C++ Any faster method to write a large binary file? - c++

Goal
My goal is to quickly create a file from a large binary string (a string that contains only 1 and 0).
Straight to the point
I need a function that can achieve my goal. If I am not clear enough, please read on.
Example
Test.exe is running...
.
Inputted binary string:
1111111110101010
Writing to: c:\users\admin\desktop\Test.txt
Done!
File(Test.txt) In Byte(s):
0xFF, 0xAA
.
Test.exe executed successfully!
Explanation
First, Test.exe requested the user to input a binary string.
Then, it converted the inputted binary string to hexadecimal.
Finally, it wrote the converted value to a file called Test.txt.
I've tried
As an fail attempt to achieve my goal, I've created this simple (and possibly horrible) function (hey, at least I tried):
void BinaryStrToFile( __in const char* Destination,
__in std::string &BinaryStr )
{
std::ofstream OutputFile( Destination, std::ofstream::binary );
for( ::UINT Index1 = 0, Dec = 0;
// 8-Bit binary.
Index1 != BinaryStr.length( )/8;
// Get the next set of binary value.
// Write the decimal value as unsigned char to file.
// Reset decimal value to 0.
++ Index1, OutputFile << ( ::BYTE )Dec, Dec = 0 )
{
// Convert the 8-bit binary to hexadecimal using the
// positional notation method - this is how its done:
// http://www.wikihow.com/Convert-from-Binary-to-Decimal
for( ::UINT Index2 = 7, Inc = 1; Index2 + 1 != 0; -- Index2, Inc += Inc )
if( BinaryStr.substr( Index1 * 8, 8 )[ Index2 ] == '1' ) Dec += Inc;
}
OutputFile.close( );
};
Example of usage
#include "Global.h"
void BinaryStrToFile( __in const char* Destination,
__in std::string &BinaryStr );
int main( void )
{
std::string Bin = "";
// Create a binary string that is a size of 9.53674 mb
// Note: The creation of this string will take awhile.
// However, I only start to calculate the speed of writing
// and converting after it is done generating the string.
// This string is just created for an example.
std::cout << "Generating...\n";
while( Bin.length( ) != 80000000 )
Bin += "10101010";
std::cout << "Writing...\n";
BinaryStrToFile( "c:\\users\\admin\\desktop\\Test.txt", Bin );
std::cout << "Done!\n";
#ifdef IS_DEBUGGING
std::cout << "Paused...\n";
::getchar( );
#endif
return( 0 );
};
Problem
Again, that was my fail attempt to achieve my goal. The problem is the speed. It is too slow. It took more than 7 minutes. Are there any method to quickly create a file from a large binary string?
Thanks in advance,
CLearner

I'd suggest removing the substr call in the inner loop. You are allocating a new string and then destroying it for each character that you process. Replace this code:
for(::UINT Index2 = 7, Inc = 1; Index2 + 1 != 0; -- Index2, Inc += Inc )
if( BinaryStr.substr( Index1 * 8, 8 )[ Index2 ] == '1' )
Dec += Inc;
by something like:
for(::UINT Index2 = 7, Inc = 1; Index2 + 1 != 0; -- Index2, Inc += Inc )
if( BinaryStr[Index1 * 8 + Index2 ] == '1' )
Dec += Inc;

The majority of your time is spent here:
for( ::UINT Index2 = 7, Inc = 1; Index2 + 1 != 0; -- Index2, Inc += Inc )
if( BinaryStr.substr( Index1 * 8, 8 )[ Index2 ] == '1' ) Dec += Inc;
When I comment that out the file is written in seconds. I think you need to finetune your conversion.

I think I'd consider something like this as a starting point:
#include <bitset>
#include <fstream>
#include <algorithm>
int main() {
std::ifstream in("junk.txt", std::ios::binary | std::ios::in);
std::ofstream out("junk.bin", std::ios::binary | std::ios::out);
std::transform(std::istream_iterator<std::bitset<8> >(in),
std::istream_iterator<std::bitset<8> >(),
std::ostream_iterator<unsigned char>(out),
[](std::bitset<8> const &b) { return b.to_ulong();});
return 0;
}
Doing a quick test, this processes an input file of 80 million bytes in about 6 seconds on my machine. Unless your files are much larger than what you've mentioned in your question, my guess is this is adequate speed, and the simplicity is going to be hard to beat.

