Containers and iterators (multiple choice) - c++

STL iterators are used with container classes and are conceptually similar to pointers to specific elements stored in the container.
One of the statements below is true. Which one?
An iterator typically holds an address (pointer), and operator++ applied to the iterator always increases that address.
When iterator it goes out of scope in a program, it gets destructed, which automatically invokes delete it;.
For a valid STL container myC, when the expression myC.end()-myC.begin() is well-defined, it returns the same value as myC.size().
When a container goes out of scope, all iterators that point to it are automatically modified.
For a valid STL container myC, the iterator returned by myC.end() refers to the last valid element in myC.
Apparently the solution is 3. but I don't understand why. Can someone elaborate on why this is the case, and possibly show why the others are false as well?

Think of the requirements of the addresses of items in a linked-list (list). They don't need to be sequential in memory.
delete is something that's manually done on pointers, it wouldn't happen automatically (even if the pointer goes out of scope) (unless done in some API). Iterators are (generally) classes, so delete would not even apply. The iterator would get destructed though.
You can also probably classify a pointer as an iterator. But delete will still not be called automatically.
Note that this only applies to random access iterators. You can calculate the number of items in a container as follows:
int count = 0;
for (iterator it = begin(); it != end(); ++it, ++count) { }
so you increment begin() count times to get to end(),
so begin() + count = end(),
so end() - begin() = count, and count = size(),
so end() - begin() = size()
This is not the way C++ works. Although there are design patterns to achieve this behaviour, usually when modifying a class, it's your responsibility to ensure any dependent classes are updated if invalidated. When you'd try to use an iterator of a container that went out of scope, this would result in undefined behaviour.
end() is past the last element, probably with something like this in mind: (I'm sure among other reasons)
for (iterator it = begin(); it != end(); ++it)

Related

Control flow with iterators

Say I have something like this:
void myFunk(std::vector<T>& v, std::vector<T>::iterator first, std::vector<T>::iterator last) {
while (first != last) {
if ((*first) > (*last)) {
T someT;
v.push_back(someT);
}
first++;
}
}
int main(){
std::vector<T> foo = {some, T, values};
myFunky(foo, foo.begin(), foo.end())
return 0;
}
Would this lead to an infinite loop, or would it end after foo.size() iterations? In other words, would the last iterator be updated as foo grew, or would it retain the value given in the function call?
I'm assuming last would change, since it's a pointer to a position, but would like some confirmation.
Would this lead to an infinite loop, or would it end after foo.size() iterations?
Neither. What you are doing is undefined behavior, for a couple of reasons:
You are modifying the vector while iterating through it.
If the vector reallocates its internal storage when pushing a new item, all existing iterators into the vector are invalidated, including both iterators you are using to loop with. But even just pushing a new item always invalidates the end() iterator, at least.
See Iterator invalidation rules for C++ containers
You are dereferencing the end() iterator, which never refers to a valid element.
I'm assuming last would change, since it's a pointer to a position
It can't change, since you passed it into the myFunc function by value, so it is a copy of the original end() iterator. If end() changes value, last will not change value, since it is a copy.
In any case, iterators are not necessarily implemented as pointers, but pointers are valid iterators. But it doesn't matter in this case. Even if vector::iterator were just a simple pointer, last would still get invalidated upon every push/reallocation.

