Adding two signed or unsigned integers - c++

It has been a long time since I last programmed at the bits and bytes level and wanted to confirm something I seem to remember from those days:
Say I have two integers of equal length (1, 2, 4, 8 bytes; it doesn't matter), and I add them up: does the bit-by-bit result of the sum differ if they are signed or unsigned. In other words: regardless of whether they are signed or unsigned integers, will the bits end up being the same?
My intuition and my frail memory tell me they will, but I just wanted to confirm. Thanks.

Assuming the implementation uses 2's complement as representation of signed integers, then the results will be the same. In other representations, they won't.
EDIT
As pointed out in comments, overflow in signed addition is undefined behaviour, which means nothing can be said about the results in such case.

I know this has already been answered, but all processors that I've ever worked with (about a dozen different architectures - and I mean architectures, not different flavours) only have ONE type of ADD instruction - it may have different size options, but it's the one instruction. The same applies to subtract. It is different on multiply and divide which typically has variants for signed and unsigned - or require the input to be "sign adjusted" in some way.
The only other instructions that make a distinction between signed and unsigned are the conditional instructions, e.g. "branch on less than" will have one variant for "unsigned less than" and one variant for "signed less than" (one of which usually is called something other than "less than", such as "below" or "carry set" or some such).

Related

Bit shifting with leading 1

When I use the >> bitwise operator on 1000 in c++ it gives this result: 1100. I want the result to be 0100. When the 1 is in any other position this is exactly what happens, but with a leading 1 it goes wrong. Why is that and how can it be avoided?
The behavior you describe is coherent with what happens on some platforms when right-shifting a signed integer with the high bit set (so, negative values).
In this case, on many platforms compilers will emit code to perform an arithmetic shift, which propagates the sign bit; this, on platforms with 2's complement representation for negative integers (= virtually every current platform) has the effect of giving the "x >> i = floor(x/2i)" behavior even on negative values. Notice that this is not contractual - as far as the C++ standard is concerned, shifting negative integers in implementation-defined behavior, so any compiler is free to implement different semantics for it1.
To come to your question, to obtain the "regular" shift behavior (generally called "logical shift") you have to make sure to work on unsigned integers. This can be obtained either making sure that the variable you are shifting is of unsigned type (e.g. unsigned int) or, if it's a literal, by putting an U suffix to it (e.g. 1 is an int, 1U is an unsigned int).
If the data you have is of a signed type (e.g. int) you may cast it to the corresponding unsigned type before shifting without risks (conversion from a signed int to an unsigned one is well-defined by the standard, and doesn't change the bit values on 2's complement machines).
Historically, this comes from the fact that C strove to support even machines that didn't have "cheap" arithmetic shift functionality at hardware level and/or didn't use 2's complement representation.
As mentioned by others, when right shifting on a signed int, it is implementation defined whether you will get 1s or 0s. In your case, because the left most bit in 1000 is a 1, the "replacement bits" are also 1. Assuming you must work with signed ints, in order to get rid of it, you can apply a bitmask.

Bit width of unsigned and signed short int [duplicate]

This question already has answers here:
What does the C++ standard state the size of int, long type to be?
(24 answers)
Closed 3 years ago.
Why is the 'typical bit width' of unsigned and signed short int data types classed as 'range'? Does this mean they are likely to be any number of bytes? If so why when the 'typical range' is predictable (0 to 65,535 & -32768 to 32767) as with other data types?
It's both sensible and intuitive to describe the possible values of an integer in terms of its numerical range.
I realise that it's tempting to focus on implementation details, like "how many bits there are" or "how many bytes it takes up", but we're not in the 1970s any more. We're not creating machine instructions on punchcards. C++ and C are abstractions. Think in terms of semantics and in terms of behaviours and you'll find your programming life much easier.
The author of the information you're looking at is following that rule.
Why is the 'typical bit width' of unsigned and signed short int data types classed as 'range'?
In math, "range" is (depending on context) synonymous with "interval". An interval is set of numbers lying between two numbers (the minimum and maximum values). The set of all values of all integer types are intervals, and as such may be referred to as ranges.
The minimum required range that signed short must have as specified by the C11 standard is [−32,767, +32,767], and unsigned must have at least [0, 65,535].
Does this mean they are likely to be any number of bytes?
That does not follow from "range", but the number of bytes is indeed implementation defined. A minimum of 16 bits are required to represent the minimum range, and that requires at least one or two bytes depending on the size of the byte (which is at least 8 bits).
What number of bytes is "likely" depends on what system one is likely to use.
If so why
Because that allows the language to be usable on wide variety of CPU architectures which have different sizes of bytes, different representations for signed integers as well as different set of instructions that support different widths of registers.

