i have a list
[1,1,1,1,1]
and i am trying to write function which will return list
[2,3,4,5,6]
i want to use function map like this
map (+1) [1,1,1,1,1]
which will return
[2,2,2,2,2]
after that i want to call map function on last four elements of returned list so after i get [2,2,2,2,2] i want to use map on last four [2,2,2,2] that will return [3,3,3,3] and replace last four elements from first map call so i get [2,3,3,3,3] etc..
map (+1)[1,1,1,1,1]
map (+1) [2,2,2,2]
map (+1) [3,3,3]
map (+1) [4,4]
map (+1) [5]
returned:
[2,2,2,2,2]
[2,3,3,3,3]
[2,3,4,4,4]
[2,3,4,5,5]
[2,3,4,5,6]
i need to return only last list...
btw this is only Simplified version, originaly i have list of lists ... i just cant figure how to call function how i described..
thanks.
I think you want something like
mapTails f [] = []
mapTails f (x:xs) = f x : mapTails f (map f xs)
IMO the most elegant way would be
zipWith($) $ iterate((+1).) id
scanl almost does what you want:
Prelude> scanl (+) 1 [1,1,1,1,1]
[1,2,3,4,5,6]
You could drop the first item, which is just the initial state value we're passing in:
Prelude> tail $ scanl (+) 1 [1,1,1,1,1]
[2,3,4,5,6]
You can accomplish what you're looking for using a recursive function, instead:
myFn :: Num a => [a] -> [a]
myFn [] = []
myFn (x:xs) = x + 1 : (myFn $ map (+1) xs)
main = print $ myFn [1,1,1,1,1] -- Prints [2,3,4,5,6]
See http://codepad.org/wBwynlGt
Would something like this do what you want?
startList = [1,1,1,1] -- orwhatever you want it to be
map (\(x,i) -> x + i) $ zip startList [1..]
The zip basically pairs each element in the list with what you want to add to it, and the map function then adds each element in the list to that value to get the result you want.
Your algorithm version O(n2) time:
plusSlow :: [Int] -> [Int]
plusSlow [] = []
plusSlow (x:xs) = (head mapped):(plusSlow $ tail mapped)
where mapped = map (+1) (x:xs)
Faster version O(n) time:
plusFast :: [Int] -> [Int]
plusFast x = pf x 1
pf :: [Int] -> Int -> [Int]
pf [] _ = []
pf (x:xs) n = (x+n):(pf xs (n+1))
Related
I'm trying to change a list in haskell to include 0 between every element. If we have initial list [1..20] then i would like to change it to [1,0,2,0,3..20]
What i thought about doing is actually using map on every function, extracting element then adding it to list and use ++[0] to it but not sure if this is the right approach or not. Still learning haskell so might have errors.
My code:
x = map classify[1..20]
classify :: Int -> Int
addingFunction 0 [Int]
addingFunction :: Int -> [a] -> [a]
addingFunction x xs = [a] ++ x ++ xs
intersperse is made for this. Just import Data.List (intersperse), then intersperse 0 yourList.
You cannot do this with map. One of the fundamental properties of map is that its output will always have exactly as many items as its input, because each output element corresponds to one input, and vice versa.
There is a related tool with the necessary power, though:
concatMap :: (a -> [b]) -> [a] -> [b]
This way, each input item can produce zero or more output items. You can use this to build the function you wanted:
between :: a -> [a] -> [a]
sep `between` xs = drop 1 . concatMap insert $ xs
where insert x = [sep, x]
0 `between` [1..10]
[1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10]
Or a more concise definition of between:
between sep = drop 1 . concatMap ((sep :) . pure)
With simple pattern matching it should be:
addingFunction n [] = []
addingFunction n [x] = [x]
addingFunction n (x:xs) = x: n : (addingFunction n xs)
addingFunction 0 [1..20]
=> [1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14,0,15,0,16,0,17,0,18,0,19,0,20]
If you want to use map to solve this, you can do something like this:
Have a function that get a int and return 2 element list with int and zero:
addZero :: List
addZero a = [0, a]
Then you can call map with this function:
x = map addZero [1..20] -- this will return [[0,1], [0, 2] ...]
You will notice that it is a nested list. That is just how map work. We need a way to combine the inner list together into just one list. This case we use foldl
combineList :: [[Int]] -> [Int]
combineList list = foldl' (++) [] list
-- [] ++ [0, 1] ++ [0, 2] ...
