Related
We have a sorted array and we would like to increase the value of one index by only 1 unit (array[i]++), such that the resulting array is still sorted. Is this possible in O(1)?
It is fine to use any data structure possible in STL and C++.
In a more specific case, if the array is initialised by all 0 values, and it is always incrementally constructed only by increasing a value of an index by one, is there an O(1) solution?
I haven't worked this out completely, but I think the general idea might help for integers at least. At the cost of more memory, you can maintain a separate data-structure that maintains the ending index of a run of repeated values (since you want to swap your incremented value with the ending index of the repeated value). This is because it's with repeated values that you run into the worst case O(n) runtime: let's say you have [0, 0, 0, 0] and you increment the value at location 0. Then it is O(n) to find out the last location (3).
But let's say that you maintain the data-structure I mentioned (a map would works because it has O(1) lookup). In that case you would have something like this:
0 -> 3
So you have a run of 0 values that end at location 3. When you increment a value, let's say at location i, you check to see if the new value is greater than the value at i + 1. If it is not, you are fine. But if it is, you look to see if there is an entry for this value in the secondary data-structure. If there isn't, you can simply swap. If there is an entry, you look up the ending-index and then swap with the value at that location. You then make any changes you need to the secondary data-structure to reflect the new state of the array.
A more thorough example:
[0, 2, 3, 3, 3, 4, 4, 5, 5, 5, 7]
The secondary data-structure is:
3 -> 4
4 -> 6
5 -> 9
Let's say you increment the value at location 2. So you have incremented 3, to 4. The array now looks like this:
[0, 2, 4, 3, 3, 4, 4, 5, 5, 5, 7]
You look at the next element, which is 3. You then look up the entry for that element in the secondary data-structure. The entry is 4, which means that there is a run of 3's that end at 4. This means that you can swap the value from the current location with the value at index 4:
[0, 2, 3, 3, 4, 4, 4, 5, 5, 5, 7]
Now you will also need to update the secondary data-structure. Specifically, there the run of 3's ends one index early, so you need to decrement that value:
3 -> 3
4 -> 6
5 -> 9
Another check you will need to do is to see if the value is repeated anymore. You can check that by looking at the i - 1th and the i + 1th locations to see if they are the same as the value in question. If neither are equal, then you can remove the entry for this value from the map.
Again, this is just a general idea. I will have to code it out to see if it works out the way I thought about it.
Please feel free to poke holes.
UPDATE
I have an implementation of this algorithm here in JavaScript. I used JavaScript just so I could do it quickly. Also, because I coded it up pretty quickly it can probably be cleaned up. I do have comments though. I'm not doing anything esoteric either, so this should be easily portable to C++.
There are essentially two parts to the algorithm: the incrementing and swapping (if necessary), and book-keeping done on the map that keeps track of our ending indices for runs of repeated values.
The code contains a testing harness that starts with an array of zeroes and increments random locations. At the end of every iteration, there is a test to ensure that the array is sorted.
var array = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
var endingIndices = {0: 9};
var increments = 10000;
for(var i = 0; i < increments; i++) {
var index = Math.floor(Math.random() * array.length);
var oldValue = array[index];
var newValue = ++array[index];
if(index == (array.length - 1)) {
//Incremented element is the last element.
//We don't need to swap, but we need to see if we modified a run (if one exists)
if(endingIndices[oldValue]) {
endingIndices[oldValue]--;
}
} else if(index >= 0) {
//Incremented element is not the last element; it is in the middle of
//the array, possibly even the first element
var nextIndexValue = array[index + 1];
if(newValue === nextIndexValue) {
//If the new value is the same as the next value, we don't need to swap anything. But
//we are doing some book-keeping later with the endingIndices map. That code requires
//the ending index (i.e., where we moved the incremented value to). Since we didn't
//move it anywhere, the endingIndex is simply the index of the incremented element.
endingIndex = index;
} else if(newValue > nextIndexValue) {
//If the new value is greater than the next value, we will have to swap it
var swapIndex = -1;
if(!endingIndices[nextIndexValue]) {
//If the next value doesn't have a run, then location we have to swap with
//is just the next index
swapIndex = index + 1;
} else {
//If the next value has a run, we get the swap index from the map
swapIndex = endingIndices[nextIndexValue];
}
array[index] = nextIndexValue;
array[swapIndex] = newValue;
endingIndex = swapIndex;
} else {
//If the next value is already greater, there is nothing we need to swap but we do
//need to do some book-keeping with the endingIndices map later, because it is
//possible that we modified a run (the value might be the same as the value that
//came before it). Since we don't have anything to swap, the endingIndex is
//effectively the index that we are incrementing.
endingIndex = index;
}
//Moving the new value to its new position may have created a new run, so we need to
//check for that. This will only happen if the new position is not at the end of
//the array, and the new value does not have an entry in the map, and the value
//at the position after the new position is the same as the new value
if(endingIndex < (array.length - 1) &&
!endingIndices[newValue] &&
array[endingIndex + 1] == newValue) {
endingIndices[newValue] = endingIndex + 1;
}
//We also need to check to see if the old value had an entry in the
//map because now that run has been shortened by one.