Erase by iterator on a C++ STL map

I'm curious about the rationale behind the following code. For a given map, I can delete a range up to, but not including, end() (obviously,) using the following code:
map<string, int> myMap;
myMap["one"] = 1;
myMap["two"] = 2;
myMap["three"] = 3;
map<string, int>::iterator it = myMap.find("two");
myMap.erase( it, myMap.end() );
This erases the last two items using the range. However, if I used the single iterator version of erase, I half expected passing myMap.end() to result in no action as the iterator was clearly at the end of the collection. This is as distinct from a corrupt or invalid iterator which would clearly lead to undefined behaviour.
However, when I do this:
myMap.erase( myMap.end() );
I simply get a segmentation fault. I wouldn't have thought it difficult for map to check whether the iterator equalled end() and not take action in that case. Is there some subtle reason for this that I'm missing? I noticed that even this works:
myMap.erase( myMap.end(), myMap.end() );
(i.e. does nothing)
The reason I ask is that I have some code which receives a valid iterator to the collection (but which could be end()) and I wanted to simply pass this into erase rather than having to check first like this:
if ( it != myMap.end() )
myMap.erase( it );
which seems a bit clunky to me. The alternative is to re code so I can use the by-key-type erase overload but I'd rather not re-write too much if I can help it.
The key is that in the standard library ranges determined by two iterators are half-opened ranges. In math notation [a,b) They include the first but not the last iterator (if both are the same, the range is empty). At the same time, end() returns an iterator that is one beyond the last element, which perfectly matches the half-open range notation.
When you use the range version of erase it will never try to delete the element referenced by the last iterator. Consider a modified example:
map<int,int> m;
for (int i = 0; i < 5; ++i)
m[i] = i;
m.erase( m.find(1), m.find(4) );
At the end of the execution the map will hold two keys 0 and 4. Note that the element referred by the second iterator was not erased from the container.
On the other hand, the single iterator operation will erase the element referenced by the iterator. If the code above was changed to:
for (int i = 1; i <= 4; ++i )
m.erase( m.find(i) );
The element with key 4 will be deleted. In your case you will attempt to delete the end iterator that does not refer to a valid object.
I wouldn't have thought it difficult for map to check whether the iterator equalled end() and not take action in that case.
No, it is not hard to do, but the function was designed with a different contract in mind: the caller must pass in an iterator into an element in the container. Part of the reason for this is that in C++ most of the features are designed so that the incur the minimum cost possible, allowing the user to balance the safety/performance on their side. The user can test the iterator before calling erase, but if that test was inside the library then the user would not be able to opt out of testing when she knows that the iterator is valid.
n3337 23.2.4 Table 102
a.erase( q1, q2)
erases all the elements in the range [q1,q2). Returns q2.
So, iterator returning from map::end() is not in range in case of myMap.erase(myMap.end(), myMap.end());
a.erase(q)
erases the element pointed to by q. Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns a.end().
I wouldn't have thought it difficult for map to check whether the
iterator equalled end() and not take action in that case. Is there
some subtle reason for this that I'm missing?
Reason is same, that std::vector::operator[] can don't check, that index is in range, of course.
When you use two iterators to specify a range, the range consists of the elements from the element that the first iterator points to up to but not including the element that the second iterator points to. So erase(it, myMap.end()) says to erase everything from it up to but not including end(). You could equally well pass an iterator that points to a "real" element as the second one, and the element that that iterator points to would not be erased.
When you use erase(it) it says to erase the element that it points to. The end() iterator does not point to a valid element, so erase(end()) doesn't do anything sensible. It would be possible for the library to diagnose this situation, and a debugging library will do that, but it imposes a cost on every call to erase to check what the iterator points to. The standard library doesn't impose that cost on users. You're on your own. <g>