So the way foldl work in this case is that it accepts a combine function, initial value, and the list to combine.
Since we don't need the first 0 we can drop it:
dropFirst :: [Int] -> [Int]
dropFirst list = case list of
x:xs -> xs
[] -> []
Final code:
x = dropFirst $ combineList $ map addZero [1..20]
addZero :: Int -> [Int]
addZero a = [0, a]
combineList :: [[Int]] -> [Int]
combineList list = foldl (++) [] list
dropFirst :: [Int] -> [Int]
dropFirst list = case list of
x:xs -> xs
[] -> []
We here can make use of a foldr pattern where for each element in the original list, we prepend it with an 0:
addZeros :: Num a => [a] -> [a]
addZeros [] = []
addZeros (x:xs) = x : foldr (((0 :) .) . (:)) [] xs
If you don't want to use intersperse, you can write your own.
intersperse :: a -> [a] -> [a]
intersperse p as = drop 1 [x | a <- as, x <- [p, a]]
If you like, you can use Applicative operations:
import Control.Applicative
intersperse :: a -> [a] -> [a]
intersperse p as = drop 1 $ as <**> [const p, id]
This is basically the definition used in Data.Sequence.
I'm new in haskell programming and I try to solve a problem by/not using list comprehensions.
The Problem is to find the index of an element in a list and return a list of the indexes (where the elements in the list was found.)
I already solved the problem by using list comprehensions but now i have some problems to solve the problem without using list comprehensions.
On my recursive way:
I tried to zip a list of [0..(length list)] and the list as it self.
then if the element a equals an element in the list -> make a new list with the first element of the Tupel of the zipped list(my index) and after that search the function on a recursive way until the list is [].
That's my list comprehension (works):
positions :: Eq a => a -> [a] -> [Int]
positions a list = [x | (x,y) <- zip [0..(length list)] list, a == y]
That's my recursive way (not working):
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then n:(positions' a xs)
else (positions' a xs)
*sorry I don't know how to highlight words
but ghci says:
*Main> positions' 2 [1,2,3,4,5,6,7,8,8,9,2]
[0,0]
and it should be like that (my list comprehension):
*Main> positions 2 [1,2,3,4,5,6,7,8,8,9,2]
[1,10]
Where is my mistake ?
The problem with your attempt is simply that when you say:
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
then n will always be 0. That's because you are matching (n,m) against the first element of zip [0..(length (x:xs))] (x:xs), which will necessarily always be (0,x).
That's not a problem in itself - but it does mean you have to handle the recursive step properly. The way you have it now, positions _ _, if non-empty, will always have 0 as its first element, because the only way you allow it to find a match is if it's at the head of the list, resulting in an index of 0. That means that your result will always be a list of the correct length, but with all elements 0 - as you're seeing.
The problem isn't with your recursion scheme though, it's to do with the fact that you're not modifying the result to account for the fact that you don't always want 0 added to the front of the result list. Since each recursive call just adds 1 to the index you want to find, all you need to do is map the increment function (+1) over the recursive result:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
let ((0,m):ns) = zip [0..(length (x:xs))] (x:xs)
in if (a == m) then 0:(map (+1) (positions' a xs))
else (map (+1) (positions' a xs))
(Note that I've changed your let to be explicit that n will always be 0 - I prefer to be explicit this way but this in itself doesn't change the output.) Since m is always bound to x and ns isn't used at all, we can elide the let, inlining the definition of m:
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if a == x
then 0 : map (+1) (positions' a xs)
else map (+1) (positions' a xs)
You could go on to factor out the repeated map (+1) (positions' a xs) if you wanted to.
Incidentally, you didn't need explicit recursion to avoid a list comprehension here. For one, list comprehensions are basically a replacement for uses of map and filter. I was going to write this out explicitly, but I see #WillemVanOnsem has given this as an answer so I will simply refer you to his answer.
Another way, although perhaps not acceptable if you were asked to implement this yourself, would be to just use the built-in elemIndices function, which does exactly what you are trying to implement here.
We can make use of a filter :: (a -> Bool) -> [a] -> [a] and map :: (a -> b) -> [a] -> [b] approach, like:
positions :: Eq a => a -> [a] -> [Int]
positions x = map fst . filter ((x ==) . snd) . zip [0..]
We thus first construct tuples of the form (i, yi), next we filter such that we only retain these tuples for which x == yi, and finally we fetch the first item of these tuples.