if(endingIndices[oldValue]) {
var newEndingIndex = --endingIndices[oldValue];
if(newEndingIndex == 0 ||
(newEndingIndex > 0 && array[newEndingIndex - 1] != oldValue)) {
//In this case we check to see if the old value only has one entry, in
//which case there is no run of values and so we will need to remove
//its entry from the map. This happens when the new ending-index for this
//value is the first location (0) or if the location before the new
//ending-index doesn't contain the old value.
delete endingIndices[oldValue];
}
}
}
//Make sure that the array is sorted
for(var j = 0; j < array.length - 1; j++) {
if(array[j] > array[j + 1]) {
throw "Array not sorted; Value at location " + j + "(" + array[j] + ") is greater than value at location " + (j + 1) + "(" + array[j + 1] + ")";
}
}
}
In a more specific case, if the array is initialised by all 0 values, and it is always incrementally constructed only by increasing a value of an index by one, is there an O(1) solution?
No. Given an array of all 0's: [0, 0, 0, 0, 0]. If you increment the first value, giving [1, 0, 0, 0, 0], then you will have to make 4 swaps to ensure that it remains sorted.
Given a sorted array with no duplicates, then the answer is yes. But after the first operation (i.e. the first time you increment), then you could potentially have duplicates. The more increments you do, the higher the likelihood is that you'll have duplicates, and the more likely it'll take O(n) to keep that array sorted.
If all you have is the array, it's impossible to guarantee less than O(n) time per increment. If what you're looking for is a data structure that supports sorted order and lookup by index, then you probably want an order stastic tree.
If the values are small, counting sort will work. Represent the array [0,0,0,0] as {4}. Incrementing any zero gives {3,1} : 3 zeroes and a one. In general, to increment any value x, deduct one from the count of x and increment the count of {x+1}. The space efficiency is O(N), though, where N is the highest value.
It depends on how many items can have the same value. If more items can have the same value, then it is not possible to have O(1) with ordinary arrays.
Let's do an example: suppose array[5] = 21, and you want to do array[5]++:
Increment the item:
array[5]++
(which is O(1) because it is an array).
So, now array[5] = 22.
Check the next item (i.e., array[6]):
If array[6] == 21, then you have to keep checking new items (i.e., array[7] and so on) until you find a value higher than 21. At that point you can swap the values. This search is not O(1) because potentially you have to scan the whole array.
Instead, if items cannot have the same value, then you have:
Increment the item:
array[5]++
(which is O(1) because it is an array).
So, now array[5] = 22.
The next item cannot be 21 (because two items cannot have the same value), so it must have a value > 21 and the array is already sorted.
So you take sorted array and hashtable. You go over array to figure out 'flat' areas - where elements are of the same value. For every flat area you have to figure out three things 1) where it starts (index of first element) 2) what is it's value 3) what is the value of next element (the next bigger). Then put this tuple into the hashtable, where the key will be element value. This is prerequisite and it's complexity doesn't really matter.
Then when you increase some element (index i) you look up a table for index of next bigger element (call it j), and swap i with i - 1. Then 1) add new entry to hashtable 2) update existing entry for it's previous value.
With perfect hashtable (or limited range of possible values) it will be almost O(1). The downside: it will not be stable.
Here is some code:
#include <iostream>
#include <unordered_map>
#include <vector>
struct Range {
int start, value, next;
};
void print_ht(std::unordered_map<int, Range>& ht)
{
for (auto i = ht.begin(); i != ht.end(); i++) {
Range& r = (*i).second;
std::cout << '(' << r.start << ", "<< r.value << ", "<< r.next << ") ";
}
std::cout << std::endl;
}
void increment_el(int i, std::vector<int>& array, std::unordered_map<int, Range>& ht)
{
int val = array[i];
array[i]++;
//Pick next bigger element
Range& r = ht[val];
//Do the swapping, so last element of that range will be first
std::swap(array[i], array[ht[r.next].start - 1]);
//Update hashtable
ht[r.next].start--;
}
int main(int argc, const char * argv[])
{
std::vector<int> array = {1, 1, 1, 2, 2, 3};
std::unordered_map<int, Range> ht;
int start = 0;
int value = array[0];
//Build indexing hashtable
for (int i = 0; i <= array.size(); i++) {
int cur_value = i < array.size() ? array[i] : -1;
if (cur_value > value || i == array.size()) {
ht[value] = {start, value, cur_value};
start = i;
value = cur_value;
}
}
print_ht(ht);
//Now let's increment first element
increment_el(0, array, ht);
print_ht(ht);
increment_el(3, array, ht);
print_ht(ht);
for (auto i = array.begin(); i != array.end(); i++)
std::cout << *i << " ";
return 0;
}
Yes and no.
Yes if the list contains only unique integers, as that means you only need to check the next value. No in any other situation. If the values are not unique, incrementing the first of N duplicate values means that it must move N positions. If the values are floating-point, you may have thousands of values between x and x+1
It's important to be very clear about the requirements; the simplest way is to express the problem as an ADT (Abstract Datatype), listing the required operations and complexities.
Here's what I think you are looking for: a datatype which provides the following operations:
Construct(n): Create a new object of size n all of whose values are 0.
Value(i): Return the value at index i.