Something not entirely unlike this should be significantly faster:
void
text_to_binary_file(const std::string& text, const char *fname)
{
unsigned char wbuf[4096]; // 4k is a good size of "chunk to write to file"
unsigned int i = 0, j = 0;
std::filebuf fp; // dropping down to filebufs may well be faster
// for this problem
fp.open(fname, std::ios::out|std::ios::trunc);
memset(wbuf, 0, 4096);
for (std::string::iterator p = text.begin(); p != text.end(); p++) {
wbuf[i] |= (1u << (CHAR_BIT - (j+1)));
j++;
if (j == CHAR_BIT) {
j = 0;
i++;
}
if (i == 4096) {
if (fp.sputn(wbuf, 4096) != 4096)
abort();
memset(wbuf, 0, 4096);
i = 0;
j = 0;
}
}
if (fp.sputn(wbuf, i+1) != i+1)
abort();
fp.close();
}
Proper error handling left as an exercise.

So instead of converting back and forth between std::strings, why not use a bunch of machine word-sized integers for fast access?
const size_t bufsz = 1000000;
uint32_t *buf = new uint32_t[bufsz];
memset(buf, 0xFA, sizeof(*buf) * bufsz);
std::ofstream ofile("foo.bin", std::ofstream::binary);
int i;
for (i = 0; i < bufsz; i++) {
ofile << hex << setw(8) << setfill('0') << buf[i];
// or if you want raw binary data instead of formatted hex:
ofile.write(reinterpret_cast<char *>(&buf[i]), sizeof(buf[i]));
}
delete[] buf;
For me, this runs in a fraction of a second.

Even though late, I want to place my example for handling such strings.
Architecture specific optimizations may use unaligned loads of chars into multiple registers for 'squeezing' out the bits in parallel. This untested example code does not check the chars and avoids alignment and endianness requirements. It assumes the characters of that binary string to represent contiguous octets (bytes) with the most significant bit first, not words and double words, etc., where their specific representation in memory (and in that string) would require special treatment for portability.
//THIS CODE HAS NEVER BEEN TESTED! But I hope you get the idea.
//set up an ofstream with a 64KiB buffer
std::vector<char> buffer(65536);
std::ofstream ofs("out.bin", std::ofstream::binary|std::ofstream::out|std::ofstream::trunc);
ofs.rdbuf()->pubsetbuf(&buffer[0],buffer.size());
std::string::size_type bits = Bin.length();
std::string::const_iterator cIt = Bin.begin();
//You may treat cases, where (bits % 8 != 0) as error
//Initialize with the first iteration
uint8_t byte = uint8_t(*cIt++) - uint8_t('0');
byte <<= 1;
for(std::string::size_type i = 1;i < (bits & (~std::string::size_type(0x7)));++i,++cIt)
{
if(i & 0x7) //bit 7 ... 1
{
byte |= uint8_t(*cIt) - uint8_t('0');
byte <<= 1;
}
else //bit 0: write and advance to the the next most significant bit of an octet
{
byte |= uint8_t(*cIt) - uint8_t('0');
ofs.put(byte);
//advance
++i;
++cIt;
byte = uint8_t(*cIt) - uint8_t('0');
byte <<= 1;
}
}
ofs.flush();

This make a 76.2 MB (80,000,000 bytes) file of 1010101010101......
#include <stdio.h>
#include <iostream>
#include <fstream>
using namespace std;
int main( void )
{
char Bin=0;
ofstream myfile;
myfile.open (".\\example.bin", ios::out | ios::app | ios::binary);
int c=0;
Bin = 0xAA;
while( c!= 80000000 ){
myfile.write(&Bin,1);
c++;
}
myfile.close();
cout << "Done!\n";
return( 0 );
};

Related

Outputting a Binary String to a Binary File in C++

Let's say I have a string that contains a binary like this one "0110110101011110110010010000010". Is there a easy way to output that string into a binary file so that the file contains 0110110101011110110010010000010? I understand that the computer writes one byte at a time but I am having trouble coming up with a way to write the contents of the string as a binary to a binary file.
Use a bitset:
//Added extra leading zero to make 32-bit.
std::bitset<32> b("00110110101011110110010010000010");
auto ull = b.to_ullong();
std::ofstream f;
f.open("test_file.dat", std::ios_base::out | std::ios_base::binary);
f.write(reinterpret_cast<char*>(&ull), sizeof(ull));
f.close();
I am not sure if that's what you need but here you go:
#include<iostream>
#include<fstream>
#include<string>
using namespace std;
int main() {
string tmp = "0110110101011110110010010000010";
ofstream out;
out.open("file.txt");
out << tmp;
out.close();
}
Make sure your output stream is in binary mode. This handles the case where the string size is not a multiple of the number of bits in a byte. Extra bits are set to 0.
const unsigned int BitsPerByte = CHAR_BIT;
unsigned char byte;
for (size_t i = 0; i < data.size(); ++i)
{
if ((i % BitsPerByte) == 0)
{
// first bit of a byte
byte = 0;
}
if (data[i] == '1')
{
// set a bit to 1
byte |= (1 << (i % BitsPerByte));
}
if (((i % BitsPerByte) == BitsPerByte - 1) || i + 1 == data.size())
{
// last bit of the byte
file << byte;
}
}