For example:
Prelude> positions 'o' "foobaraboof"
[1,2,8,9]
Your
let ((n,m):ns) = zip [0..(length (x:xs))] (x:xs)
is equivalent to
== {- by laziness -}
let ((n,m):ns) = zip [0..] (x:xs)
== {- by definition of zip -}
let ((n,m):ns) = (0,x) : zip [1..] xs
== {- by pattern matching -}
let {(n,m) = (0,x)
; ns = zip [1..] xs }
== {- by pattern matching -}
let { n = 0
; m = x
; ns = zip [1..] xs }
but you never reference ns! So we don't need its binding at all:
positions' a (x:xs) =
let { n = 0 ; m = x } in
if (a == m) then n : (positions' a xs)
else (positions' a xs)
and so, by substitution, you actually have
positions' :: Eq a => a -> [a] -> [Int]
positions' _ [] = []
positions' a (x:xs) =
if (a == x) then 0 : (positions' a xs) -- NB: 0
else (positions' a xs)
And this is why all you ever produce are 0s. But you want to produce the correct index: 0, 1, 2, 3, ....
First, let's tweak your code a little bit further into
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs
where
go [] = []
go (x:xs) | a == x = 0 : go xs -- NB: 0
| otherwise = go xs
This is known as a worker/wrapper transform. go is a worker, positions' is a wrapper. There's no need to pass a around from call to call, it doesn't change, and we have access to it anyway. It is in the enclosing scope with respect to the inner function, go. We've also used guards instead of the more verbose and less visually apparent if ... then ... else.
Now we just need to use something -- the correct index value -- instead of 0.
To use it, we must have it first. What is it? It starts as 0, then it is incremented on each step along the input list.
When do we make a step along the input list? At the recursive call:
positions' :: Eq a => a -> [a] -> [Int]
positions' a = go xs 0
where
go [] _ = []
go (x:xs) i | a == x = 0 : go xs (i+1) -- NB: 0
| otherwise = go xs (i+1)
_ as a pattern means we don't care about the argument's value -- it's there but we're not going to use it.
Now all that's left for us to do is to use that i in place of that 0.
I need to create or know if there is a function in Haskell that allows you to add items from a list. So, for example:
cumulativeAmount :: [Integer] -> [Integer]
cumulativeAmount [1,2,5,8,8,0,4,2] = [1,3,8,16,24,24,28,30]
cumulativeAmount [1,4,7,0,5] = [1, 1+4, 1+4+7, 1+4+7+0, 1+4+7+0+5] = [1,5,12,12,17]
I tried to use the map and scanl function, but I didn't get what I wanted, because I added all the elements.
This is exactly the purpose of scanl1 :: (a -> a -> a) -> [a] -> [a]:
Prelude> scanl1 (+) [1,2,5,8,8,0,4,2]
[1,3,8,16,24,24,28,30]
scanl1 takes as input a function f :: a -> a -> a (here (+)), and a list of as. It constructs a list where the first item is the first item of the list. This is the first value of the accumulator. Then for every value, the accumulator is updated by calling f with the accumulator and the next value of the list, this item is then yielded.
So in case of scal1 (+) [1,2,5] the first item we emit is 1, we also set the accumulator to 1. The next item is 2, so we call (+) 1 2 (which is 3) and this is the result and the new accumulator, next we call (+) ((+) 1 2) 5 (which is 8), etc.
But I think it is better, as an exercise to use recursion. Like said before we use an accumulator. We can implement this by introducing an extra function where the accumulator is a function we pass through the recursive calls (and update). So in that case it looks like:
cumulativeAmount :: [Integer] -> [Integer]
cumulativeAmount [] = ...
cumulativeAmount (x:xs) = go x xs
where go x xs = ...
so here the first argument of go (x) is the accumulator. I leave it as an exercise to implement it with recursion.
What about using an accumulator:
cumulativeAmount :: (Num a) => [a] -> [a]
cumulativeAmount xs = go xs 0
where go [] acc = []
go (x:xs) acc = (acc+x) : go xs (acc+x)
Which works as follows:
*Main> cumulativeAmount [1,2,5,8,8,0,4,2]
[1,3,8,16,24,24,28,30]
The above code keeps a state variable acc to accumulate sums whenever a new number is encountered, and adds the new sum to the resulting list.
Now a good exercise would be to replace the above code with higher order functions.