Why are signed negative numbers converted to unsigned numbers?

Particularly i have a large unsigned number and a large signed negative number.
Why can't I divide a large number by a negative number C++
When I try to divide the two, I get the result zero simply because something somewhere is converting my signed number to unsigned (meaning that it has to be positive). >.>;
Edit.
Just to be absolutely clear. I know that it is resolved to zero and I'm happy with that. I'm also happy with the previous reason that it is resolved to zero because a number is converted away from being a signed number to an unsigned number.
However that doesn't answer why the number is converted from a signed number to an unsigned number in the first place. There doesn't seem to be any logical reason for doing so.
The operands of the arithmetic operators need to have the same types. That makes the language easier to define and easier to implement, in part because there are fewer cases to handle, and in part because hardware doesn't generally support mixed-type operations, either. Formally, C++ is defined in terms of a virtual machine, but the capabilities expected of that machine are influenced by those of real-world hardware. Operations dictated by the standard but not supported by hardware (such as your hypothetical signed-unsigned division) would need to be implemented by compiler-writers in library code, and that would affect performance.
Either the signed operand needs to be converted to unsigned, or vice versa. The standard committee picked the former.

Why prefer signed over unsigned in C++? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
I'd like to understand better why choose int over unsigned?
Personally, I've never liked signed values unless there is a valid reason for them. e.g. count of items in an array, or length of a string, or size of memory block, etc., so often these things cannot possibly be negative. Such a value has no possible meaning. Why prefer int when it is misleading in all such cases?
I ask this because both Bjarne Stroustrup and Chandler Carruth gave the advice to prefer int over unsigned here (approx 12:30').
I can see the argument for using int over short or long - int is the "most natural" data width for the target machine architecture.
But signed over unsigned has always annoyed me. Are signed values genuinely faster on typical modern CPU architectures? What makes them better?
As per requests in comments: I prefer int instead of unsigned because...
it's shorter (I'm serious!)
it's more generic and more intuitive (i. e. I like to be able to assume that 1 - 2 is -1 and not some obscure huge number)
what if I want to signal an error by returning an out-of-range value?
Of course there are counter-arguments, but these are the principal reasons I like to declare my integers as int instead of unsigned. Of course, this is not always true, in other cases, an unsigned is just a better tool for a task, I am just answering the "why would anyone prefer defaulting to signed" question specifically.
Let me paraphrase the video, as the experts said it succinctly.
Andrei Alexandrescu:
No simple guideline.
In systems programming, we need integers of different sizes and signedness.
Many conversions and arcane rules govern arithmetic (like for auto), so we need to be careful.
Chandler Carruth:
Here's some simple guidelines:
Use signed integers unless you need two's complement arithmetic or a bit pattern
Use the smallest integer that will suffice.
Otherwise, use int if you think you could count the items, and a 64-bit integer if it's even more than you would want to count.
Stop worrying and use tools to tell you when you need a different type or size.
Bjarne Stroustrup:
Use int until you have a reason not to.
Use unsigned only for bit patterns.
Never mix signed and unsigned
Wariness about signedness rules aside, my one-sentence take away from the experts:
Use the appropriate type, and when you don't know, use an int until you do know.
Several reasons:
Arithmetic on unsigned always yields unsigned, which can be a problem when subtracting integer quantities that can reasonably result in a negative result — think subtracting money quantities to yield balance, or array indices to yield distance between elements. If the operands are unsigned, you get a perfectly defined, but almost certainly meaningless result, and a result < 0 comparison will always be false (of which modern compilers will fortunately warn you).