Increment(i): Increment the value at index i.
Least(): Return the index of the element with least value (or one such element if there are several).
Next(i): Return the index of the next element after element i in a sorted traversal starting at Least(), such that the traversal will return every element.
Aside from the Constructor, we want every one of the above operations to have complexity O(1). We also want the object to occupy O(n) space.
The implementation uses a list of buckets; each bucket has a value and a list of elements. Each element has an index, a pointer to the bucket it is part of. Finally, we have an array of pointers to elements. (In C++, I'd probably use iterators rather than pointers; in another language, I'd probably use intrusive lists.) The invariants are that no bucket is ever empty, and the value of the buckets are strictly monotonically increasing.
We start with a single bucket with value 0 which has a list of n elements.
Value(i) is implemented by returning the value of the bucket of the element referenced by the iterator at element i of the array. Least() is the index of the first element in the first bucket. Next(i) is the index of the next element after the one referenced by the iterator at element i, unless that iterator is already pointing at the end of the the list in which case it is the first element in the next bucket, unless the element's bucket is the last bucket, in which case we're at the end of the element list.
The only interface of interest is Increment(i), which is as follows:
If element i is the only element in its bucket (i.e. there is no next element in the bucket list, and element i is the first element in the bucket list):
Increment the value of the associated bucket.
If the next bucket has the same value, append the next bucket's element list to this bucket's element list (this is O(1), regardless of the list's size, because it is just a pointer swap), and then delete the next bucket.
If element i is not the only element in its bucket, then:
Remove it from its bucket list.
If the next bucket has the next sequential value, then push element i onto the next bucket's list.
Otherwise, the next bucket's value is larger, then create a new bucket with the next sequential value and only element i and insert it between this bucket and the next one.
just iterate along the array from the modified element until you find the correct place, then swap. Average case complexity is O(N) where N is the average number of duplicates. Worst case is O(n) where n is the length of the array. As long as N isn't large and doesn't scale badly with n, you're fine and can probably pretend it's O(1) for practical purposes.
If duplicates are the norm and/or scale strongly with n, then there are better solutions, see other responses.
I think that it is possible without using a hashtable. I have an implementation here:
#include <cstdio>
#include <vector>
#include <cassert>
// This code is a solution for http://stackoverflow.com/questions/19957753/maintain-a-sorted-array-in-o1
//
// """We have a sorted array and we would like to increase the value of one index by only 1 unit
// (array[i]++), such that the resulting array is still sorted. Is this possible in O(1)?"""
// The obvious implementation, which has O(n) worst case increment.
class LinearIncrementor
{
public:
LinearIncrementor(int numElems);
int valueAt(int index) const;
void incrementAt(int index);
private:
std::vector<int> m_values;
};
// Free list to store runs of same values
class RunList
{
public:
struct Run
{
int m_end; // end index of run, inclusive, or next object in free list
int m_value; // value at this run
};
RunList();
int allocateRun(int endIndex, int value);
void freeRun(int index);
Run& runAt(int index);
const Run& runAt(int index) const;
private:
std::vector<Run> m_runs;
int m_firstFree;
};
// More optimal implementation, which increments in O(1) time
class ConstantIncrementor
{
public:
ConstantIncrementor(int numElems);
int valueAt(int index) const;
void incrementAt(int index);
private:
std::vector<int> m_runIndices;
RunList m_runs;
};
LinearIncrementor::LinearIncrementor(int numElems)
: m_values(numElems, 0)
{
}
int LinearIncrementor::valueAt(int index) const
{
return m_values[index];
}
void LinearIncrementor::incrementAt(int index)
{
const int n = static_cast<int>(m_values.size());
const int value = m_values[index];
while (index+1 < n && value == m_values[index+1])
++index;
++m_values[index];
}
RunList::RunList() : m_firstFree(-1)
{
}
int RunList::allocateRun(int endIndex, int value)
{
int runIndex = -1;
if (m_firstFree == -1)
{
runIndex = static_cast<int>(m_runs.size());
m_runs.resize(runIndex + 1);
}
else
{
runIndex = m_firstFree;
m_firstFree = m_runs[runIndex].m_end;
}
Run& run = m_runs[runIndex];
run.m_end = endIndex;
run.m_value = value;
return runIndex;
}
void RunList::freeRun(int index)
{
m_runs[index].m_end = m_firstFree;
m_firstFree = index;
}
RunList::Run& RunList::runAt(int index)
{
return m_runs[index];
}
const RunList::Run& RunList::runAt(int index) const
{
return m_runs[index];
}
ConstantIncrementor::ConstantIncrementor(int numElems) : m_runIndices(numElems, 0)
{
const int runIndex = m_runs.allocateRun(numElems-1, 0);
assert(runIndex == 0);
}
int ConstantIncrementor::valueAt(int index) const
{
return m_runs.runAt(m_runIndices[index]).m_value;
}
void ConstantIncrementor::incrementAt(int index)
