Does valgrind memcheck support checking mmap - c++

I am trying valgrind for detecting memory leak. It works well on heap leak(i.e. memory allocation from malloc or new). however, does it support check mmap leaking in linux?
Thanks
Chang

Not directly, it's very hard to debug, take a look to valgrind.h
VALGRIND_MALLOCLIKE_BLOCK should be put immediately after the point where a
heap block -- that will be used by the client program -- is allocated.
It's best to put it at the outermost level of the allocator if possible;
for example, if you have a function my_alloc() which calls
internal_alloc(), and the client request is put inside internal_alloc(),
stack traces relating to the heap block will contain entries for both
my_alloc() and internal_alloc(), which is probably not what you want.
For Memcheck users: if you use VALGRIND_MALLOCLIKE_BLOCK to carve out
custom blocks from within a heap block, B, that has been allocated with
malloc/calloc/new/etc, then block B will be *ignored* during leak-checking
-- the custom blocks will take precedence.
VALGRIND_FREELIKE_BLOCK is the partner to VALGRIND_MALLOCLIKE_BLOCK. For
Memcheck, it does two things:
- It records that the block has been deallocated. This assumes that the
block was annotated as having been allocated via
VALGRIND_MALLOCLIKE_BLOCK. Otherwise, an error will be issued.
- It marks the block as being unaddressable.
VALGRIND_FREELIKE_BLOCK should be put immediately after the point where a
heap block is deallocated.

Sadly, valgrind's memcheck doesn't support mmap tracking (at least not out of the box), but there's hope.
I've recently came across valgrind-mmt, a valgrind fork for tracing mmap memory accesses and allocations:
https://nouveau.freedesktop.org/wiki/Valgrind-mmt
It is developed by envytools, and seems to be used mostly for graphic drivers developement.
The mmap tracing tool, mmt, does deep tracing on all access to mmapped memory, including loads and stores. This may be too much for the job of finding leaking mmap memory, and the output of the tool needs be processed and analyzed, but with some careful work it may be useful for detecting mmap leak scenarios. Personally, I've had only partial success using it, but perhaps others will be more lucky.
Note that, it may not be suitable for anonymous mmap allocations.
For getting started:
Clone and build the envytools/envytools repository
Clone and build the envytools/valgrind repository
Run valgrind with the following parameters:
/usr/local/bin/valgrind --tool=mmt --mmt-trace-file=[mmapped-file-to-be-traced] --log-file=mmt-log.bin
Decode mmt output: demmt -l mmt-log.bin > mmt-log.txt

Related

How to find "weak" memory leaks

In C++ programs, I have sometimes had problems with "weak" memory leaks. By that, I mean that some objects accumulate resources, but, eventually, these objects are destroyed properly and their memory is released, so that these leaks do not show up using the traditional memory debugging tools like valgrind or address sanitizers.
A typical example would be a poorly-written cache that keeps all the cached results from the beginning of the program. It grows forever, but its memory is reclaimed at the end of the program, when the cache is destroyed.
How can one debug this ? Are there tools available to see where are the largest objects allocated by the program ? To dump the current state of allocated memory (including call stack) ? To see which objects are growing ? I'm using Linux, but I am interested in other platforms as well.
If other platforms are an option, I would recommend Visual Studio on Windows.
It has powerful profiling options, including one for memory usage.
https://learn.microsoft.com/en-us/visualstudio/profiling/memory-usage
While debugging you can take a snapshot to see where memory is being used.
You can also take memory usage snapshots at different times and compare them.
You can use a profiler like e.g. Intel VTune (this is available for Linux as well) to trace memory consumption of your application. In VTune, you can see the memory consumption over time, and select a time window to see where memory was allocated during that window.
It still will be difficult to detect such problems if your application allocates and deallocates a lot of memory correctly, and only a small fraction is deallocated too late. In that case you need to check a lot of allocations/deallocations before you can find the bad one(s).

Why does jemalloc memory profile evaluated by jeprof seem to show all memory allocations?

We are trying to track down a memory leak in proxysql (2.0.14) which uses jemalloc (5.2.0). We compiled proxysql with debug symbols enabled. The jemalloc configuration that is baked into proxysql is the following:
xmalloc:true,lg_tcache_max:16,prof:true,prof_leak:true,lg_prof_sample:20,lg_prof_interval:30,prof_active:false
The memory profiling is enabled at runtime with PROXYSQL MEMPROFILE START as can be seen here. This sets memory profiling to active:
bool en=true;
mallctl("prof.active", NULL, NULL, &en, sizeof(bool));
This appears to work as the heap profile files are being generated, however when we analyse them with jeprof, it appears to log all memory allocations and not just the memory leaks. The pdf that we generated using jeprof can be found here. As you can see, it seems like jeprof shows all of the memory allocations, instead of just the leaked ones.
From looking at other memory profiles, they display a smaller amount of memory total, whereas here in this profile we are seeing 21GB of total memory, which is more than what the server could allocate. However, we are not sure where the problem lies - with jeprof, the configuration, or something else entirely.
For reference we have added a sample heap profile here in case this will give an indication of what is going wrong.
I think this may reflect some of the ambiguity in what "leak" means. Tools like Valgrind will traverse the pointer graph of the program at shutdown, and treat things as leaks if that traversal does not find some live allocation.
Other tools treat "leaks" as simply anything allocated but not freed. The profiling mode in jemalloc works more like this way. It reports an estimation of the live bytes attributable to various call stacks at program termination.