unsigned has the nasty property of contaminating the arithmetic where it gets mixed with signed integers. So, if you add a signed and unsigned and ask whether the result is greater than zero, you can get bitten, especially when the unsigned integral type is hidden behind a typedef.
There are no reasons to prefer signed over unsigned, aside from purely sociological ones, i.e. some people believe that average programmers are not competent and/or attentive enough to write proper code in terms of unsigned types. This is often the main reasoning used by various "speakers", regardless of how respected those speakers might be.
In reality, competent programmers quickly develop and/or learn the basic set of programming idioms and skills that allow them to write proper code in terms of unsigned integral types.
Note also that the fundamental differences between signed and unsigned semantics are always present (in superficially different form) in other parts of C and C++ language, like pointer arithmetic and iterator arithmetic. Which means that in general case the programmer does not really have the option of avoiding dealing with issues specific to unsigned semantics and the "problems" it brings with it. I.e. whether you want it or not, you have to learn to work with ranges that terminate abruptly at their left end and terminate right here (not somewhere in the distance), even if you adamantly avoid unsigned integers.
Also, as you probably know, many parts of standard library already rely on unsigned integer types quite heavily. Forcing signed arithmetic into the mix, instead of learning to work with unsigned one, will only result in disastrously bad code.
The only real reason to prefer signed in some contexts that comes to mind is that in mixed integer/floating-point code signed integer formats are typically directly supported by FPU instruction set, while unsigned formats are not supported at all, making the compiler to generate extra code for conversions between floating-point values and unsigned values. In such code signed types might perform better.
But at the same time in purely integer code unsigned types might perform better than signed types. For example, integer division often requires additional corrective code in order to satisfy the requirements of the language spec. The correction is only necessary in case of negative operands, so it wastes CPU cycles in situations when negative operands are not really used.
In my practice I devotedly stick to unsigned wherever I can, and use signed only if I really have to.
The integral types in C and many languages which derive from it have two general usage cases: to represent numbers, or represent members of an abstract algebraic ring. For those unfamiliar with abstract algebra, the primary notion behind a ring is that adding, subtracting, or multiplying two items of a ring should yield another item of that ring--it shouldn't crash or yield a value outside the ring. On a 32-bit machine, adding unsigned 0x12345678 to unsigned 0xFFFFFFFF doesn't "overflow"--it simply yields the result 0x12345677 which is defined for the ring of integers congruent mod 2^32 (because the arithmetic result of adding 0x12345678 to 0xFFFFFFFF, i.e. 0x112345677, is congruent to 0x12345677 mod 2^32).
Conceptually, both purposes (representing numbers, or representing members of the ring of integers congruent mod 2^n) may be served by both signed and unsigned types, and many operations are the same for both usage cases, but there are some differences. Among other things, an attempt to add two numbers should not be expected to yield anything other than the correct arithmetic sum. While it's debatable whether a language should be required to generate the code necessary to guarantee that it won't (e.g. that an exception would be thrown instead), one could argue that for code which uses integral types to represent numbers such behavior would be preferable to yielding an arithmetically-incorrect value and compilers shouldn't be forbidden from behaving that way.