{
const int numElems = static_cast<int>(m_runIndices.size());
const int curRunIndex = m_runIndices[index];
RunList::Run& curRun = m_runs.runAt(curRunIndex);
index = curRun.m_end;
const bool freeCurRun = index == 0 || m_runIndices[index-1] != curRunIndex;
RunList::Run* runToMerge = NULL;
int runToMergeIndex = -1;
if (curRun.m_end+1 < numElems)
{
const int nextRunIndex = m_runIndices[curRun.m_end+1];
RunList::Run& nextRun = m_runs.runAt(nextRunIndex);
if (curRun.m_value+1 == nextRun.m_value)
{
runToMerge = &nextRun;
runToMergeIndex = nextRunIndex;
}
}
if (freeCurRun && !runToMerge) // then free and allocate at the same time
{
++curRun.m_value;
}
else
{
if (freeCurRun)
{
m_runs.freeRun(curRunIndex);
}
else
{
--curRun.m_end;
}
if (runToMerge)
{
m_runIndices[index] = runToMergeIndex;
}
else
{
m_runIndices[index] = m_runs.allocateRun(index, curRun.m_value+1);
}
}
}
int main(int argc, char* argv[])
{
const int numElems = 100;
const int numInc = 1000000;
LinearIncrementor linearInc(numElems);
ConstantIncrementor constInc(numElems);
srand(1);
for (int i = 0; i < numInc; ++i)
{
const int index = rand() % numElems;
linearInc.incrementAt(index);
constInc.incrementAt(index);
for (int j = 0; j < numElems; ++j)
{
if (linearInc.valueAt(j) != constInc.valueAt(j))
{
printf("Error: differing values at increment step %d, value at index %d\n", i, j);
}
}
}
return 0;
}
As a complement to the other answers: if you can only have the array, then you cannot indeed guarantee the operation will be constant-time; but because the array is sorted, you can find the end of a run of identical numbers in log n operations, not in n operations. This is simply a binary search.
If we expect most runs of numbers to be short, we should use galloping search, which is a variant where we first find the bounds by looking at positions +1, +2, +4, +8, +16, etc. and then doing binary search inside. You would get a time that is often constant (and extremely fast if the item is unique) but can grow up to log n. Unless for some reason long runs of identical numbers remain common even after many updates, this might outperform any solution that requires keeping additional data.
Say I have a set of numbers from [0, ....., 499]. Combinations are currently being generated sequentially using the C++ std::next_permutation. For reference, the size of each tuple I am pulling out is 3, so I am returning sequential results such as [0,1,2], [0,1,3], [0,1,4], ... [497,498,499].
Now, I want to parallelize the code that this is sitting in, so a sequential generation of these combinations will no longer work. Are there any existing algorithms for computing the ith combination of 3 from 500 numbers?
I want to make sure that each thread, regardless of the iterations of the loop it gets, can compute a standalone combination based on the i it is iterating with. So if I want the combination for i=38 in thread 1, I can compute [1,2,5] while simultaneously computing i=0 in thread 2 as [0,1,2].
EDIT Below statement is irrelevant, I mixed myself up
I've looked at algorithms that utilize factorials to narrow down each individual element from left to right, but I can't use these as 500! sure won't fit into memory. Any suggestions?
Here is my shot:
int k = 527; //The kth combination is calculated
int N=500; //Number of Elements you have
int a=0,b=1,c=2; //a,b,c are the numbers you get out
while(k >= (N-a-1)*(N-a-2)/2){
k -= (N-a-1)*(N-a-2)/2;
a++;
}
b= a+1;
while(k >= N-1-b){
k -= N-1-b;
b++;
}
c = b+1+k;
cout << "["<<a<<","<<b<<","<<c<<"]"<<endl; //The result
Got this thinking about how many combinations there are until the next number is increased. However it only works for three elements. I can't guarantee that it is correct. Would be cool if you compare it to your results and give some feedback.
If you are looking for a way to obtain the lexicographic index or rank of a unique combination instead of a permutation, then your problem falls under the binomial coefficient. The binomial coefficient handles problems of choosing unique combinations in groups of K with a total of N items.
I have written a class in C# to handle common functions for working with the binomial coefficient. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters.
Converts the K-indexes to the proper lexicographic index or rank of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle and is very efficient compared to iterating over the set.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. I believe it is also faster than older iterative solutions.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to use the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
The following tested code will iterate through each unique combinations:
public void Test10Choose5()
{
String S;
int Loop;
int N = 500; // Total number of elements in the set.
int K = 3; // Total number of elements in each group.
// Create the bin coeff object required to get all
// the combos for this N choose K combination.
BinCoeff<int> BC = new BinCoeff<int>(N, K, false);
int NumCombos = BinCoeff<int>.GetBinCoeff(N, K);
// The Kindexes array specifies the indexes for a lexigraphic element.
int[] KIndexes = new int[K];
StringBuilder SB = new StringBuilder();
// Loop thru all the combinations for this N choose K case.
for (int Combo = 0; Combo < NumCombos; Combo++)
{
// Get the k-indexes for this combination.