vector::erase and reverse_iterator

I have a collection of elements in a std::vector that are sorted in a descending order starting from the first element. I have to use a vector because I need to have the elements in a contiguous chunk of memory. And I have a collection holding many instances of vectors with the described characteristics (always sorted in a descending order).
Now, sometimes, when I find out that I have too many elements in the greater collection (the one that holds these vectors), I discard the smallest elements from these vectors some way similar to this pseudo-code:
grand_collection: collection that holds these vectors
T: type argument of my vector
C: the type that is a member of T, that participates in the < comparison (this is what sorts data before they hit any of the vectors).
std::map<C, std::pair<T::const_reverse_iterator, std::vector<T>&>> what_to_delete;
iterate(it = grand_collection.begin() -> grand_collection.end())
{
iterate(vect_rit = it->rbegin() -> it->rend())
{
// ...
what_to_delete <- (vect_rit->C, pair(vect_rit, *it))
if (what_to_delete.size() > threshold)
what_to_delete.erase(what_to_delete.begin());
// ...
}
}
Now, after running this code, in what_to_delete I have a collection of iterators pointing to the original vectors that I want to remove from these vectors (overall smallest values). Remember, the original vectors are sorted before they hit this code, which means that for any what_to_delete[0 - n] there is no way that an iterator on position n - m would point to an element further from the beginning of the same vector than n, where m > 0.
When erasing elements from the original vectors, I have to convert a reverse_iterator to iterator. To do this, I rely on C++11's §24.4.1/1:
The relationship between reverse_iterator and iterator is
&*(reverse_iterator(i)) == &*(i- 1)
Which means that to delete a vect_rit, I use:
vector.erase(--vect_rit.base());
Now, according to C++11 standard §23.3.6.5/3:
iterator erase(const_iterator position); Effects: Invalidates
iterators and references at or after the point of the erase.
How does this work with reverse_iterators? Are reverse_iterators internally implemented with a reference to a vector's real beginning (vector[0]) and transforming that vect_rit to a classic iterator so then erasing would be safe? Or does reverse_iterator use rbegin() (which is vector[vector.size()]) as a reference point and deleting anything that is further from vector's 0-index would still invalidate my reverse iterator?
Edit:
Looks like reverse_iterator uses rbegin() as its reference point. Erasing elements the way I described was giving me errors about a non-deferenceable iterator after the first element was deleted. Whereas when storing classic iterators (converting to const_iterator) while inserting to what_to_delete worked correctly.
Now, for future reference, does The Standard specify what should be treated as a reference point in case of a random-access reverse_iterator? Or this is an implementation detail?
Thanks!
In the question you have already quoted exactly what the standard says a reverse_iterator is:
The relationship between reverse_iterator and iterator is &*(reverse_iterator(i)) == &*(i- 1)
Remember that a reverse_iterator is just an 'adaptor' on top of the underlying iterator (reverse_iterator::current). The 'reference point', as you put it, for a reverse_iterator is that wrapped iterator, current. All operations on the reverse_iterator really occur on that underlying iterator. You can obtain that iterator using the reverse_iterator::base() function.
If you erase --vect_rit.base(), you are in effect erasing --current, so current will be invalidated.