The implementers of the C standards decided to use signed integer types to represent numbers and unsigned types to represent members of the algebraic ring of integers congruent mod 2^n. By contrast, Java uses signed integers to represent members of such rings (though they're interpreted differently in some contexts; conversions among differently-sized signed types, for example, behave differently from among unsigned ones) and Java has neither unsigned integers nor any primitive integral types which behave as numbers in all non-exceptional cases.
If a language provided a choice of signed and unsigned representations for both numbers and algebraic-ring numbers, it might make sense to use unsigned numbers to represent quantities that will always be positive. If, however, the only unsigned types represent members of an algebraic ring, and the only types that represent numbers are the signed ones, then even if a value will always be positive it should be represented using a type designed to represent numbers.
Incidentally, the reason that (uint32_t)-1 is 0xFFFFFFFF stems from the fact that casting a signed value to unsigned is equivalent to adding unsigned zero, and adding an integer to an unsigned value is defined as adding or subtracting its magnitude to/from the unsigned value according to the rules of the algebraic ring which specify that if X=Y-Z, then X is the one and only member of that ring such X+Z=Y. In unsigned math, 0xFFFFFFFF is the only number which, when added to unsigned 1, yields unsigned zero.
Speed is the same on modern architectures. The problem with unsigned int is that it can sometimes generate unexpected behavior. This can create bugs that wouldn't show up otherwise.
Normally when you subtract 1 from a value, the value gets smaller. Now, with both signed and unsigned int variables, there will be a time that subtracting 1 creates a value that is MUCH LARGER. The key difference between unsigned int and int is that with unsigned int the value that generates the paradoxical result is a commonly used value --- 0 --- whereas with signed the number is safely far away from normal operations.
As far as returning -1 for an error value --- modern thinking is that it's better to throw an exception than to test for return values.
It's true that if you properly defend your code you won't have this problem, and if you use unsigned religiously everywhere you will be okay (provided that you are only adding, and never subtracting, and that you never get near MAX_INT). I use unsigned int everywhere. But it takes a lot of discipline. For a lot of programs, you can get by with using int and spend your time on other bugs.
Use int by default: it plays nicer with the rest of the language
most common domain usage is regular arithmetic, not modular arithmetic
int main() {} // see an unsigned?
auto i = 0; // i is of type int
Only use unsigned for modulo arithmetic and bit-twiddling (in particular shifting)
has different semantics than regular arithmetic, make sure it is what you want
bit-shifting signed types is subtle (see comments by #ChristianRau)
if you need a > 2Gb vector on a 32-bit machine, upgrade your OS / hardware
Never mix signed and unsigned arithmetic
the rules for that are complicated and surprising (either one can be converted to the other, depending on the relative type sizes)
turn on -Wconversion -Wsign-conversion -Wsign-promo (gcc is better than Clang here)
the Standard Library got it wrong with std::size_t (quote from the GN13 video)
use range-for if you can,
for(auto i = 0; i < static_cast<int>(v.size()); ++i) if you must
Don't use short or large types unless you actually need them
current architectures data flow caters well to 32-bit non-pointer data (but note the comment by #BenVoigt about cache effects for smaller types)
char and short save space but suffer from integral promotions
are you really going to count to over all int64_t?
To answer the actual question: For the vast number of things, it doesn't really matter. int can be a little easier to deal with things like subtraction with the second operand larger than the first and you still get a "expected" result.
There is absolutely no speed difference in 99.9% of cases, because the ONLY instructions that are different for signed and unsigned numbers are:
Making the number longer (fill with the sign for signed or zero for unsigned) - it takes the same effort to do both.
