I have a buffer containing a "raw" BGRA texture with one byte per color.
The lines are in reversed order (the texture is upside down).
The BGRA buffer is all green (0, 255, 0, 255).
I need to convert that to RGBA and flip the textures lines.
I tried this:
// bgra is an unsigned char*
int width = 1366;
int height = 768;
unsigned char* rgba = new unsigned char[width * height * 4];
for(int y = height - 1; y >= 0; y--)
{
for(int x = 0; x < width; x++)
{
rgba[(x * y * 4)] = bgra[(x * y * 4) + 2];
rgba[(x * y * 4) + 1] = bgra[(x * y * 4) + 1];
rgba[(x * y * 4) + 2] = bgra[(x * y * 4)];
rgba[(x * y * 4) + 3] = bgra[(x * y * 4) + 3];
}
}
But the result when rendered is not a full green screen, but this:
What might i be doing wrong here?
You're indexing wrong.
This is how it should be done:
rgba[(x + y * width) * 4] = bgra[(x + y * width) * 4 + 2]
Related
Here is my sobel filter function performed on a grayscale image. Apparently I'm not doing my calculations correct because I keep getting an all black image. I have already turned in the project but it is bothering me that the results aren't right.
int sobelH[3][3] = { -1, 0, 1,
-2, 0, 2,
-1, 0, 1 },
sobelV[3][3] = { 1, 2, 1,
0, 0, 0,
-1, -2, -1 };
//variable declaration
int mag;
int pix_x, pix_y = 0;
int img_x, img_y;
for (img_x = 0; img_x < img->x; img_x++)
{
for (img_y = 0; img_y < img->y; img_y++)
{
pix_x = 0;
pix_y = 0;
//calculating the X and Y convolutions
for (int i = -1; i <= 1; i++)
{
for (int j = -1; j <= 1; j++)
{
pix_x += (img->data[img_y * img->x + img_x].red + img->data[img_y * img->x + img_x].green + img->data[img_y * img->x + img_x].blue) * sobelH[1 + i][1 + j];
pix_y += (img->data[img_y * img->x + img_x].red + img->data[img_y * img->x + img_x].green + img->data[img_y * img->x + img_x].blue) * sobelV[1 + i][1 + j];
}
}
//Gradient magnitude
mag = sqrt((pix_x * pix_x) + (pix_y * pix_y));
if (mag > RGB_COMPONENT_COLOR)
mag = 255;
if (mag < 0)
mag = 0;
//Setting the new pixel value
img->data[img_y * img->x + img_x].red = mag;
img->data[img_y * img->x + img_x].green = mag;
img->data[img_y * img->x + img_x].blue = mag;
}
}
Although your code could use some improvement, the main reason is that you compute the convolution at constant img_y and img_x. What you need to do is:
pix_x += (img->data[img_y * img->x + img_x + i].red + img->data[img_y * img->x + img_x + i].green + img->data[img_y * img->x + img_x + i].blue) * sobelH[1 + i][1 + j];
Indeed, the Sobel convolution is symmetric, so if you compute the convolution with a constant image, it will result in only black.
Note that in the above example I do not take into account the border of the image. You should make sure to not access pixels that are outside your pixel array.
Another mistake is that you're writing in the input image. You write at location (x,y), then compute the filter result for location (x+1,y) using the modified value at (x,y), which is the wrong value to use.
You need to write your result to a new image.
I want to get pixel color on raster coordinates like for example:
[0,0] - pixel in first row and first column (top left)
[0,1] - pixel in first row and second column and so on.
I'm loading my bitmap like so:
BitsPerPixel = FileInfo[28];
width = FileInfo[18] + (FileInfo[19] << 8);
height = FileInfo[22] + (FileInfo[23] << 8);
int PixelsOffset = FileInfo[10] + (FileInfo[11] << 8);
int size = ((width * BitsPerPixel + 31) / 32) * 4 * height;
Pixels.resize(size);
hFile.seekg(PixelsOffset, ios::beg);
hFile.read(reinterpret_cast<char*>(Pixels.data()), size);
hFile.close();
and my GetPixel function:
void BITMAPLOADER::GetPixel(int x, int y, unsigned char* pixel_color)
{
y = height - y;
const int RowLength = 4 * ((width * BitsPerPixel + 31) / 32);
pixel_color[0] = Pixels[RowLength * y * BitsPerPixel / 8 + x * BitsPerPixel / 8];
pixel_color[1] = Pixels[RowLength * y * BitsPerPixel / 8 + x * BitsPerPixel / 8 + 1];
pixel_color[2] = Pixels[RowLength * y * BitsPerPixel / 8 + x * BitsPerPixel / 8 + 2];
pixel_color[3] = Pixels[RowLength * y * BitsPerPixel / 8 + x * BitsPerPixel / 8 + 3];
}
I know the data in bitmap are stored up side down, so I wanted to invert it using the y = height - y; but with this line I only get some values which even are not in the image data array. Without inverting the image I get some values which are in the array but they never correspond with the coords given. My bitmap can be 24-bit or 32-bit.