As a side note, the expression --vect_rit.base() might not always compile. If the iterator is actually just a raw pointer (as might be the case for a vector), then vect_rit.base() returns an rvalue (a prvalue in C++11 terms), so the pre-decrement operator won't work on it since that operator needs a modifiable lvalue. See "Item 28: Understand how to use a reverse_iterator's base iterator" in "Effective STL" by Scott Meyers. (an early version of the item can be found online in "Guideline 3" of http://www.drdobbs.com/three-guidelines-for-effective-iterator/184401406).
You can use the even uglier expression, (++vect_rit).base(), to avoid that problem. Or since you're dealing with a vector and random access iterators: vect_rit.base() - 1
Either way, vect_rit is invalidated by the erase because vect_rit.current is invalidated.
However, remember that vector::erase() returns a valid iterator to the new location of the element that followed the one that was just erased. You can use that to 're-synchronize' vect_rit:
vect_rit = vector_type::reverse_iterator( vector.erase(vect_rit.base() - 1));
From a standardese point of view (and I'll admit, I'm not an expert on the standard): From §24.5.1.1:
namespace std {
template <class Iterator>
class reverse_iterator ...
{
...
Iterator base() const; // explicit
...
protected:
Iterator current;
...
};
}
And from §24.5.1.3.3:
Iterator base() const; // explicit
Returns: current.
Thus it seems to me that so long as you don't erase anything in the vector before what one of your reverse_iterators points to, said reverse_iterator should remain valid.
Of course, given your description, there is one catch: if you have two contiguous elements in your vector that you end up wanting to delete, the fact that you vector.erase(--vector_rit.base()) means that you've invalidated the reverse_iterator "pointing" to the immediately preceeding element, and so your next vector.erase(...) is undefined behavior.
Just in case that's clear as mud, let me say that differently:
std::vector<T> v=...;
...
// it_1 and it_2 are contiguous
std::vector<T>::reverse_iterator it_1=v.rend();
std::vector<T>::reverse_iterator it_2=it_1;
--it_2;
// Erase everything after it_1's pointee:
// convert from reverse_iterator to iterator
std::vector<T>::iterator tmp_it=it_1.base();
// but that points one too far in, so decrement;
--tmp_it;
// of course, now tmp_it points at it_2's base:
assert(tmp_it == it_2.base());
// perform erasure
v.erase(tmp_it); // invalidates all iterators pointing at or past *tmp_it
// (like, say it_2.base()...)
// now delete it_2's pointee:
std::vector<T>::iterator tmp_it_2=it_2.base(); // note, invalid iterator!
// undefined behavior:
--tmp_it_2;
v.erase(tmp_it_2);
In practice, I suspect that you'll run into two possible implementations: more commonly, the underlying iterator will be little more than a (suitably wrapped) raw pointer, and so everything will work perfectly happily. Less commonly, the iterator might actually try to track invalidations/perform bounds checking (didn't Dinkumware STL do such things when compiled in debug mode at one point?), and just might yell at you.
The reverse_iterator, just like the normal iterator, points to a certain position in the vector. Implementation details are irrelevant, but if you must know, they both are (in a typical implementation) just plain old pointers inside. The difference is the direction. The reverse iterator has its + and - reversed w.r.t. the regular iterator (and also ++ and --, > and < etc).
This is interesting to know, but doesn't really imply an answer to the main question.
If you read the language carefully, it says:
Invalidates iterators and references at or after the point of the erase.
References do not have a built-in sense of direction. Hence, the language clearly refers to the container's own sense of direction. Positions after the point of the erase are those with higher indices. Hence, the iterator's direction is irrelevant here.