Off the top of my head, you could solve this with a list comprehension, like so:
cumulativeAmount xs = [ sum $ take x xs | x <- [1..length xs] ]
I want to write a function in haskell that takes a list of integers and an integer value as input and outputs a list of all the lists that contain combinations of elements that add up to the input integer.
For example:
myFunc [3,7,5,9,13,17] 30 = [[13,17],[3,5,9,13]]
Attempt:
myFunc :: [Integer] -> Integer -> [[Integer]]
myFunc list sm = case list of
[] -> []
[x]
| x == sm -> [x]
| otherwise -> []
(x : xs)
| x + myFunc xs == sm -> [x] ++ myFunc[xs]
| otherwise -> myFunc xs
My code produces just one combination and that combination must be consecutive, which is not what I want to achieve
Write a function to create all subsets
f [] = [[]]
f (x:xs) = f xs ++ map (x:) (f xs)
then use the filter
filter ((==30) . sum) $ f [3,7,5,9,13,17]
[[13,17],[3,5,9,13]]
as suggested by #Ingo you can prune the list while it's generated, for example
f :: (Num a, Ord a) => [a] -> [[a]]
f [] = [[]]
f (x:xs) = f xs ++ (filter ((<=30) . sum) $ map (x:) $ f xs)
should work faster than generating all 2^N elements.
You can use subsequences from Data.List to give you every possible combination of values, then filter based on your requirement that they add to 30.
myFunc :: [Integer] -> Integer -> [[Integer]]
myFunc list sm =
filter (\x -> sum x == sm) $ subsequences list
An alternative would be to use a right fold:
fun :: (Foldable t, Num a, Eq a) => t a -> a -> [[a]]
fun = foldr go $ \a -> if a == 0 then [[]] else []
where go x f a = f a ++ ((x:) <$> f (a - x))
then,
\> fun [3,7,5,9,13,17] 30
[[13,17],[3,5,9,13]]
\> fun [3,7,5,9,13,17] 12
[[7,5],[3,9]]
An advantage of this approach is that it does not create any lists unless it adds up to the desired value.
Whereas, an approach based on filtering, will create all the possible sub-sequence lists only to drop most of them during filtering step.
Here is an alternate solution idea: Generate a list of lists that sum up to the target number, i.e.:
[30]
[29,1]
[28,2]
[28,1,1]
...
and only then filter the ones that could be build from your given list.
Pro: could be much faster, especially if your input list is long and your target number comparatively small, such that the list of list of summands is much smaller than the list of subsets of your input list.
Con: does only work when 0 is not in the game.
Finally, you can it do both ways and write a function that decides which algorthm will be faster given some input list and the target number.
I am trying to invert two-elements lists in xs. For example, invert [[1,2], [5,6,7], [10,20]] will return [[2,1], [5,6,7], [20,10]]. It doesn't invert [5,6,7] because it is a 3 element list.
So I have written this so far:
invert :: [[a]] -> [[a]]
invert [[]] = [[]]
which is just the type declaration and an empty list case. I am new to Haskell so any suggestions on how to implement this problem would be helpful.
Here's one way to do this:
First we define a function to invert one list (if it has two elements; otherwise we return the list unchanged):
invertOne :: [a] -> [a]
invertOne [x, y] = [y, x]
invertOne xs = xs
Next we apply this function to all elements of an input list:
invert :: [[a]] -> [[a]]
invert xs = map invertOne xs
(Because that's exactly what map does: it applies a function to all elements of a list and collects the results in another list.)
Your inert function just operations on each element individually, so you can express it as a map:
invert xs = map go xs
where go = ...
Here go just inverts a single list according to your rules, i.e.:
go [1,2] = [2,1]
go [4,5,6] = [4,5,6]
go [] = []
The definition of go is pretty straight-forward:
go [a,b] = [b,a]
go xs = xs -- go of anything else is just itself
I would do this:
solution ([a,b]:xs) = [b,a] : solution xs
solution (x:xs) = x : solution xs
solution [] = []
This explicitly handles 2-element lists, leaving everything else alone.
Yes, you could do this with map and an auxiliary function, but for a beginner, understanding the recursion behind it all may be valuable.
Note that your 'empty list case' is not empty. length [[]] is 1.
Examine the following solution:
invert :: [[a]] -> [[a]]
invert = fmap conditionallyInvert
where
conditionallyInvert xs
| lengthOfTwo xs = reverse xs
| otherwise = xs
lengthOfTwo (_:_:_) = True
lengthOfTwo _ = False