For bit depth = 24, 3 bytes are stored. The padding is not done per pixel, only on each row:
const int bytesPerPixel = BitsPerPixel / 8;
const int align = 4;
const int RowLength = (width * bytesPerPixel + (align - 1)) & ~(align - 1);
...
pixel_color[0] = Pixels[RowLength * y + x * bytesPerPixel];
...
OpenCV as I know, does not offer pixelwise add() but only addWeighted() that applies one scalar to all pixels. Using the C-style array access that is the fastest among all means of pixel access, my custom alpha compositing function is still slow as hell - it took nearly 2 seconds of operation for a 1400x900 image. I don't think building in release mode helps optimization... Is there a way to increase the speed?
I'm writing alphaCompositeLayers() - an alpha compositing function that multiplies each pixel of the background cv::Mat by the alpha value of the corresponding pixel of the foreground cv::Mat. Both cv::Mats areCV_8UC4` based (unsigned char, 4 channels):
// mat1 in foreground, mat0 in background
cv::Mat alphaCompositeLayers(cv::Mat mat0, cv::Mat mat1) {
cv::Mat res = mat0.clone();
int nRows = res.rows;
int nCols = res.cols * res.channels();
if (res.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
for (int u = 0; u < nRows; u++) {
unsigned char *resrgb = res.ptr<unsigned char>(u);
unsigned char *matrgb = mat1.ptr<unsigned char>(u);
for (int v = 0; v < nCols; v += 4) {
unsigned char newalpha = cv::saturate_cast<unsigned char>(resrgb[v + 3] * (255.0f - matrgb[v + 3]) + matrgb[v + 3]);
resrgb[v] = cv::saturate_cast<unsigned char>((resrgb[v] * resrgb[v + 3] / 255.0f * (255 - matrgb[v + 3]) / 255.0f + matrgb[v] * matrgb[v + 3] / 255.0f)); // / newalpha);
resrgb[v + 1] = cv::saturate_cast<unsigned char>((resrgb[v + 1] * resrgb[v + 3] / 255.0f * (255 - matrgb[v + 3]) / 255.0f + matrgb[v + 1] * matrgb[v + 3] / 255.0f)); // / newalpha);
resrgb[v + 2] = cv::saturate_cast<unsigned char>((resrgb[v + 2] * resrgb[v + 3] / 255.0f * (255 - matrgb[v + 3]) / 255.0f + matrgb[v + 2] * matrgb[v + 3] / 255.0f)); // / newalpha);
resrgb[v + 3] = newalpha;
resrgb[v + 3] = cv::saturate_cast<unsigned char>(rand() % 256);
}
}
return res;
}
Here's another function multiplyLayerByAlpha() that multiplies each pixel by its alpha value (0% opacity = black, 100% opacity = pixel color):
cv::Mat multiplyLayerByAlpha(cv::Mat mat) {
cv::Mat res = mat.clone();
int nRows = res.rows;
int nCols = res.cols * res.channels();
if (res.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
for (int u = 0; u < nRows; u++) {
unsigned char *resrgb = res.ptr<unsigned char>(u);
for (int v = 0; v < nCols; v += 4) {
resrgb[v] = cv::saturate_cast<unsigned char>(resrgb[v] * resrgb[v + 3] / 255.0f);
resrgb[v + 1] = cv::saturate_cast<unsigned char>(resrgb[v + 1] * resrgb[v + 3] / 255.0f);
resrgb[v + 2] = cv::saturate_cast<unsigned char>(resrgb[v + 2] * resrgb[v + 3] / 255.0f);
}
}
return res;
}
An array of cv::Mats, for example {mat0, mat1, mat2} with mat2 on foremost (on top of all 3), I basically run this:
cv::Mat resultingCvMat = multiplyLayerByAlpha(
alphaCompositeLayers(
mat0,
alphaCompositeLayers(mat1, mat2)
)
);
How can I make the program compute the resultingCvMat faster? With C++ ways like multi-threading (then how)? Or with OpenCV functions and ways (again, then how)?