Checking if an iterator is valid

Is there any way to check if an iterator (whether it is from a vector, a list, a deque...) is (still) dereferenceable, i.e. has not been invalidated?
I have been using try-catch, but is there a more direct way to do this?
Example: (which doesn't work)
list<int> l;
for (i = 1; i<10; i++) {
l.push_back(i * 10);
}
itd = l.begin();
itd++;
if (something) {
l.erase(itd);
}
/* now, in other place.. check if it points to somewhere meaningful */
if (itd != l.end())
{
// blablabla
}
I assume you mean "is an iterator valid," that it hasn't been invalidated due to changes to the container (e.g., inserting/erasing to/from a vector). In that case, no, you cannot determine if an iterator is (safely) dereferencable.
As jdehaan said, if the iterator wasn't invalidated and points into a container, you can check by comparing it to container.end().
Note, however, that if the iterator is singular -- because it wasn't initialized or it became invalid after a mutating operation on the container (vector's iterators are invalidated when you increase the vector's capacity, for example) -- the only operation that you are allowed to perform on it is assignment. In other words, you can't check whether an iterator is singular or not.
std::vector<int>::iterator iter = vec.begin();
vec.resize(vec.capacity() + 1);
// iter is now singular, you may only perform assignment on it,
// there is no way in general to determine whether it is singular or not
Non-portable answer: Yes - in Visual Studio
Visual Studio's STL iterators have a "debugging" mode which do exactly this. You wouldn't want to enable this in ship builds (there is overhead) but useful in checked builds.
Read about it on VC10 here (this system can and in fact does change every release, so find the docs specific to your version).
Edit Also, I should add: debug iterators in visual studio are designed to immediately explode when you use them (instead undefined behavior); not to allow "querying" of their state.
Usually you test it by checking if it is different from the end(), like
if (it != container.end())
{
// then dereference
}
Moreover using exception handling for replacing logic is bad in terms of design and performance. Your question is very good and it is definitively worth a replacement in your code. Exception handling like the names says shall only be used for rare unexpected issues.
Is there any way to check if a iterator (whether it is from a vector, a list, a deque...) is (still) dereferencable, i.e has not been invalidated ?
No, there isn't. Instead you need to control access to the container while your iterator exists, for example:
Your thread should not modify the container (invalidating the iterator) while it is still using an instantiated iterator for that container
If there's a risk that other threads might modify the container while your thread is iterating, then in order to make this scenario thread-safe your thread must acquire some kind of lock on the container (so that it prevents other threads from modifying the container while it's using an iterator)
Work-arounds like catching an exception won't work.
This is a specific instance of the more general problem, "can I test/detect whether a pointer is valid?", the answer to which is typically "no, you can't test for it: instead you have to manage all memory allocations and deletions in order to know whether any given pointer is still valid".
Trying and catching is not safe, you will not, or at least seldom throw if your iterator is "out of bounds".
what alemjerus say, an iterator can always be dereferenced. No matter what uglyness lies beneath. It is quite possible to iterate into other areas of memory and write to other areas that might keep other objects. I have been looking at code, watching variables change for no particular reason. That is a bug that is really hard to detect.
Also it is wise to remember that inserting and removing elements might potentially invalidate all references, pointers and iterators.
My best advice would be to keep you iterators under control, and always keep an "end" iterator at hand to be able to test if you are at the "end of the line" so to speak.
In some of the STL containers, the current iterator becomes invalid when you erase the current value of the iterator. This happens because the erase operation changes the internal memory structure of the container and increment operator on existing iterator points to an undefined locations.
When you do the following, iterator is incementented before it is passed to erase function.
if (something) l.erase(itd++);
Is there any way to check if an iterator is dereferencable
Yes, with gcc debugging containers available as GNU extensions. For std::list you can use __gnu_debug::list instead. The following code will abort as soon as invalid iterator is attempted to be used. As debugging containers impose extra overhead they are intended only when debugging.
#include <debug/list>
int main() {
__gnu_debug::list<int> l;
for (int i = 1; i < 10; i++) {
