I had an issue where my code segfaulted on attempting to use the size() function of a list. On the advice of stackoverflow :-) I constructed a minimum case in which the segfault occurs (on the call inventory.size() below). It is:
#include <list>
class Thing {};
class Player {
private:
int xpCalcArray[99];
std::list<Thing*> inventory;
public:
Player();
int addToInv(Thing& t); // return 1 on success, 0 on failure
};
Player::Player() {
// set up XP calculation array
for (int i=1; i<100; i++) {
if (i<=10) {
xpCalcArray[i] = i*100;
}
if (i>10 && i<=50) {
xpCalcArray[i] = i*1000;
}
if (i>50 && i<=99) {
xpCalcArray[i] = i*5000;
}
}
}
int Player::addToInv(Thing& t) {
if (inventory.size() == 52) {
return 0;
} else {
inventory.push_back(&t);
}
return 1;
}
int main(int argc, char *argv[]) {
Thing t;
Player pc;
pc.addToInv(t);
return 1;
}
I notice that when I remove the setting up of the array in the Player cosntructor, it works fine, so this looks to be the problem. What am I doing wrong?
You are accessing your array out of bounds, which results in undefined behaviour. The valid index range for this array
int xpCalcArray[99];
is 0 to 98. You are accessing index 99 here:
if (i>50 && i<=99) {
xpCalcArray[i] = i*5000;
}
Your outer loop should be
for (int i=0; i<99; i++) { ... }
Note I start from 0, although it is an assumption that you actually want to access the first element.
Then your final condition can be simplified to
if (i>50) {
xpCalcArray[i] = i*5000;
}
If you intended to use a size 100 array, then you need
int xpCalcArray[100];
then loop between int i=0; i<100;.
You are accessing outside the bounds of your array. Doing so causes undefined behaviour and so there is no logical explanation for anything that occurs afterwards. The size of your array is 99 and so the last index is 98. Your for loop goes up to 99, however.
Either make your array size 100:
int xpCalcArray[100];
Or change your for condition to i < 99.
You are overwriting your array of 99 ints by attempting to modify the 2nd→100th elements (rather than 1st→99th).
In your case, this happens to overwrite some memory within the std::list<Thing*> (which exists in memory directly after the array — not always, but evidently for you today) and thus, when you try to use the list, all hell breaks loose when its internal member data is no longer what it thought it was.
You xpCalcArray is defined from 0 up to 98 (being 99 elements large).
Your loop goes from 0 up to 99, taking 100 steps.
The last loop cycle, writes xpCalcArray at location 99, which does not exist. This (indirectly) results in your segmentation fault as shown by the answer of Lightness Races in Orbit.
So, increase the size of xpCalcArray by 1:
int xpCalcArray[100];
Related
So I wrote this function in C++ which basically counts the maximum number in an array and then prints out the number of maximum numbers in the array. Here's the code of the function:
int Number_of_maxNum(vector<int> ar) {
int max=0;
int Number_of_Maxnum=0;
int d = ar.size();
for(int i=0;i<=d;i++){
if(ar[i]>max){
max=ar[i];
}
}
for(int j=0;j<=d;j++){
if(ar[j]==max){
Number_of_Maxnum++;
}
}
return Number_of_Maxnum;
}
Now this code however doesn't work for the following array as input:
{44, 53, 31, 27, 77, 60, 66, 77, 26, 36}
It should print out 2, but print out 1
If someone could please explain what's actually going on with that input that's giving 1 as an input, It would
You have Undefined Behaviour. Arrays/vectors are indexed from 0 to Size-1. So change i<=d to i<d. This is most likely the reason for this strange result. Because you read your vector outside of its boundary, resulting in (effectively) random last value (note that this is UB, it can even crash your entire program).
Another thing is that you should initialize int max = std::numeric_limits<int>::min(); unless you guarantee that all elements of ar are nonnegative.
Finally you can do entire processing in a single loop. Try this:
int Number_of_maxNum(const vector<int>& ar) // <--- do this to avoid vector copy
{
int currentMax = std::numeric_limits<int>::min();
int counter = 0;
for (int value : ar) // <--- do this to avoid error prone manual indexing
{
if (value == currentMax)
{
counter++;
}
else if (value > currentMax)
{
currentMax = value;
counter = 1;
}
}
return counter;
}
The accepted answer is certainly correct, as well as explaining why your code is wrong.
However, you should also consider using the STL to do what you need, like this
int Number_of_maxNum(const std::vector<int>& ar)
{
if (ar.size() == 0)
return 0;
auto max = *std::max_element(ar.cbegin(), ar.cend());
return std::count(ar.cbegin(), ar.cend(), max);
}
Some of the advantages are:
It's easier to read (and write, once you're used to it).