I have been playing around with trying to draw a 320 by 240 full screen resolution image in opengl using java and lwjgl. I set the resolution to 640 by 480 and doubled the size of the pixels to fill in the space. After a lot of google searching I found some information about using the glDrawPixels function to speed up drawing to the screen. I wanted to test it by assigning random colors to all the pixels on the screen, but it wouldn't fill the screen. I divided the width into 4 sections of 80 pixels each and colored them red, green, blue, and white. I saw that I was interleaving the colors but I can't figure out how.
Here is an image of the output:
Here is where I run the openGL code:
// init OpenGL
GL11.glMatrixMode(GL11.GL_PROJECTION);
GL11.glLoadIdentity();
GL11.glOrtho(0, 640, 0, 480, 1, -1);
GL11.glMatrixMode(GL11.GL_MODELVIEW);
while (!Display.isCloseRequested()) {
pollInput();
// Clear the screen and depth buffer
GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);
randomizePixels();
GL11.glRasterPos2i(0, 0);
GL11.glDrawPixels(320, 240,GL11.GL_RGBA, GL11.GL_UNSIGNED_BYTE,buff);
GL11.glPixelZoom(2, 2);
Display.update();
}
Display.destroy();
}
and here is where I create the pixel color data:
public void randomizePixels(){
for(int y = 0; y < 240; y++){
for(int x = 0; x < 320; x+=4){
/*
pixels[x * 320 + y] = (byte)(-128 + ran.nextInt(256));
pixels[x * 320 + y + 1] = (byte)(-128 + ran.nextInt(256));
pixels[x * 320 + y + 2] = (byte)(-128 + ran.nextInt(256));
pixels[x * 320 + y + 3] = (byte)(-128 + ran.nextInt(256));
*/
if(x >= 0 && x < 80){
pixels[y * 240 + x] = (byte)128;
pixels[y * 240 + x + 1] = (byte)0;
pixels[y * 240 + x + 2] = (byte)0;
pixels[y * 240 + x + 3] = (byte)128;
}else if(x >= 80 && x < 160){
pixels[y * 240 + x] = (byte)0;
pixels[y * 240 + x + 1] = (byte)128;
pixels[y * 240 + x + 2] = (byte)0;
pixels[y * 240 + x + 3] = (byte)128;
}else if(x >= 160 && x < 240){
pixels[y * 240 + x] = (byte)0;
pixels[y * 240 + x + 1] = (byte)0;
pixels[y * 240 + x + 2] = (byte)128;
pixels[y * 240 + x + 3] = (byte)128;
}else if(x >= 240 && x < 320){
pixels[y * 240 + x] = (byte)128;
pixels[y * 240 + x + 1] = (byte)128;
pixels[y * 240 + x + 2] = (byte)128;
pixels[y * 240 + x + 3] = (byte)128;
}
}
}
buff.put(pixels).flip();
}
If you can figure out why I can't get the pixels to line up to the x and y coordinates I want them to go to that would be great. I have read that glDrawPixels probably isn't the best or fastest way to draw pixels to the screen, but I want to understand why I'm having this particular issue before I have to move on to some other method.
Just load your image (unscaled) into a texture and draw a textured quad.
Don't use glDrawPixels. This function was never properly optimized in most drivers and has was deprecated since OpenGL-2 and got removed from OpenGL-3 core and later.
I spot 2 issues in your randomizePixels().