BC.GetKIndexes(Combo, KIndexes);
// Verify that the Kindexes returned can be used to retrive the
// rank or lexigraphic order of the KIndexes in the table.
int Val = BC.GetIndex(true, KIndexes);
if (Val != Combo)
{
S = "Val of " + Val.ToString() + " != Combo Value of " + Combo.ToString();
Console.WriteLine(S);
}
SB.Remove(0, SB.Length);
for (Loop = 0; Loop < K; Loop++)
{
SB.Append(KIndexes[Loop].ToString());
if (Loop < K - 1)
SB.Append(" ");
}
S = "KIndexes = " + SB.ToString();
Console.WriteLine(S);
}
}
You should be able to port this class over fairly easily to C++. You probably will not have to port over the generic part of the class to accomplish your goals. Your test case of 500 choose 3 yields 20,708,500 unique combinations, which will fit in a 4 byte int. If 500 choose 3 is simply an example case and you need to choose combinations greater than 3, then you will have to use longs or perhaps fixed point int.
You can describe a particular selection of 3 out of 500 objects as a triple (i, j, k), where i is a number from 0 to 499 (the index of the first number), j ranges from 0 to 498 (the index of the second, skipping over whichever number was first), and k ranges from 0 to 497 (index of the last, skipping both previously-selected numbers). Given that, it's actually pretty easy to enumerate all the possible selections: starting with (0,0,0), increment k until it gets to its maximum value, then increment j and reset k to 0 and so on, until j gets to its maximum value, and so on, until j gets to its own maximum value; then increment i and reset both j and k and continue.
If this description sounds familiar, it's because it's exactly the same way that incrementing a base-10 number works, except that the base is much funkier, and in fact the base varies from digit to digit. You can use this insight to implement a very compact version of the idea: for any integer n from 0 to 500*499*498, you can get:
struct {
int i, j, k;
} triple;
triple AsTriple(int n) {
triple result;
result.k = n % 498;
n = n / 498;
result.j = n % 499;
n = n / 499;
result.i = n % 500; // unnecessary, any legal n will already be between 0 and 499
return result;
}
void PrintSelections(triple t) {
int i, j, k;
i = t.i;
j = t.j + (i <= j ? 1 : 0);
k = t.k + (i <= k ? 1 : 0) + (j <= k ? 1 : 0);
std::cout << "[" << i << "," << j << "," << k << "]" << std::endl;
}
void PrintRange(int start, int end) {
for (int i = start; i < end; ++i) {
PrintSelections(AsTriple(i));
}
}
Now to shard, you can just take the numbers from 0 to 500*499*498, divide them into subranges in any way you'd like, and have each shard compute the permutation for each value in its subrange.
This trick is very handy for any problem in which you need to enumerate subsets.
I got this question at an interview and at the end was told there was a more efficient way to do this but have still not been able to figure it out. You are passing into a function an array of integers and an integer for size of array. In the array you have a lot of numbers, some that repeat for example 1,7,4,8,2,6,8,3,7,9,10. You want to take that array and return an array where all the repeated numbers are put at the end of the array so the above array would turn into 1,7,4,8,2,6,3,9,10,8,7. The numbers I used are not important and I could not use a buffer array. I was going to use a BST, but the order of the numbers must be maintained(except for the duplicate numbers). I could not figure out how to use a hash table so I ended up using a double for loop(n^2 horrible I know). How would I do this more efficiently using c++. Not looking for code, just an idea of how to do it better.
In what follows:
arr is the input array;
seen is a hash set of numbers already encountered;
l is the index where the next unique element will be placed;
r is the index of the next element to be considered.
Since you're not looking for code, here is a pseudo-code solution (which happens to be valid Python):
arr = [1,7,4,8,2,6,8,3,7,9,10]
seen = set()
l = 0
r = 0
while True:
# advance `r` to the next not-yet-seen number
while r < len(arr) and arr[r] in seen:
r += 1
if r == len(arr): break
# add the number to the set
seen.add(arr[r])
# swap arr[l] with arr[r]
arr[l], arr[r] = arr[r], arr[l]
# advance `l`
l += 1
print arr
On your test case, this produces
[1, 7, 4, 8, 2, 6, 3, 9, 10, 8, 7]
I would use an additional map, where the key is the integer value from the array and the value is an integer set to 0 in the beginning. Now I would go through the array and increase the values in the map if the key is already in the map.
In the end I would go again through the array. When the integer from the array has a value of one in the map, I would not change anything. When it has a value of 2 or more in the map I would swap the integer from the array with the last one.
This should result in a runtime of O(n*log(n))
The way I would do this would be to create an array twice the size of the original and create a set of integers.
Then Loop through the original array, add each element to the set, if it already exists add it to the 2nd half of the new array, else add it to the first half of the new array.
In the end you would get an array that looks like: (using your example)
1,7,4,8,2,6,3,9,10,-,-,8,7,-,-,-,-,-,-,-,-,-
Then I would loop through the original array again and make each spot equal to the next non-null position (or 0'd or whatever you decided)
That would make the original array turn into your solution...
This ends up being O(n) which is about as efficient as I can think of
Edit: since you can not use another array, when you find a value that is already in the
set you can move every value after it forward one and set the last value equal to the
number you just checked, this would in effect do the same thing but with a lot more operations.
I have been out of touch for a while, but I'd probably start out with something like this and see how it scales with larger input. I know you didn't ask for code but in some cases it's easier to understand than an explanation.
Edit: Sorry I missed the requirement that you cannot use a buffer array.