Comparisons - a signed number, the processor has to take into account if either number is negative or not. But again, it's the same speed to make a compare with signed or unsigned numbers - it's just using a different instruction code to say "numbers that have the highest bit set are smaller than numbers with the highest bit not set" (essentially). [Pedantically, it's nearly always the operation using the RESULT of a comparison that is different - the most common case being a conditional jump or branch instruction - but either way, it's the same effort, just that the inputs are taken to mean slightly different things].
Multiply and divide. Obviously, sign conversion of the result needs to happen if it's a signed multiplication, where a unsigned should not change the sign of the result if the highest bit of one of the inputs is set. And again, the effort is (as near as we care for) identical.
(I think there are one or two other cases, but the result is the same - it really doesn't matter if it's signed or unsigned, the effort to perform the operation is the same for both).
The int type more closely resembles the behavior of mathematical integers than the unsigned type.
It is naive to prefer the unsigned type simply because a situation does not require negative values to be represented.
The problem is that the unsigned type has a discontinuous behavior right next to zero. Any operation that tries to compute a small negative value, instead produces some large positive value. (Worse: one that is implementation-defined.)
Algebraic relationships such as that a < b implies that a - b < 0 are wrecked in the unsigned domain, even for small values like a = 3 and b = 4.
A descending loop like for (i = max - 1; i >= 0; i--) fails to terminate if i is made unsigned.
Unsigned quirks can cause a problem which will affect code regardless of whether that code expects to be representing only positive quantities.
The virtue of the unsigned types is that certain operations that are not portably defined at the bit level for the signed types are that way for the unsigned types. The unsigned types lack a sign bit, and so shifting and masking through the sign bit isn't a problem. The unsigned types are good for bitmasks, and for code that implements precise arithmetic in a platform-independent way. Unsigned opearations will simulate two's complement semantics even on a non two's complement machine. Writing a multi-precision (bignum) library practically requires arrays of unsigned types to be used for the representation, rather than signed types.
The unsigned types are also suitable in situations in which numbers behave like identifiers and not as arithmetic types. For instance, an IPv4 address can be represented in a 32 bit unsigned type. You wouldn't add together IPv4 addresses.
int is preferred because it's most commonly used. unsigned is usually associated with bit operations. Whenever I see an unsigned, I assume it's used for bit twiddling.
If you need a bigger range, use a 64-bit integer.
If you're iterating over stuff using indexes, types usually have size_type, and you shouldn't care whether it's signed or unsigned.
Speed is not an issue.
For me, in addition to all the integers in the range of 0..+2,147,483,647 contained within the set of signed and unsigned integers on 32 bit architectures, there is a higher probability that I will need to use -1 (or smaller) than need to use +2,147,483,648 (or larger).
One good reason that I can think of is in case of detecting overflow.
For the use cases such as the count of items in an array, length of a string, or size of memory block, you can overflow an unsigned int and you may not notice a difference even when you take a look at the variable. If it is an signed int, the variable will be less than zero and clearly wrong.
You can simply check to see if the variable is zero when you want to use it. This way, you do not have to check for overflow after every arithmetic operation as is the case for unsigned ints.
It gives unexpected result when doing simple arithmetic operation:
unsigned int i;
i = 1 - 2;
//i is now 4294967295 on a 64bit machine
It gives unexpected result when doing simple comparison:
unsigned int j = 1;
std::cout << (j>-1) << std::endl;
//output 0 as false but 1 is greater than -1
This is because when doing the operations above, the signed ints are converted to unsigned, and it overflows and goes to a really big number.