1. Indexing Pixel Buffer
The total size of pixel buffer is 320x240x4 bytes because the pixel type is GL_RGBA. So, indexing each pixel with subscript operator, [], it would be;
for(int y = 0; y < 240; y++)
{
for(int x = 0; x < 320; x++)
{
pixels[y * 320 * 4 + x * 4 + 0] = ... // R
pixels[y * 320 * 4 + x * 4 + 1] = ... // G
pixels[y * 320 * 4 + x * 4 + 2] = ... // B
pixels[y * 320 * 4 + x * 4 + 3] = ... // A
}
}
2. Colour Value
The max intensity of 8bit colour is 255, for example, an opaque red pixel would be (255, 0, 0, 255).
your operating on the texture. better do it on quadrature. it would yield good results
i've been trying to implement color picking and it just aint working right. the problem is that if initially paint my model in the different colors that are used for the picking (i mean, i give each triangle different color, which is his id color), it works fine (without texture or anything .. ), but if i put texture of the model, and that when the mouse is clicked i paint the model by giving each triangle a different color, it doesnt work..
here is the code:
public int selection(int x, int y) {
GL11.glDisable(GL11.GL_LIGHTING);
GL11.glDisable(GL11.GL_TEXTURE_2D);
IntBuffer viewport = BufferUtils.createIntBuffer(16);
ByteBuffer pixelbuff = BufferUtils.createByteBuffer(16);
GL11.glGetInteger(GL11.GL_VIEWPORT, viewport);
this.render(this.mesh);
GL11.glReadPixels(x, y, 1, 1, GL11.GL_RGB, GL11.GL_UNSIGNED_BYTE, pixelbuff);
for (int m = 0; m < 3; m++)
System.out.println(pixelbuff.get(m));
GL11.glEnable(GL11.GL_TEXTURE_2D);
GL11.glEnable(GL11.GL_LIGHTING);
return 0;
}
public void render(GL_Mesh m, boolean inPickingMode)
{
GLMaterial[] materials = m.materials; // loaded from the .mtl file
GLMaterial mtl;
GL_Triangle t;
int currMtl = -1;
int i = 0;
// draw all triangles in object
for (i=0; i < m.triangles.length; ) {
t = m.triangles[i];
// activate new material and texture
currMtl = t.materialID;
mtl = (materials != null && materials.length>0 && currMtl >= 0)? materials[currMtl] : defaultMtl;
mtl.apply();
GL11.glBindTexture(GL11.GL_TEXTURE_2D, mtl.textureHandle);
// draw triangles until material changes
for ( ; i < m.triangles.length && (t=m.triangles[i])!=null && currMtl == t.materialID; i++) {
drawTriangle(t, i, inPickingMode);
}
}
}
private void drawTriangle(GL_Triangle t, int i, boolean inPickingMode) {
if (inPickingMode) {
byte[] triColor = this.triangleToColor(i);
GL11.glColor3ub((byte)triColor[2], (byte)triColor[1], (byte)triColor[0]);
}
GL11.glBegin(GL11.GL_TRIANGLES);
GL11.glTexCoord2f(t.uvw1.x, t.uvw1.y);
GL11.glNormal3f(t.norm1.x, t.norm1.y, t.norm1.z);
GL11.glVertex3f( (float)t.p1.pos.x, (float)t.p1.pos.y, (float)t.p1.pos.z);
GL11.glTexCoord2f(t.uvw2.x, t.uvw2.y);
GL11.glNormal3f(t.norm2.x, t.norm2.y, t.norm2.z);
GL11.glVertex3f( (float)t.p2.pos.x, (float)t.p2.pos.y, (float)t.p2.pos.z);
GL11.glTexCoord2f(t.uvw3.x, t.uvw3.y);
GL11.glNormal3f(t.norm3.x, t.norm3.y, t.norm3.z);
GL11.glVertex3f( (float)t.p3.pos.x, (float)t.p3.pos.y, (float)t.p3.pos.z);
GL11.glEnd();
}
as you can see, i have a selection function that's called everytime the mouse is clicked, i then disable the lightining and the texture, and then i render the scene again in the unique colors, and then read the pixles buffer, and the call of:
GL11.glReadPixels(x, y, 1, 1, GL11.GL_RGB, GL11.GL_UNSIGNED_BYTE, pixelbuff);
gives me wrong values .. and its driving me nutz !
btw, the main render function is render(mesh m, boolean inPickingMode) as u can see, you can also see that there is texture on the model before the mouse clicking ..
there are several problems with the example.