// returns new vector with dupes a the end
std::vector<int> move_dupes_to_end(std::vector<int> input)
{
std::set<int> counter;
std::vector<int> result;
std::vector<int> repeats;
for (std::vector<int>::iterator i = input.begin(); i < input.end(); i++)
{
if (counter.find(*i) == counter.end())
result.push_back(*i);
else
repeats.push_back(*i);
counter.insert(*i);
}
result.insert(result.end(), repeats.begin(), repeats.end());
return result;
}
#include <algorithm>
T * array = [your array];
size_t size = [array size];
// Complexity:
sort( array, array + size ); // n * log(n) and could be threaded
// (if merge sort)
T * last = unique( array, array + size ); // n, but the elements after the last
// unique element are not defined
Check sort and unique.
void remove_dup(int* data, int count) {
int* L=data; //place to put next unique number
int* R=data+count; //place to place next repeat number
std::unordered_set<int> found(count); //keep track of what's been seen
for(int* cur=data; cur<R; ++cur) { //until we reach repeats
if(found.insert(*cur).second == false) { //if we've seen it
std::swap(*cur,*--R); //put at the beginning of the repeats
} else //or else
std::swap(*cur,*L++); //put it next in the unique list
}
std::reverse(R, data+count); //reverse the repeats to be in origional order
}
http://ideone.com/3choA
Not that I would turn in code this poorly commented. Also note that unordered_set probably uses it's own array internally, bigger than data. (This has been rewritten based on aix's answer, to be much faster)
If you know the bounds on what the integer values are, B, and the size of the integer array, SZ, then you can do something like the following:
Create an array of booleans seen_before with B elements, initialized to 0.
Create a result array result of integers with SZ elements.
Create two integers, one for front_pos = 0, one for back_pos = SZ - 1.
Iterate across the original list:
Set an integer variable val to the value of the current element
If seen_before[val] is set to 1, put the number at result[back_pos] then decrement back_pos
If seen_before[val] is not set to 1, put the number at result[front_pos] then increment front_pos and set seen_before[val] to 1.
Once you finish iterating across the main list, all the unique numbers will be at the front of the list while the duplicate numbers will be at the back. Fun part is that the entire process is done in one pass. Note that this only works if you know the bounds of the values appearing in the original array.
Edit: It was pointed out that there's no bounds on the integers used, so instead of initializing seen_before as an array with B elements, initialize it as a map<int, bool>, then continue as usual. That should get you n*log(n) performance.
This can be done by iterating the array & marking index of the first change.
later on swaping that mark index value with next unique value
& then incrementing that mark index for next swap
Java Implementation:
public static void solve() {
Integer[] arr = new Integer[] { 1, 7, 4, 8, 2, 6, 8, 3, 7, 9, 10 };
final HashSet<Integer> seen = new HashSet<Integer>();
int l = -1;
for (int i = 0; i < arr.length; i++) {
if (seen.contains(arr[i])) {
if (l == -1) {
l = i;
}
continue;
}
if (l > -1) {
final int temp = arr[i];
arr[i] = arr[l];
arr[l] = temp;
l++;
}
seen.add(arr[i]);
}
}
output is 1 7 4 8 2 6 3 9 10 8 7
It's ugly, but it meets the requirements of moving the duplicates to the end in place (no buffer array)
// warning, some light C++11
void dup2end(int* arr, size_t cnt)
{
std::set<int> k;
auto end = arr + cnt-1;
auto max = arr + cnt;
auto curr = arr;
while(curr < max)
{
auto res = k.insert(*curr);
// first time encountered
if(res.second)
{
++curr;
}
else
{
// duplicate:
std::swap(*curr, *end);
--end;
--max;
}
}
}
void move_duplicates_to_end(vector<int> &A) {
if(A.empty()) return;
int i = 0, tail = A.size()-1;
while(i <= tail) {
bool is_first = true; // check of current number is first-shown
for(int k=0; k<i; k++) { // always compare with numbers before A[i]
if(A[k] == A[i]) {
is_first = false;
break;
}
}
if(is_first == true) i++;
else {
int tmp = A[i]; // swap with tail
A[i] = A[tail];
A[tail] = tmp;
tail--;
}
}
If the input array is {1,7,4,8,2,6,8,3,7,9,10}, then the output is {1,7,4,8,2,6,10,3,9,7,8}. Comparing with your answer {1,7,4,8,2,6,3,9,10,8,7}, the first half is the same, while the right half is different, because I swap all duplicates with the tail of the array. As you mentioned, the order of the duplicates can be arbitrary.
Is there a way in linear time by which we can find which is the second largest element of an array ?
Array elements can be positive, negative or zero.
Elements can be repetitive.
No STLs allowed.
Python can be used.
Solution : Sort the array and take the second element but Sorting not allowed
Modification : By definition second largest element will be the one which is numerically smaller. Like if we have
Arr = {5,5,4,3,1}
Then second largest is 4
Addition
Lets say if i want to generalize the question to kth largest and complexity less than linear like nlogn, what can be the solution.
Go through the array, keeping 2 memory slots to record the 2 largest elements seen so far. Return the smaller of the two.
.... is there anything tricky about this question that I can't see?