Base 64 Encoding Losing data

This is my fourth attempt at doing base64 encoding. My first tries work but it isn't standard. It's also extremely slow!!! I used vectors and push_back and erase a lot.
So I decided to re-write it and this is much much faster! Except that it loses data. -__-
I need as much speed as I can possibly get because I'm compressing a pixel buffer and base64 encoding the compressed string. I'm using ZLib. The images are 1366 x 768 so yeah.
I do not want to copy any code I find online because... Well, I like to write things myself and I don't like worrying about copyright stuff or having to put a ton of credits from different sources all over my code..
Anyway, my code is as follows below. It's very short and simple.
const static std::string Base64Chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
inline bool IsBase64(std::uint8_t C)
{
return (isalnum(C) || (C == '+') || (C == '/'));
}
std::string Copy(std::string Str, int FirstChar, int Count)
{
if (FirstChar <= 0)
FirstChar = 0;
else
FirstChar -= 1;
return Str.substr(FirstChar, Count);
}
std::string DecToBinStr(int Num, int Padding)
{
int Bin = 0, Pos = 1;
std::stringstream SS;
while (Num > 0)
{
Bin += (Num % 2) * Pos;
Num /= 2;
Pos *= 10;
}
SS.fill('0');
SS.width(Padding);
SS << Bin;
return SS.str();
}
int DecToBinStr(std::string DecNumber)
{
int Bin = 0, Pos = 1;
int Dec = strtol(DecNumber.c_str(), NULL, 10);
while (Dec > 0)
{
Bin += (Dec % 2) * Pos;
Dec /= 2;
Pos *= 10;
}
return Bin;
}
int BinToDecStr(std::string BinNumber)
{
int Dec = 0;
int Bin = strtol(BinNumber.c_str(), NULL, 10);
for (int I = 0; Bin > 0; ++I)
{
if(Bin % 10 == 1)
{
Dec += (1 << I);
}
Bin /= 10;
}
return Dec;
}
std::string EncodeBase64(std::string Data)
{
std::string Binary = std::string();
std::string Result = std::string();
for (std::size_t I = 0; I < Data.size(); ++I)
{
Binary += DecToBinStr(Data[I], 8);
}
for (std::size_t I = 0; I < Binary.size(); I += 6)
{
Result += Base64Chars[BinToDecStr(Copy(Binary, I, 6))];
if (I == 0) ++I;
}
int PaddingAmount = ((-Result.size() * 3) & 3);
for (int I = 0; I < PaddingAmount; ++I)
Result += '=';
return Result;
}
std::string DecodeBase64(std::string Data)
{
std::string Binary = std::string();
std::string Result = std::string();
for (std::size_t I = Data.size(); I > 0; --I)
{
if (Data[I - 1] != '=')
{
std::string Characters = Copy(Data, 0, I);
for (std::size_t J = 0; J < Characters.size(); ++J)
Binary += DecToBinStr(Base64Chars.find(Characters[J]), 6);
break;
}
}
for (std::size_t I = 0; I < Binary.size(); I += 8)
{
Result += (char)BinToDecStr(Copy(Binary, I, 8));
if (I == 0) ++I;
}
return Result;
}
I've been using the above like this:
int main()
{
std::string Data = EncodeBase64("IMG." + ::ToString(677) + "*" + ::ToString(604)); //IMG.677*604
std::cout<<DecodeBase64(Data); //Prints IMG.677*601
}
As you can see in the above, it prints the wrong string. It's fairly close but for some reason, the 4 is turned into a 1!
Now if I do:
int main()
{
std::string Data = EncodeBase64("IMG." + ::ToString(1366) + "*" + ::ToString(768)); //IMG.1366*768
std::cout<<DecodeBase64(Data); //Prints IMG.1366*768
}
It prints correctly.. I'm not sure what is going on at all or where to begin looking.
Just in-case anyone is curious and want to see my other attempts (the slow ones): http://pastebin.com/Xcv03KwE
I'm really hoping someone could shed some light on speeding things up or at least figuring out what's wrong with my code :l
The main encoding issue is that you are not accounting for data that is not a multiple of 6 bits. In this case, the final 4 you have is being converted into 0100 instead of 010000 because there are no more bits to read. You are supposed to pad with 0s.
After changing your Copy like this, the final encoded character is Q, instead of the original E.
std::string data = Str.substr(FirstChar, Count);
while(data.size() < Count) data += '0';
return data;
Also, it appears that your logic for adding padding = is off because it is adding one too many = in this case.
As far as comments on speed, I'd focus primarily on trying to reduce your usage of std::string. The way you are currently converting the data into a string with 0 and 1 is pretty inefficent considering that the source could be read directly with bitwise operators.
I'm not sure whether I could easily come up with a slower method of doing Base-64 conversions.
The code requires 4 headers (on Mac OS X 10.7.5 with G++ 4.7.1) and the compiler option -std=c++11 to make the #include <cstdint> acceptable:
#include <string>
#include <iostream>
#include <sstream>
#include <cstdint>
It also requires a function ToString() that was not defined; I created:
std::string ToString(int value)
{
std::stringstream ss;
ss << value;
return ss.str();
}
The code in your main() — which is what uses the ToString() function — is a little odd: why do you need to build a string from pieces instead of simply using "IMG.677*604"?
