maybe it will save someone's time.
f1=0.5Gz, f2=10Gz, fs=127Gz/2
In MatLab
a={1.000000000000000,-3.329746259105707, 4.180522138699884,-2.365540522960743,0.514875789136976};
b={0.041065495448784, 0.000000000000000,-0.082130990897568, 0.000000000000000,0.041065495448784};
Program:
#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <complex>
using namespace std;
#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.1415926535897932384626433832795
double *ComputeLP(int FilterOrder)
{
double *NumCoeffs;
int m;
int i;
NumCoeffs = (double *)calloc(FilterOrder+1, sizeof(double));
if(NumCoeffs == NULL) return(NULL);
NumCoeffs[0] = 1;
NumCoeffs[1] = FilterOrder;
m = FilterOrder/2;
for(i=2; i <= m; ++i)
{
NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
NumCoeffs[FilterOrder-i]= NumCoeffs[i];
}
NumCoeffs[FilterOrder-1] = FilterOrder;
NumCoeffs[FilterOrder] = 1;
return NumCoeffs;
}
double *ComputeHP(int FilterOrder)
{
double *NumCoeffs;
int i;
NumCoeffs = ComputeLP(FilterOrder);
if(NumCoeffs == NULL) return(NULL);
for(i = 0; i <= FilterOrder; ++i)
if(i % 2) NumCoeffs[i] = -NumCoeffs[i];
return NumCoeffs;
}
double *TrinomialMultiply(int FilterOrder, double *b, double *c)
{
int i, j;
double *RetVal;
RetVal = (double *)calloc(4 * FilterOrder, sizeof(double));
if(RetVal == NULL) return(NULL);
RetVal[2] = c[0];
RetVal[3] = c[1];
RetVal[0] = b[0];
RetVal[1] = b[1];
for(i = 1; i < FilterOrder; ++i)
{
RetVal[2*(2*i+1)] += c[2*i] * RetVal[2*(2*i-1)] - c[2*i+1] * RetVal[2*(2*i-1)+1];
RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];
for(j = 2*i; j > 1; --j)
{
RetVal[2*j] += b[2*i] * RetVal[2*(j-1)] - b[2*i+1] * RetVal[2*(j-1)+1] +
c[2*i] * RetVal[2*(j-2)] - c[2*i+1] * RetVal[2*(j-2)+1];
RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
}
RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
RetVal[0] += b[2*i];
RetVal[1] += b[2*i+1];
}
return RetVal;
}
double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
double *TCoeffs;
double *NumCoeffs;
std::complex<double> *NormalizedKernel;
double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
int i;
NumCoeffs = (double *)calloc(2*FilterOrder+1, sizeof(double));
if(NumCoeffs == NULL) return(NULL);
NormalizedKernel = (std::complex<double> *)calloc(2*FilterOrder+1, sizeof(std::complex<double>));
if(NormalizedKernel == NULL) return(NULL);
TCoeffs = ComputeHP(FilterOrder);
if(TCoeffs == NULL) return(NULL);
for(i = 0; i < FilterOrder; ++i)
{
NumCoeffs[2*i] = TCoeffs[i];
NumCoeffs[2*i+1] = 0.0;
}
NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
double cp[2];
//double Bw;
double Wn;
cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
cp[1] = 2*2.0*tan(PI * Ucutoff/2.0);
//Bw = cp[1] - cp[0];
//center frequency
Wn = sqrt(cp[0]*cp[1]);
Wn = 2*atan2(Wn,4);
//double kern;
const std::complex<double> result = std::complex<double>(-1,0);
for(int k = 0; k<2*FilterOrder+1; k++)
{
NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
}
double b=0;
double den=0;
for(int d = 0; d<2*FilterOrder+1; d++)
{
b+=real(NormalizedKernel[d]*NumCoeffs[d]);
den+=real(NormalizedKernel[d]*DenC[d]);
}
for(int c = 0; c<2*FilterOrder+1; c++)
{
NumCoeffs[c]=(NumCoeffs[c]*den)/b;
}
free(TCoeffs);
return NumCoeffs;
}
double *ComputeDenCoeffs(int FilterOrder, double Lcutoff, double Ucutoff)
{
int k; // loop variables
double theta; // PI * (Ucutoff - Lcutoff)/2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *RCoeffs; // z^-2 coefficients
double *TCoeffs; // z^-1 coefficients
double *DenomCoeffs; // dk coefficients
double PoleAngle; // pole angle
double SinPoleAngle; // sine of pole angle
double CosPoleAngle; // cosine of pole angle
double a; // workspace variables
cp = cos(PI * (Ucutoff + Lcutoff)/2.0);
theta = PI * (Ucutoff - Lcutoff)/2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
RCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));
TCoeffs = (double *)calloc(2 * FilterOrder, sizeof(double));
for(k = 0; k < FilterOrder; ++k)
{
PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
SinPoleAngle = sin(PoleAngle);
CosPoleAngle = cos(PoleAngle);
a = 1.0 + s2t*SinPoleAngle;
RCoeffs[2*k] = c2t/a;
RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
}
DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs);
free(TCoeffs);
free(RCoeffs);
DenomCoeffs[1] = DenomCoeffs[0];
DenomCoeffs[0] = 1.0;
for(k = 3; k <= 2*FilterOrder; ++k)
DenomCoeffs[k] = DenomCoeffs[2*k-2];
return DenomCoeffs;
}
void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
int i,j;
y[0]=b[0] * x[0];
for (i=1;i<ord+1;i++)
{
y[i]=0.0;
for (j=0;j<i+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<i;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
for (i=ord+1;i<np+1;i++)
{
y[i]=0.0;
for (j=0;j<ord+1;j++)
y[i]=y[i]+b[j]*x[i-j];
for (j=0;j<ord;j++)
y[i]=y[i]-a[j+1]*y[i-j-1];
}
}
int main(int argc, char *argv[])
{
(void)argc;
(void)argv;
//Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band
//First value is lower cutoff and second value is higher cutoff
//f1 = 0.5Gz f2=10Gz
//fs=127Gz
//Kotelnikov/2=Nyquist (127/2)
double FrequencyBands[2] = {0.5/(127.0/2.0),10.0/(127.0/2.0)};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
//and therefore should lie in the range [0 1]
//Filter Order
int FiltOrd = 2;//5;
//Pixel Time Series
/*int PixelTimeSeries[N];
int outputSeries[N];
*/
//Create the variables for the numerator and denominator coefficients
double *DenC = 0;
double *NumC = 0;
//Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same
printf("\n");
//is A in matlab function and the numbers are correct
DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
for(int k = 0; k<2*FiltOrd+1; k++)
{
printf("DenC is: %lf\n", DenC[k]);
}
printf("\n");
NumC = ComputeNumCoeffs(FiltOrd,FrequencyBands[0],FrequencyBands[1],DenC);
for(int k = 0; k<2*FiltOrd+1; k++)
{
printf("NumC is: %lf\n", NumC[k]);
}
double y[5];
double x[5]={1,2,3,4,5};
filter(5, DenC, NumC, 5, x, y);
return 1;
}