Memory stability of a C++ application in Linux

I want to verify the memory stability of a C++ application I wrote and compiled for Linux.
It is a network application that responds to remote clients connectings in a rate of 10-20 connections per second.
On long run, memory was rising to 50MB, eventhough the app was making calls to delete...
Investigation shows that Linux does not immediately free memory. So here are my questions :
How can force Linux to free memory I actually freed? At least I want to do this once to verify memory stability.
Otherwise, is there any reliable memory indicator that can report memory my app is actually holding?
What you are seeing is most likely not a memory leak at all. Operating systems and malloc/new heaps both do very complex accounting of memory these days. This is, in general, a very good thing. Chances are any attempt on your part to force the OS to free the memory will only hurt both your application performance and overall system performance.
To illustrate:
The Heap reserves several areas of virtual memory for use. None of it is actually committed (backed by physical memory) until malloc'd.
You allocate memory. The Heap grows accordingly. You see this in task manager.
You allocate more memory on the Heap. It grows more.
You free memory allocated in Step 2. The Heap cannot shrink, however, because the memory in #3 is still allocated, and Heaps are unable to compact memory (it would invalidate your pointers).
You malloc/new more stuff. This may get tacked on after memory allocated in step #3, because it cannot fit in the area left open by free'ing #2, or because it would be inefficient for the Heap manager to scour the heap for the block left open by #2. (depends on the Heap implementation and the chunk size of memory being allocated/free'd)
So is that memory at step #2 now dead to the world? Not necessarily. For one thing, it will probably get reused eventually, once it becomes efficient to do so. In cases where it isn't reused, the Operating System itself may be able to use the CPU's Virtual Memory features (the TLB) to "remap" the unused memory right out from under your application, and assign it to another application -- on the fly. The Heap is aware of this and usually manages things in a way to help improve the OS's ability to remap pages.
These are valuable memory management techniques that have the unmitigated side effect of rendering fine-grained memory-leak detection via Process Explorer mostly useless. If you want to detect small memory leaks in the heap, then you'll need to use runtime heap leak-detection tools. Since you mentioned that you're able to build on Windows as well, I will note that Microsoft's CRT has adequate leak-checking tools built-in. Instructions for use found here:
http://msdn.microsoft.com/en-us/library/974tc9t1(v=vs.100).aspx
There are also open-source replacements for malloc available for use with GCC/Clang toolchains, though I have no direct experience with them. I think on Linux Valgrind is the preferred and more reliable method for leak-detection anyway. (and in my experience easier to use than MSVCRT Debug).
I would suggest using valgrind with memcheck tool or any other profiling tool for memory leaks
from Valgrind's page:
Memcheck
detects memory-management problems, and is aimed primarily at
C and C++ programs. When a program is run under Memcheck's
supervision, all reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted. As a result, Memcheck can
detect if your program:
Accesses memory it shouldn't (areas not yet allocated, areas that have been freed, areas past the end of heap blocks, inaccessible areas
of the stack).
Uses uninitialised values in dangerous ways.
Leaks memory.
Does bad frees of heap blocks (double frees, mismatched frees).
Passes overlapping source and destination memory blocks to memcpy() and related functions.
Memcheck reports these errors as soon as they occur, giving the source
line number at which it occurred, and also a stack trace of the
functions called to reach that line. Memcheck tracks addressability at
the byte-level, and initialisation of values at the bit-level. As a
result, it can detect the use of single uninitialised bits, and does
not report spurious errors on bitfield operations. Memcheck runs
programs about 10--30x slower than normal. Cachegrind
Massif
Massif is a heap profiler. It performs detailed heap profiling by
taking regular snapshots of a program's heap. It produces a graph
showing heap usage over time, including information about which parts
of the program are responsible for the most memory allocations. The
graph is supplemented by a text or HTML file that includes more
information for determining where the most memory is being allocated.
Massif runs programs about 20x slower than normal.
Using valgrind is as simple as running application with desired switches and give it as an input of valgrind:
valgrind --tool=memcheck ./myapplication -f foo -b bar
I very much doubt that anything beyond wrapping malloc and free [or new and delete ] with another function can actually get you anything other than very rough estimates.
One of the problems is that the memory that is freed can only be released if there is a long contiguous chunk of memory. What typically happens is that there are "little bits" of memory that are used all over the heap, and you can't find a large chunk that can be freed.
It's highly unlikely that you will be able to fix this in any simple way.
And by the way, your application is probably going to need those 50MB later on when you have more load again, so it's just wasted effort to free it.
(If the memory that you are not using is needed for something else, it will get swapped out, and pages that aren't touched for a long time are prime candidates, so if the system runs low on memory for some other tasks, it will still reuse the RAM in your machine for that space, so it's not sitting there wasted - it's just you can't use 'ps' or some such to figure out how much ram your program uses!)
As suggested in a comment: You can also write your own memory allocator, using mmap() to create a "chunk" to dole out portions from. If you have a section of code that does a lot of memory allocations, and then ALL of those will definitely be freed later, to allocate all those from a separate lump of memory, and when it's all been freed, you can put the mmap'd region back into a "free mmap list", and when the list is sufficiently large, free up some of the mmap allocations [this is in an attempt to avoid calling mmap LOTS of times, and then munmap again a few millisconds later]. However, if you EVER let one of those memory allocations "escape" out of your fenced in area, your application will probably crash (or worse, not crash, but use memory belonging to some other part of the application, and you get a very strange result somewhere, such as one user gets to see the network content supposed to be for another user!)
Use valgrind to find memory leaks : valgrind ./your_application
It will list where you allocated memory and did not free it.
I don't think it's a linux problem, but in your application. If you monitor the memory usage with « top » you won't get very precise usages. Try using massif (a tool of valgrind) : valgrind --tool=massif ./your_application to know the real memory usage.
As a more general rule to avoid leaks in C++ : use smart pointers instead of normal pointers.
Also in many situations, you can use RAII (http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization) instead of allocating memory with "new".
It is not typical for an OS to release memory when you call free or delete. This memory goes back to the heap manager in the runtime library.
If you want to actually release memory, you can use brk. But that opens up a very large can of memory-management worms. If you directly call brk, you had better not call malloc. For C++, you can override new to use brk directly.
Not an easy task.
The latest dlmalloc() has a concept called an mspace (others call it a region). You can call malloc() and free() against an mspace. Or you can delete the mspace to free all memory allocated from the mspace at once. Deleting an mspace will free memory from the process.
If you create an mspace with a connection, allocate all memory for the connection from that mspace, and delete the mspace when the connection closes, you would have no process growth.
If you have a pointer in one mspace pointing to memory in another mspace, and you delete the second mspace, then as the language lawyers say "the results are undefined".