There's no issues with off-by-one errors (as you had in your solution).
No worrying about initializing the maximum number to be the smallest possible number.
One disadvantage of this solution is that it loops over the vector twice. This can still be avoided by using the appropriate algorithm, e.g.
int Number_of_maxNum(const std::vector<int>& ar)
{
return std::accumulate(ar.cbegin(), ar.cend(), 0,
[max = std::numeric_limits<int>::min()]
(int count, int num) mutable {
return num > max ? max = num, 1 : count + (num == max);
});
}
This is effectively the conventional for-loop, so I'm not sure there's much to be gained by writing it this way. Also, mutable lambdas could be considered a code smell. You should use your judgement to decide which technique to use, once you are aware of the options.
The two structures used in my code, one is nested
struct Class
{
std::string name;
int units;
char grade;
};
struct Student
{
std::string name;
int id;
int num;
double gpa;
Class classes[20];
};
I am trying to figure out a way to sort the structures within the all_students[100] array in order of their ID's in ascending order. My thought was, to start counting at position 1 and then compare that to the previous element. If it was smaller than the previous element then I would have a temporary array of type Student to equate it to, then it would be a simple matter of switching them places within the all_students array. However, when I print the results, one of the elements ends up being garbage numbers, and not in order. This is for an intermediate C++ class in University and we are not allowed to use pointers or vectors since he has not taught us this yet. Anything not clear feel free to ask me.
The function to sort the structures based on ID
void sort_id(Student all_students[100], const int SIZE)
{
Student temporary[1];
int counter = 1;
while (counter < SIZE + 1)
{
if (all_students[counter].id < all_students[counter - 1].id)
{
temporary[0] = all_students[counter];
all_students[counter] = all_students[counter - 1];
all_students[counter - 1] = temporary[0];
counter = 1;
}
counter++;
}
display(all_students, SIZE);
}
There are a few things wrong with your code:
You don't need to create an array of size 1 to use as a temporary variable.
Your counter will range from 1 to 100, you will go out of bounds: the indices of an array of size 100 range from 0 to 99.
The following solution uses insertion sort to sort the array of students, it provides a faster alternative to your sorting algorithm. Note that insertion sort is only good for sufficiently small or nearly sorted arrays.
void sort_id(Student* all_students, int size)
{
Student temporary;
int i = 1;
while(i < size) // Read my note below.
{
temporary = all_students[i];
int j = i - 1;
while(j >= 0 && temporary.id < all_students[j].id)
{
all_students[j+1] = all_students[j]
j--;
}
all_students[j+1] = temporary;
i++;
}
display(all_students, size);
}
Note: the outer while-loop can also be done with a for-loop like this:
for(int i = 1; i < size; i++)
{
// rest of the code ...
}
Usually, a for-loop is used when you know beforehand how many iterations will be done. In this case, we know the outer loop will iterate from 0 to size - 1. The inner loop is a while-loop because we don't know when it will stop.
Your array of Students ranges from 0, 99. Counter is allowed to go from 1 to 100.
I'm assuming SIZE is 100 (in which case, you probably should have the array count also be SIZE instead of hard-coding in 100, if that wasn't just an artifact of typing the example for us).
You can do the while loop either way, either
while(counter < SIZE)
and start counter on 0, or
while (counter < SIZE+1)
and start counter on 1, but if you do the latter, you need to subtract 1 from your array subscripts. I believe that's why the norm (based on my observations) is to start at 0.
EDIT: I wasn't the downvoter! Also, just another quick comment, there's really no reason to have your temporary be an array. Just have
Student temporary;
I overlooked the fact that I was allowing the loop to access one more element than the array actually held. That's why I was getting garbage because the loop was accessing data that didn't exist.