Also, it is worth printing out the intermediate result:
int main()
{
std::string Data = EncodeBase64("IMG." + ::ToString(677) + "*" + ::ToString(604));
std::cout << Data << std::endl;
std::cout << DecodeBase64(Data) << std::endl; //Prints IMG.677*601
}
This yields:
SU1HLjY3Nyo2MDE===
IMG.677*601
The output string (SU1HLjY3Nyo2MDE===) is 18 bytes long; that has to be wrong as a valid Base-64 encoded string has to be a multiple of 4 bytes long (as three 8-bit bytes are encoded into four bytes each containing 6 bits of the original data). This immediately tells us there are problems. You should only get zero, one or two pad (=) characters; never three. This also confirms that there are problems.
Removing two of the pad characters leaves a valid Base-64 string. When I use my own home-brew Base-64 encoding and decoding functions to decode your (truncated) output, it gives me:
Base64:
0x0000: SU1HLjY3Nyo2MDE=
Binary:
0x0000: 49 4D 47 2E 36 37 37 2A 36 30 31 00 IMG.677*601.
Thus it appears you have encode the null terminating the string. When I encode IMG.677*604, the output I get is:
Binary:
0x0000: 49 4D 47 2E 36 37 37 2A 36 30 34 IMG.677*604
Base64: SU1HLjY3Nyo2MDQ=
You say you want to speed up your code. Quite apart from fixing it so that it encodes correctly (I've not really studied the decoding), you will want to avoid all the string manipulation you do. It should be a bit manipulation exercise, not a string manipulation exercise.
I have 3 small encoding routines in my code, to encode triplets, doublets and singlets:
/* Encode 3 bytes of data into 4 */
static void encode_triplet(const char *triplet, char *quad)
{
quad[0] = base_64_map[(triplet[0] >> 2) & 0x3F];
quad[1] = base_64_map[((triplet[0] & 0x03) << 4) | ((triplet[1] >> 4) & 0x0F)];
quad[2] = base_64_map[((triplet[1] & 0x0F) << 2) | ((triplet[2] >> 6) & 0x03)];
quad[3] = base_64_map[triplet[2] & 0x3F];
}
/* Encode 2 bytes of data into 4 */
static void encode_doublet(const char *doublet, char *quad, char pad)
{
quad[0] = base_64_map[(doublet[0] >> 2) & 0x3F];
quad[1] = base_64_map[((doublet[0] & 0x03) << 4) | ((doublet[1] >> 4) & 0x0F)];
quad[2] = base_64_map[((doublet[1] & 0x0F) << 2)];
quad[3] = pad;
}
/* Encode 1 byte of data into 4 */
static void encode_singlet(const char *singlet, char *quad, char pad)
{
quad[0] = base_64_map[(singlet[0] >> 2) & 0x3F];
quad[1] = base_64_map[((singlet[0] & 0x03) << 4)];
quad[2] = pad;
quad[3] = pad;
}
This is written as C code rather than using native C++ idioms, but the code shown should compile with C++ (unlike the C99 initializers elsewhere in the source). The base_64_map[] array corresponds to your Base64Chars string. The pad character passed in is normally '=', but can be '\0' since the system I work with has eccentric ideas about not needing padding (pre-dating my involvement in the code, and it uses a non-standard alphabet to boot) and the code handles both the non-standard and the RFC 3548 standard.
The driving code is:
/* Encode input data as Base-64 string. Output length returned, or negative error */
static int base64_encode_internal(const char *data, size_t datalen, char *buffer, size_t buflen, char pad)
{
size_t outlen = BASE64_ENCLENGTH(datalen);
const char *bin_data = (const void *)data;
char *b64_data = (void *)buffer;
if (outlen > buflen)
return(B64_ERR_OUTPUT_BUFFER_TOO_SMALL);
while (datalen >= 3)
{
encode_triplet(bin_data, b64_data);
bin_data += 3;
b64_data += 4;
datalen -= 3;
}
b64_data[0] = '\0';
if (datalen == 2)
encode_doublet(bin_data, b64_data, pad);
else if (datalen == 1)
encode_singlet(bin_data, b64_data, pad);
b64_data[4] = '\0';
return((b64_data - buffer) + strlen(b64_data));
}
/* Encode input data as Base-64 string. Output length returned, or negative error */
int base64_encode(const char *data, size_t datalen, char *buffer, size_t buflen)
{
return(base64_encode_internal(data, datalen, buffer, buflen, base64_pad));
}
The base64_pad constant is the '='; there's also a base64_encode_nopad() function that supplies '\0' instead. The errors are somewhat arbitrary but relevant to the code.
The main point to take away from this is that you should be doing bit manipulation and building up a string that is an exact multiple of 4 bytes for a given input.
std::string EncodeBase64(std::string Data)
{
std::string Binary = std::string();
std::string Result = std::string();
for (std::size_t I = 0; I < Data.size(); ++I)
{
Binary += DecToBinStr(Data[I], 8);
}
if (Binary.size() % 6)
{
Binary.resize(Binary.size() + 6 - Binary.size() % 6, '0');
}
for (std::size_t I = 0; I < Binary.size(); I += 6)
{
Result += Base64Chars[BinToDecStr(Copy(Binary, I, 6))];
if (I == 0) ++I;
}
if (Result.size() % 4)
{
Result.resize(Result.size() + 4 - Result.size() % 4, '=');
}
return Result;
}