What do the C and C++ standards say about bit-level integer representation and manipulation?

I know the C and C++ standards don't dictate a particular representation for numbers (could be two's complement, sign-and-magnitude, etc.). But I don't know the standards well enough (and couldn't find if it's stated) to know if there are any particular restrictions/guarantees/reserved representations made when working with bits. Particularly:
If all the bits in an integer type are zero, does the integer as whole represent zero?
If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
Is there a guaranteed way to check if any bit is not set?
Is there a guaranteed way to check if any bit is set? (#3 and #4 kind of depend on #1 and #2, because I know how to set, for example the 5th bit (see #5) in some variable x, and I'd like to check a variable y to see if it's 5th bit is 1, I would like to know if if (x & y) will work (because as I understand, this relies on the value of the representation and not whether nor not that bit is actually 1 or 0))
Is there a guaranteed way to set the left-most and/or right-most bits? (At least a simpler way than taking a char c with all bits true (set by c = c | ~c) and doing c = c << (CHAR_BIT - 1) for setting the high-bit and c = c ^ (c << 1) for the low-bit, assuming I'm not making any assumptions I should't be, given these questions)
If the answer to #1 is "no" how could one iterate over the bits in an integer type and check if each one was a 1 or a 0?
I guess my overall question is: are there any restrictions/guarantees/reserved representations made by the C and C++ standards regarding bits and integers, despite the fact that an integer's representation is not mandated (and if the C and C++ standards differ in this regard, what's their difference)?
I came up with these questions while doing my homework which required me to do some bit manipulating (note these aren't questions from my homework, these are much more "abstract").
Edit: As to what I refer to as "bits," I mean "value forming" bits and am not including "padding" bits.
(1) If all the bits in an integer type are zero, does the integer as whole represent zero?
Yes, the bit pattern consisting of all zeroes always represents 0:
The representations of integral types shall define values by use of a pure binary numeration system.49 [§3.9.1/7]
49 A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(2) If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
No. In fact, signed magnitude is specifically allowed:
[ Example: this International Standard permits 2’s complement, 1’s complement and signed magnitude representations for integral types. —end
example ] [§3.9.1/7]
(3) Is there a guaranteed way to check if any bit is not set?
I believe the answer to this is "no," if you consider signed types. It is equivalent to equality testing with a bit pattern of all ones, which is only possible if you have a way to produce a signed number with bit pattern of all ones. For an unsigned number this representation is guaranteed, but casting from unsigned to signed is undefined if the number is unrepresentable:
If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field width); otherwise, the value is implementation-defined. [§4.7/3]
(4) Is there a guaranteed way to check if any bit is set?
I don't think so, because signed magnitude is allowed—0 would compare equal to −0. But it should be possible with unsigned numbers.
(5) Is there a guaranteed way to set the left-most and/or right-most bits?
Again, I believe the answer is "yes" for unsigned numbers, but "no" for signed numbers. Shifts are undefined for negative signed numbers:
Otherwise, if E1 has a signed type and non-negative value, and E1 × 2E2 is representable in the result type, then that is the resulting value; otherwise, the behavior is undefined. [§5.8/2]
You use the term "all bits" repeatedly, but you do not clarify what "all bits" you are referring to. Object representation of integer types in C/C++ might include value-forming bits and padding bits. The only integer type that is guaranteed not to have padding bits is [signed/unsigned] char.
The language always guaranteed that if all value-forming bits are zero, then the represented integer value is also zero.
As for padding bits, things are/were a bit more complicated. The original specification of C language (C89/90 as well as the original C99) did not guarantee that setting all object bits to zero produced a valid integer representation. It could've produced an invalid trap representation. I.e. in the original C (and even in C99 at first) using memset(..., 0, ...) on integer types did not guarantee that the objects will receive valid zero values (with the exception of [signed/unsigned] char). This was changed in later specifications, namely in one of the technical corrigendums for C99. Now it is required that all-zero bit pattern in an integer object (that involves all bits, including padding ones) represents a valid zero value.
I.e. in modern C it is legal to use memset(..., 0, ...) to set any integer objects to zero, but it became legal only after C99.
You already got some answers about the representation of integer values. There is exactly one way that is guaranteed to give you all the individual bits of any object that is represented in memory: view it as array of unsigned char. This is the only integral type that has no padding bits and is guaranteed to have no trap representation. So casting a pointer of type T* to your object to unsigned char* will always work, as long as you only access the first sizeof(T) bytes. By that you could inspect and set all bytes (and thus bits) to your liking.