First, you're not clearing the color and depth-buffer when clicking the mouse (that causes the scene with color polygons to be mixed into the scene with textured polygons - and then it doesn't work). you need to call:
GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);
Second, it is probably a bad idea to use materials when color-picking. I'm not familiar with the GLMaterial class, but it might enable GL_COLOR_MATERIAL or some other stuff, which modifies the final color, even if lighting is disabled. Try this:
if(!inPickingMode) { // === add this line ===
// activate new material and texture
currMtl = t.materialID;
mtl = (materials != null && materials.length>0 && currMtl >= 0)? materials[currMtl] : defaultMtl;
mtl.apply();
GL11.glBindTexture(GL11.GL_TEXTURE_2D, mtl.textureHandle);
} // === and this line ===
Next, and that is not related to color picking, you call glBegin() too often for no good reason. You can call it in render(), before the triangle drawing loop (but that shouldn't change how the result looks like):
GL11.glBegin(GL11.GL_TRIANGLES);
// draw triangles until material changes
for ( ; i < m.triangles.length && (t=m.triangles[i])!=null && currMtl == t.materialID; i++) {
drawTriangle(t, i, inPickingMode);
}
GL11.glEnd();
--- now i am answering a little beyond the original question ---
The thing about color picking is, that the renderer has only limited number of bits to represent the colors (like as little as 5 bits per channel), so you need to use colors that do not have these bits set. It might be a bad idea to do this on a mobile device.
If your objects are simple enough (can be represented by, say a sphere, for picking), it might be a good idea to use raytracing for picking objects. It is pretty simple, the idea is that you take inverse of modelview-projection matrix, and transform points (mouse_x, mouse_y, -1) and (mouse_x, mouse_y, +1) by it, which will give you position of mouse at the near and at the far view plane, in object space. All you need to do is to subtract them to get direction of ray (origin is at the near plane), and you can pick your objects using this ray (google ray - sphere intersection).
float[] mvp = new float[16]; // this is your modelview-projection
float mouse_x, mouse_y; // those are mouse coordinates (in -1 to +1 range)
// inputs
float[] mvp_inverse = new float[16];
Matrix.invertM(mvp_inverse, 0, mvp, 0);
// inverse the matrix
float nearX = mvp_inverse[0 * 4 + 0] * mouse_x +
mvp_inverse[1 * 4 + 0] * mouse_y +
mvp_inverse[2 * 4 + 0] * -1 +
mvp_inverse[3 * 4 + 0];
float nearY = mvp_inverse[0 * 4 + 1] * mouse_x +
mvp_inverse[1 * 4 + 1] * mouse_y +
mvp_inverse[2 * 4 + 1] * -1 +
mvp_inverse[3 * 4 + 1];
float nearZ = mvp_inverse[0 * 4 + 2] * mouse_x +
mvp_inverse[1 * 4 + 2] * mouse_y +
mvp_inverse[2 * 4 + 2] * -1 +
mvp_inverse[3 * 4 + 2];
float nearW = mvp_inverse[0 * 4 + 3] * mouse_x +
mvp_inverse[1 * 4 + 3] * mouse_y +
mvp_inverse[2 * 4 + 3] * -1 +
mvp_inverse[3 * 4 + 3];
// transform the near point
nearX /= nearW;
nearY /= nearW;
nearZ /= nearW;
// dehomogenize the coordinate
float farX = mvp_inverse[0 * 4 + 0] * mouse_x +
mvp_inverse[1 * 4 + 0] * mouse_y +
mvp_inverse[2 * 4 + 0] * +1 +
mvp_inverse[3 * 4 + 0];
float farY = mvp_inverse[0 * 4 + 1] * mouse_x +
mvp_inverse[1 * 4 + 1] * mouse_y +
mvp_inverse[2 * 4 + 1] * +1 +
mvp_inverse[3 * 4 + 1];
float farZ = mvp_inverse[0 * 4 + 2] * mouse_x +
mvp_inverse[1 * 4 + 2] * mouse_y +
mvp_inverse[2 * 4 + 2] * +1 +
mvp_inverse[3 * 4 + 2];
float farW = mvp_inverse[0 * 4 + 3] * mouse_x +
mvp_inverse[1 * 4 + 3] * mouse_y +
mvp_inverse[2 * 4 + 3] * +1 +
mvp_inverse[3 * 4 + 3];
// transform the far point
farX /= farW;
farY /= farW;
farZ /= farW;
// dehomogenize the coordinate
float rayX = farX - nearX, rayY = farY - nearY, rayZ = farZ - nearZ;
// ray direction
float orgX = nearX, orgY = nearY, orgZ = nearZ;
// ray origin
And finally - a debugging suggestion: try to render with inPickingMode set to true so you can see what is it that you are actually drawing, on screen. If you see texture or lighting, then something went wrong.