How to inspect what state of my c++ program is growing in memory?

I don't use dynamic memory allocation (except for 3 lines in which i do static A* a = new... but that only happens once)...and yet when I run for several iterations memory usage as seen via top(1) seems to increase with number of iterations..I set a breakpoint with a high ignore count and then examined internal data structures to make sure they were not growing (most of my state is in a vector< vector >) but they get recycled and all entries were vectors of size/capacity 100 (the initial default) even after a while.
What are some ways in which I can investigate the growing memory trace maybe using gdb or anything else?
If you are on Linux, you can use the wonderful Valgrind tool. Install it, compile your program with -g flag, and run
$ valgrind ./my_prog
And read the log it prints for you, there you will see a summary of your memory usage and instructions on how to get even more info.
As Ivella suggest, you can use Valgrind to profile your heap (via massif) or check for memory leaks or access errors (via memcheck). You say you do no dynamic memory allocation - yet std::vector allocates on the heap via dynamic memory allocation. There is no guarantee that the C++ standard library will always return recycled heap memory back to the operating system during the run of your program - so it's entirely possible that memory utilisation might increase slowly over time whilst not leaking in any harmful way.
For memory error/leak checking:
valgrind --tool=memcheck <program to analyse>
For heap profiling:
valgrind --tool=massif <program to analyse>

Memory leak tracing with AppVerifier

I have a C++ application that has some minimal leaks, and I would like to fix them. I am using AppVerifier to dump the leaked objects, and I can get the addresses and first few bytes of the allocated memory.
Unfortunately, those first bytes and raw address is not enough to pinpoint the allocation stack trace, is there a method to get complete allocation data dump, and find the stack that's allocating the memory?
I could put _CrtSetBreakAlloc via the leak number, but unfortunatelly it's a threaded application and those numbers float up and down.
Does anyone have a suggestion what I could try?
With the gflags utility you can enable storing call stack information (gflags +ust). However, your applications will now run slower and take more memory.
Side-remark: To be honest, I never got all those Microsoft utilities (leak-tracing in the C-RunTime, Gflags, UMDH, AppVerifier, LeakDiag) to do exactly what I wanted. In the end, I simply wrote my own memory allocator in which I can add whatever tracing I want (call stack, red zone marking, delayed freeing, consistency checking, ...).
You could try using UMDH to track memory leaks. You first have to use GFlags to turn on storing call stack tracing whenever memory is allocated. The docs on UMDH state how to use it.
But recently I've finally tried out visual leak detector, and it works fabulous on my monstrous, big app.
http://vld.codeplex.com