l.push_back(i * 10);
}
auto itd = l.begin();
itd++;
l.erase(itd);
/* now, in other place.. check if itd points to somewhere meaningful */
if (itd != l.end()) {
// blablabla
}
}
$ ./a.out
/usr/include/c++/7/debug/safe_iterator.h:552:
Error: attempt to compare a singular iterator to a past-the-end iterator.
Objects involved in the operation:
iterator "lhs" # 0x0x7ffda4c57fc0 {
type = __gnu_debug::_Safe_iterator<std::_List_iterator<int>, std::__debug::list<int, std::allocator<int> > > (mutable iterator);
state = singular;
references sequence with type 'std::__debug::list<int, std::allocator<int> >' # 0x0x7ffda4c57ff0
}
iterator "rhs" # 0x0x7ffda4c580c0 {
type = __gnu_debug::_Safe_iterator<std::_List_iterator<int>, std::__debug::list<int, std::allocator<int> > > (mutable iterator);
state = past-the-end;
references sequence with type 'std::__debug::list<int, std::allocator<int> >' # 0x0x7ffda4c57ff0
}
Aborted (core dumped)
The type of the parameters of the erase function of any std container (as you have listed in your question, i.e. whether it is from a vector, a list, a deque...) is always iterator of this container only.
This function uses the first given iterator to exclude from the container the element that this iterator points at and even those that follow. Some containers erase only one element for one iterator, and some other containers erase all elements followed by one iterator (including the element pointed by this iterator) to the end of the container. If the erase function receives two iterators, then the two elements, pointed by each iterator, are erased from the container and all the rest between them are erased from the container as well, but the point is that every iterator that is passed to the erase function of any std container becomes invalid! Also:
Each iterator that was pointing at some element that has been erased from the container becomes invalid, but it doesn't pass the end of the container!
This means that an iterator that was pointing at some element that has been erased from the container cannot be compared to container.end().
This iterator is invalid, and so it is not dereferencable, i.e. you cannot use neither the * nor -> operators, it is also not incrementable, i.e. you cannot use the ++ operator, and it is also not decrementable, i.e. you cannot use the -- operator.
It is also not comparable!!! I.E. you cannot even use neither == nor != operators
Actually you cannot use any operator that is declared and defined in the std iterator.
You cannot do anything with this iterator, like null pointer.
Doing something with an invalid iterator immediately stops the program and even causes the program to crash and an assertion dialog window appears. There is no way to continue program no matter what options you choose, what buttons you click. You just can terminate the program and the process by clicking the Abort button.
You don't do anything else with an invalid iterator, unless you can either set it to the begin of the container, or just ignore it.
But before you decide what to do with an iterator, first you must know if this iterator is either invalid or not, if you call the erase function of the container you are using.
I have made by myself a function that checks, tests, knows and returns true whether a given iterator is either invalid or not. You can use the memcpy function to get the state of any object, item, structure, class and etc, and of course we always use the memset function at first to either clear or empty a new buffer, structure, class or any object or item:
bool IsNull(list<int>::iterator& i) //In your example, you have used list<int>, but if your container is not list, then you have to change this parameter to the type of the container you are using, if it is either a vector or deque, and also the type of the element inside the container if necessary.
{
byte buffer[sizeof(i)];
memset(buffer, 0, sizeof(i));
memcpy(buffer, &i, sizeof(i));
return *buffer == 0; //I found that the size of any iterator is 12 bytes long. I also found that if the first byte of the iterator that I copy to the buffer is zero, then the iterator is invalid. Otherwise it is valid. I like to call invalid iterators also as "null iterators".
}
I have already tested this function before I posted it there and found that this function is working for me.
I very hope that I have fully answered your question and also helped you very much!
There is a way, but is ugly... you can use the std::distance function
#include <algorithms>
using namespace std
auto distance_to_iter = distance(container.begin(), your_iter);
auto distance_to_end = distance(container.begin(),container.end());
bool is_your_iter_still_valid = distance_to_iter != distance_to_end;
use erase with increment :
if (something) l.erase(itd++);
so you can test the validity of the iterator.
if (iterator != container.end()) {
iterator is dereferencable !
}
If your iterator doesnt equal container.end(), and is not dereferencable, youre doing something wrong.