You can, this is the pseudo algorithm:
max = 2max = SMALLEST_INT_VALUE;
for element in v:
if element > max:
2max = max;
max = element;
else if element > 2max:
2max = element;
2max is the value you are looking for.
The algorithm won't return a correct value for particular cases, such as an array where its elements are equal.
If you want a true O(n) algorithm, and want to find nth largest element in array then you should use quickselect (it's basically quicksort where you throw out the partition that you're not interested in), and the below is a great writeup, with the runtime analysis:
http://pine.cs.yale.edu/pinewiki/QuickSelect
Pseudo code:
int max[2] = { array[0], array[1] }
if(max[1] < max[0]) swap them
for (int i = 2; i < array.length(); i++) {
if(array[i] >= max[0]) max[1] = max[0]; max[0] = array[i]
else if(array[i] >= max[1]) max[1] = array[i];
}
Now, max array contains the max 2 elements.
create a temporary array of size 3,
copy first 3 elements there,
sort the temporary array,
replace the last one in the temporary array with the 4th element from the source array,
sort the temporary array,
replace the last one in the temporary array with the 5th element from the source array,
sort the temporary array,
etc.
Sorting array of size 3 is constant time and you do that once for each element of the source array, hence linear overall time.
Yep. You tagged this as C/C++ but you mentioned you could do it in Python. Anyway, here is the algorithm:
Create the array (obviously).
If the first item is greater than the second item, set first variable to the first item and second variable to second item. Otherwise, do vise-versa.
Loop through all the items (except the first two).
If the item from the array is greater than first variable, set second variable to first variable and first variable to the item. Else if the item is greater than second variable set second variable to the item.
The second variable is your answer.
list = [-1,6,9,2,0,2,8,10,8,-10]
if list[0] > list[1]:
first = list[0]
second = list[1]
else:
first = list[1]
second = list[0]
for i in range(2, len(list)):
if list[i] > first:
first, second = list[i], first
elif list[i] > second:
second = list[i]
print("First:", first)
print("Second:", second)
// assuming that v is the array and length is its length
int m1 = max(v[0], v[1]), m2 = min(v[0], v[1]);
for (int i=2; i<length; i++) {
if (likely(m2 >= v[i]))
continue;
if (unlikely(m1 < v[i]))
m2 = m1, m1 = v[i];
else
m2 = v[i];
}
The result you need is in m2 (likely and unlikely are macros defined as here for performance purposes, you can simply remove them if you don't need them).
I think the other answers have not accounted for the fact that in an array like [0, 1, 1], the second largest is 0 (according to the updated problem definition). Furthermore, all mentions of quickselect are not O(n) but rather O(n^2) and are doing much more work than necessary (on top of which that is a sorting algorithm which the problem statement disallowed). Here is a very similar algorithm to Simone's but updated to return the second largest unique element:
def find_second(numbers):
top = numbers[0]
second = None
for num in numbers[1:]:
if second is None:
if num < top: second = num
elif num > top:
second = top
top = num
else:
if num > second:
if num > top:
second = top
top = num
elif num < top: second = num
if second is not None: return second
return top
if __name__ == '__main__':
print "The second largest is %d" % find_second([1,2,3,4,4,5,5])
// Second larger element and its position(s)
int[] tab = { 12, 1, 21, 12, 8, 8, 1 };
int[] tmp = Arrays.copyOf(tab, tab.length);
int secMax = 0;
Arrays.sort(tmp);
secMax = tmp[tmp.length - 2];
System.out.println(secMax);
List<Integer> positions = new ArrayList<>();
for (int i = 0; i < tab.length; i++) {
if (tab[i] == secMax) {
positions.add(i);
}
}
System.out.println(positions);
There are N values in the array, and one of them is the smallest value. How can I find the smallest value most efficiently?
If they are unsorted, you can't do much but look at each one, which is O(N), and when you're done you'll know the minimum.
Pseudo-code:
small = <biggest value> // such as std::numerical_limits<int>::max
for each element in array:
if (element < small)
small = element
A better way reminded by Ben to me was to just initialize small with the first element:
small = element[0]
for each element in array, starting from 1 (not 0):
if (element < small)
small = element
The above is wrapped in the algorithm header as std::min_element.
If you can keep your array sorted as items are added, then finding it will be O(1), since you can keep the smallest at front.
That's as good as it gets with arrays.
You need too loop through the array, remembering the smallest value you've seen so far. Like this:
int smallest = INT_MAX;
for (int i = 0; i < array_length; i++) {
if (array[i] < smallest) {
smallest = array[i];
}
}
The stl contains a bunch of methods that should be used dependent to the problem.
std::find
std::find_if
std::count
std::find
std::binary_search
std::equal_range
std::lower_bound
std::upper_bound
Now it contains on your data what algorithm to use.
This Artikel contains a perfect table to help choosing the right algorithm.
In the special case where min max should be determined and you are using std::vector or ???* array
std::min_element
std::max_element
can be used.
If you want to be really efficient and you have enough time to spent, use SIMD instruction.
You can compare several pairs in one instruction:
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)
__m64 _mm_min_pu8(__m64 a , __m64 b );
Today every computer supports it. Other already have written min function for you:
http://smartdata.usbid.com/datasheets/usbid/2001/2001-q1/i_minmax.pdf
or use already ready library.