I fixed this by changing while (counter < SIZE + 1)
to: while (counter < SIZE )
Then to fix the second problem which was about sorting, I needed to make sure that the loop started again from the beginning after a switch, in case it needed to switch again with a lower element. So I wrote continue; after counter = 1
I just implemented breadth first search in c++ and instead of declaring a vector as bool, I declared it as an int. This lead to a very odd observation. When I used int, the code printed the following:
1
32763
-524268732
Throughout the entire code, I don't provide any such value to variable as the 2nd and 3rd node receive, so I assume that they are just garbage values, but why do garbage values even come up, when I'm initialising the vector to be full of zeroes ??? You may check the code to be that below:
#include <iostream>
#include <queue>
using namespace std;
queue<int> neigh;
vector< vector<int> > graph(3);
vector<int> flag(3, 0);
int main(void)
{
graph[0].push_back(1); graph[0].push_back(2);
graph[1].push_back(0); graph[1].push_back(2);
graph[2].push_back(0); graph[3].push_back(1);
neigh.push(0);
while(!neigh.empty())
{
int cur = neigh.front();
neigh.pop();
flag[cur] = 1;
for(int i = 0, l = graph[cur].size();i < l;i++)
{
if(!flag[graph[cur][i]])
neigh.push(graph[cur][i]);
}
}
for(int i = 0;i < 3;i++)
{
cout << flag[i] << endl;
}
}
Alright, then I changed just a single line of code, line number 7, the one where I declare and initialise the flag vector.
Before:
vector<int> flag(3, 0);
After:
vector<bool> flag(3, false);
And voila! The code started working:
1 //The new output
1
1
So, my question is, what is the problem with the code in the first place ? I believe it may be some kind of error I made, or possibly that its only by chance that my bfs implementation works at all... So, what is the truth, SO? What is my (possible) mistake ?
You are accessing your vector out of bounds here:
graph[3].push_back(1);
At this moment, graph only has three elements. This leads to undefined behaviour.
I've tried looking around but I can't find anything about this anywhere.
I'm writing a custom array class with a "push" function to add a value to the array.
It seems to work perfectly fine but won't execute more than once.
Take the main method below for example:
int main()
{
Array<int> test(4,5);
test.push(4);
test.writeOrdered("Output.txt");
return 0;
}
This will put the int value 4 into the array at the first available position and execute the writeOrdered function.
The following main method, on the other hand:
int main()
{
Array<int> test(4,5);
test.push(4);
test.push(5);
test.writeOrdered("Output.txt");
return 0;
}
This will put the number 4 into the array at the first available point as above and then stop. It won't execute any further lines of code.
Here's the push function for reference:
void push(Datatype p_item)
{
bool inserted = false;
int i = 0;
while (inserted == false)
{
if (m_array[i] < 0)
{
m_array[i] = p_item;
i++;
inserted = true;
cout << p_item << " saved to array" << endl;
system("pause");
}
}
}
You have an infinite loop. After the first insert m_array[0] >= 0 and i never grows. You would have found it out, had you debugged the code somehow.
Basically I don't understand your push function but the way it is, after you insert a non-negative value into the first position any further call to your push function results in a tight loop.
I imagine that you want the i++ outside the if statement.
Without seeing the full implementation of the Array class I would guess that the array m_array contains negative numbers by default. This will allow the first call to the push method to succeed. The next call to the method contains a value of 4 at index 0 and will be stuck in an infinite loop because inserted will never be set to true nor will the value of i be incremented.
I'm making a C++ game which requires me to initialize 36 numbers into a vector. You can't initialize a vector with an initializer list, so I've created a while loop to initialize it faster. I want to make it push back 4 of each number from 2 to 10, so I'm using an int named fourth to check if the number of the loop is a multiple of 4. If it is, it changes the number pushed back to the next number up. When I run it, though, I get SIGABRT. It must be a problem with fourth, though, because when I took it out, it didn't give the signal.
Here's the program:
for (int i; i < 36;) {
int fourth = 0;
fourth++;
fourth%=4;
vec.push_back(i);
if (fourth == 0) {
i++;
}
}
Please help!
You do not initialize i. Use for (int i = 0; i<36;). Also, a new variable forth is allocated on each iteration of the loop body. Thus the test fourth==0 will always yield false.
I want to make it push back 4 of each number from 2 to 10
I would use the most straight forward approach:
for (int value = 2; value <= 10; ++value)
{
for (int count = 0; count < 4; ++count)
{
vec.push_back(value);
}
}
The only optimization I would do is making sure that the capacity of the vector is sufficient before entering the loop. I would leave other optimizations to the compiler. My guess is, what you gain by omitting the inner loop, you lose by frequent modulo division.
You did not initialize i, and you are resetting fourth in every iteration. Also, with your for loop condition, I do not think it will do what you want.
I think this should work:
int fourth = 0;
for (int i = 2; i<=10;) {
fourth++;
fourth%=4;
vec.push_back(i);
if (fourth==0) {
i++;
}
}
I've been able to create a static array declaration and pass that array into the vector at initialization without issue. Pretty clean too:
const int initialValues[36] = {0,1,2...,35};
std::vector foo(initialValues);
Works with constants, but haven't tried it with non const arrays.