Does pop_back() really invalidate *all* iterators on an std::vector?

std::vector<int> ints;
// ... fill ints with random values
for(std::vector<int>::iterator it = ints.begin(); it != ints.end(); )
{
if(*it < 10)
{
*it = ints.back();
ints.pop_back();
continue;
}
it++;
}
This code is not working because when pop_back() is called, it is invalidated. But I don't find any doc talking about invalidation of iterators in std::vector::pop_back().
Do you have some links about that?
The call to pop_back() removes the last element in the vector and so the iterator to that element is invalidated. The pop_back() call does not invalidate iterators to items before the last element, only reallocation will do that. From Josuttis' "C++ Standard Library Reference":
Inserting or removing elements
invalidates references, pointers, and
iterators that refer to the following
element. If an insertion causes
reallocation, it invalidates all
references, iterators, and pointers.
Here is your answer, directly from The Holy Standard:
23.2.4.2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1).
23.1.1.12 Table 68
expressiona.pop_back()
return typevoid
operational semanticsa.erase(--a.end())
containervector, list, deque
Notice that a.pop_back is equivalent to a.erase(--a.end()). Looking at vector's specifics on erase:
23.2.4.3.3 - iterator erase(iterator position) - effects - Invalidates all the iterators and references after the point of the erase
Therefore, once you call pop_back, any iterators to the previously final element (which now no longer exists) are invalidated.
Looking at your code, the problem is that when you remove the final element and the list becomes empty, you still increment it and walk off the end of the list.
(I use the numbering scheme as used in the C++0x working draft, obtainable here
Table 94 at page 732 says that pop_back (if it exists in a sequence container) has the following effect:
{ iterator tmp = a.end();
--tmp;
a.erase(tmp); }
23.1.1, point 12 states that:
Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container
member function or passing a container as an argument to a library function shall not invalidate iterators to, or change
the values of, objects within that container.
Both accessing end() as applying prefix-- have no such effect, erase() however:
23.2.6.4 (concerning vector.erase() point 4):
Effects: Invalidates iterators and references at or after the point of the erase.
So in conclusion: pop_back() will only invalidate an iterator to the last element, per the standard.
Here is a quote from SGI's STL documentation (http://www.sgi.com/tech/stl/Vector.html):
[5] A vector's iterators are invalidated when its memory is reallocated. Additionally, inserting or deleting an element in the middle of a vector invalidates all iterators that point to elements following the insertion or deletion point. It follows that you can prevent a vector's iterators from being invalidated if you use reserve() to preallocate as much memory as the vector will ever use, and if all insertions and deletions are at the vector's end.
I think it follows that pop_back only invalidates the iterator pointing at the last element and the end() iterator. We really need to see the data for which the code fails, as well as the manner in which it fails to decide what's going on. As far as I can tell, the code should work - the usual problem in such code is that removal of element and ++ on iterator happen in the same iteration, the way #mikhaild points out. However, in this code it's not the case: it++ does not happen when pop_back is called.
Something bad may still happen when it is pointing to the last element, and the last element is less than 10. We're now comparing an invalidated it and end(). It may still work, but no guarantees can be made.
Iterators are only invalidated on reallocation of storage. Google is your friend: see footnote 5.
Your code is not working for other reasons.
pop_back() invalidates only iterators that point to the last element. From C++ Standard Library Reference:
Inserting or removing elements
invalidates references, pointers, and
iterators that refer to the following
element. If an insertion causes
reallocation, it invalidates all
references, iterators, and pointers.
So to answer your question, no it does not invalidate all iterators.
However, in your code example, it can invalidate it when it is pointing to the last element and the value is below 10. In which case Visual Studio debug STL will mark iterator as invalidated, and further check for it not being equal to end() will show an assert.
If iterators are implemented as pure pointers (as they would in probably all non-debug STL vector cases), your code should just work. If iterators are more than pointers, then your code does not handle this case of removing the last element correctly.
Error is that when "it" points to the last element of vector and if this element is less than 10, this last element is removed. And now "it" points to ints.end(), next "it++" moves pointer to ints.end()+1, so now "it" running away from ints.end(), and you got infinite loop scanning all your memory :).
The "official specification" is the C++ Standard. If you don't have access to a copy of C++03, you can get the latest draft of C++0x from the Committee's website: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2723.pdf
The "Operational Semantics" section of container requirements specifies that pop_back() is equivalent to { iterator i = end(); --i; erase(i); }. the [vector.modifiers] section for erase says "Effects: Invalidates iterators and references at or after the point of the erase."
If you want the intuition argument, pop_back is no-fail (since destruction of value_types in standard containers are not allowed to throw exceptions), so it cannot do any copy or allocation (since they can throw), which means that you can guess that the iterator to the erased element and the end iterator are invalidated, but the remainder are not.
pop_back() will only invalidate it if it was pointing to the last item in the vector. Your code will therefore fail whenever the last int in the vector is less than 10, as follows:
*it = ints.back(); // Set *it to the value it already has
ints.pop_back(); // Invalidate the iterator
continue; // Loop round and access the invalid iterator
You might want to consider using the return value of erase instead of swapping the back element to the deleted position an popping back. For sequences erase returns an iterator pointing the the element one beyond the element being deleted. Note that this method may cause more copying than your original algorithm.
for(std::vector<int>::iterator it = ints.begin(); it != ints.end(); )
{
if(*it < 10)
it = ints.erase( it );
else
++it;
}
std::remove_if could also be an alternative solution.
struct LessThanTen { bool operator()( int n ) { return n < 10; } };
ints.erase( std::remove_if( ints.begin(), ints.end(), LessThanTen() ), ints.end() );
std::remove_if is (like my first algorithm) stable, so it may not be the most efficient way of doing this, but it is succinct.
Check out the information here (cplusplus.com):
Delete last element
Removes the last element in the vector, effectively reducing the vector size by one and invalidating all iterators and references to it.