If you are interested in more details, here I have written something up about the anatomy of integer types in C. C++ might differ a bit from that, in particular type puning through union as described there doesn't seem to be well defined in C++.
Q: If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
No. The standards for C and C++ don't rule out signed magnitude or one's complement, both of which have +0 and -0. While +0 and -0 do have to compare equal, but they do not have to have the same representation.
Good luck finding a machine nowadays that uses signed magnitude or one's complement.
If you want your brain to explode, consider this: If you interpret an int or long or long long as an array of unsigned char (which is the most reasonable thing to do if you want to see all the bits), you know that the order of bytes is not defined, for example "bigendian" vs. "littleendian". We all (hopefully) know that.
But it is worse: Each bit of an int could be stored in any of the bits of the array of char. So there are 32! ways how the bits of a 32 bit integer could be mapped to an array of four 8-bit unsigned chars by a truly bizarre implementation. Fortunately, I haven't encountered more than two ways myself (and I know of one more ordering in a real computer).
If all the bits in an integer type are zero, does the integer as whole represent zero?
Edit: since you have now clarified that you are not concerned with the padding bits, the answer to this is actually "yes". But I leave the original:
Not necessarily, it could be a trap representation. See C99 6.2.6.1:
For unsigned integer types other than unsigned char, the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need not be any of the latter)
The presence of padding bits allows for the possibility that all 0 is a trap representation. (As noted by Keith Thompson in the comment below, the more recent C11 makes explicit that such a representation is not a trap representation).
and
The values of any padding bits are unspecified
and
44) Some combinations of padding bits might generate trap representations
If you restrict the question to value and sign bits, the answer is yes, due to 6.2.6.2:
If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2 N −1 , so that objects of that type shall be capable of representing values from 0 to 2 N − 1 using a pure binary representation; this shall be known as the value representation.
and
If the sign bit is zero, it shall not affect the resulting value.
If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
Not necessarily, and in fact sign-and-magnitude is explicitly supported in 6.2.6.2.
Is there a guaranteed way to check if any bit is not set?
If you do not care about padding and sign bits, you could just compare to 0, but this would not work with a 1's complement representation (which is allowed) seeing as all bits 0 and all bits 1 both represent the value 0.
Otherwise: you can read the value of each byte via an unsigned char *, and compare the result to 0:
Values stored in unsigned bit-fields and objects of type unsigned char
shall be represented using a pure binary notation
If you want to check a specific value bit, you could construct a suitable bitmask using (1u << n), but this will not necessarily let you inspect the sign bit.
Is there a guaranteed way to check if any bit is set?
The answer is essentially the same as to the previous question.
Is there a guaranteed way to set the left-most and/or right-most bits?
Do you mean left-most value bit? You could count the bits in INT_MAX or UINT_MAX or equivalent depending on the type, and use that to construct a value (via 1 << n) with which to OR the original value.
If the answer to #1 is "no" how could one iterate over the bits in an integer type and check if each one was a 1 or a 0?
You can do so using a bitmask which you left shift repeatedly, but you can check only the value bits this way and not the sign bit.
For the bitmanipulations you could make a struct with 8 one unsigned bit fields and let the pointer of that struct point to your char. In that way you can easily access each bit. But the compiler will probably do masking under the hood, so it is only a cleaner way for the programmer I think. You must check that your compiler doesn't change the order of the fields when doing this.
yourstruct* pChar=(yourstruct*)(&c)
pChar.Bit7=1;
Let me caveat this by saying I'm addressing C and C++ in general (e.g. C90 and lower, MS Visual C++, etc): the "greatest common denominator" (vs. the latest/greatest cx11 "standard").
Q: If all the bits in an integer type are zero, does the integer as whole represent zero?
A: Yes
Q: If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
A: Yes. This includes the sign bit, for a signed int.
I'm frankly not familiar with "magnitude"
Q: Is there a guaranteed way to check if any bit is not set?
A: "And'ing" a bitmask is always guaranteed.
Q: Is there a guaranteed way to check if any bit is set?
A: Again, "and'ing" a bitmask is always guaranteed.
Q: Is there a guaranteed way to set the left-most and/or right-most bits?
A: I believe you should always have a "MAX_INT" available for all implementations/all architectures to determine the leftmost bit.
I'm prepared to be flamed ... but I believe the above is accurate. And I hope it helps.
IMHO...