If the array is sorted in ascending or descending order then you can find it with complexity O(1).
For an array of ascending order the first element is the smallest element, you can get it by arr[0] (0 based indexing).
If the array is sorted in descending order then the last element is the smallest element,you can get it by arr[sizeOfArray-1].
If the array is not sorted then you have to iterate over the array to get the smallest element.In this case time complexity is O(n), here n is the size of array.
int arr[] = {5,7,9,0,-3,2,3,4,56,-7};
int smallest_element=arr[0] //let, first element is the smallest one
for(int i =1;i<sizeOfArray;i++)
{
if(arr[i]<smallest_element)
{
smallest_element=arr[i];
}
}
You can calculate it in input section (when you have to find smallest element from a given array)
int smallest_element;
int arr[100],n;
cin>>n;
for(int i = 0;i<n;i++)
{
cin>>arr[i];
if(i==0)
{
smallest_element=arr[i]; //smallest_element=arr[0];
}
else if(arr[i]<smallest_element)
{
smallest_element = arr[i];
}
}
Also you can get smallest element by built in function
#inclue<algorithm>
int smallest_element = *min_element(arr,arr+n); //here n is the size of array
You can get smallest element of any range by using this function
such as,
int arr[] = {3,2,1,-1,-2,-3};
cout<<*min_element(arr,arr+3); //this will print 1,smallest element of first three element
cout<<*min_element(arr+2,arr+5); // -2, smallest element between third and fifth element (inclusive)
I have used asterisk (*), before min_element() function. Because it returns pointer of smallest element.
All codes are in c++.
You can find the maximum element in opposite way.
Richie's answer is close. It depends upon the language. Here is a good solution for java:
int smallest = Integer.MAX_VALUE;
int array[]; // Assume it is filled.
int array_length = array.length;
for (int i = array_length - 1; i >= 0; i--) {
if (array[i] < smallest) {
smallest = array[i];
}
}
I go through the array in reverse order, because comparing "i" to "array_length" in the loop comparison requires a fetch and a comparison (two operations), whereas comparing "i" to "0" is a single JVM bytecode operation. If the work being done in the loop is negligible, then the loop comparison consumes a sizable fraction of the time.
Of course, others pointed out that encapsulating the array and controlling inserts will help. If getting the minimum was ALL you needed, keeping the list in sorted order is not necessary. Just keep an instance variable that holds the smallest inserted so far, and compare it to each value as it is added to the array. (Of course, this fails if you remove elements. In that case, if you remove the current lowest value, you need to do a scan of the entire array to find the new lowest value.)
An O(1) sollution might be to just guess: The smallest number in your array will often be 0. 0 crops up everywhere. Given that you are only looking at unsigned numbers. But even then: 0 is good enough. Also, looking through all elements for the smallest number is a real pain. Why not just use 0? It could actually be the correct result!
If the interviewer/your teacher doesn't like that answer, try 1, 2 or 3. They also end up being in most homework/interview-scenario numeric arrays...
On a more serious side: How often will you need to perform this operation on the array? Because the sollutions above are all O(n). If you want to do that m times to a list you will be adding new elements to all the time, why not pay some time up front and create a heap? Then finding the smallest element can really be done in O(1), without resulting to cheating.
If finding the minimum is a one time thing, just iterate through the list and find the minimum.
If finding the minimum is a very common thing and you only need to operate on the minimum, use a Heap data structure.
A heap will be faster than doing a sort on the list but the tradeoff is you can only find the minimum.
If you're developing some kind of your own array abstraction, you can get O(1) if you store smallest added value in additional attribute and compare it every time a new item is put into array.
It should look something like this:
class MyArray
{
public:
MyArray() : m_minValue(INT_MAX) {}
void add(int newValue)
{
if (newValue < m_minValue) m_minValue = newValue;
list.push_back( newValue );
}
int min()
{
return m_minValue;
}
private:
int m_minValue;
std::list m_list;
}
//find the min in an array list of #s
$array = array(45,545,134,6735,545,23,434);
$smallest = $array[0];
for($i=1; $i<count($array); $i++){
if($array[$i] < $smallest){
echo $array[$i];
}
}
//smalest number in the array//
double small = x[0];
for(t=0;t<x[t];t++)
{
if(x[t]<small)
{
small=x[t];
}
}
printf("\nThe smallest number is %0.2lf \n",small);
Procedure:
We can use min_element(array, array+size) function . But it iterator
that return the address of minimum element . If we use *min_element(array, array+size) then it will return the minimum value of array.
C++ implementation
#include<bits/stdc++.h>
using namespace std;
int main()
{
int num;
cin>>num;
int arr[10];
for(int i=0; i<num; i++)
{
cin>>arr[i];
}
cout<<*min_element(arr,arr+num)<<endl;
return 0;
}
int small=a[0];
for (int x: a.length)
{
if(a[x]<small)
small=a[x];
}
C++ code
#include <iostream>
using namespace std;
int main() {
int n = 5;
int arr[n] = {12,4,15,6,2};
int min = arr[0];
for (int i=1;i<n;i++){
if (min>arr[i]){
min = arr[i];
}
}
cout << min;
return 0;
}