How to put bit sequence into bytes (C/C++)

I have a couple of integers, for example (in binary represetation):
00001000, 01111111, 10000000, 00000001
and I need to put them in sequence to array of bytes(chars), without the leading zeros, like so:
10001111 11110000 0001000
I understand that it is must be done by bit shifting with <<,>> and using binary or |. But I can't find the correct algorithm, can you suggest the best approach?
The integers I need to put there are unsigned long long ints, so the length of one can be anywhere from 1 bit to 8 bytes (64 bits).
You could use a std::bitset:
#include <bitset>
#include <iostream>
int main() {
unsigned i = 242122534;
std::bitset<sizeof(i) * 8> bits;
bits = i;
std::cout << bits.to_string() << "\n";
}
There are doubtless other ways of doing it, but I would probably go with the simplest:
std::vector<unsigned char> integers; // Has your list of bytes
integers.push_back(0x02);
integers.push_back(0xFF);
integers.push_back(0x00);
integers.push_back(0x10);
integers.push_back(0x01);
std::string str; // Will have your resulting string
for(unsigned int i=0; i < integers.size(); i++)
for(int j=0; j<8; j++)
str += ((integers[i]<<j) & 0x80 ? "1" : "0");
std::cout << str << "\n";
size_t begin = str.find("1");
if(begin > 0) str.erase(0,begin);
std::cout << str << "\n";
I wrote this up before you mentioned that you were using long ints or whatnot, but that doesn't actually change very much of this. The mask needs to change, and the j loop variable, but otherwise the above should work.
Convert them to strings, then erase all leading zeros:
#include <iostream>
#include <sstream>
#include <string>
#include <cstdint>
std::string to_bin(uint64_t v)
{
std::stringstream ss;
for(size_t x = 0; x < 64; ++x)
{
if(v & 0x8000000000000000)
ss << "1";
else
ss << "0";
v <<= 1;
}
return ss.str();
}
void trim_right(std::string& in)
{
size_t non_zero = in.find_first_not_of("0");
if(std::string::npos != non_zero)
in.erase(in.begin(), in.begin() + non_zero);
else
{
// no 1 in data set, what to do?
in = "<no data>";
}
}
int main()
{
uint64_t v1 = 437148234;
uint64_t v2 = 1;
uint64_t v3 = 0;
std::string v1s = to_bin(v1);
std::string v2s = to_bin(v2);
std::string v3s = to_bin(v3);
trim_right(v1s);
trim_right(v2s);
trim_right(v3s);
std::cout << v1s << "\n"
<< v2s << "\n"
<< v3s << "\n";
return 0;
}
A simple approach would be having the "current byte" (acc in the following), the associated number of used bits in it (bitcount) and a vector of fully processed bytes (output):
int acc = 0;
int bitcount = 0;
std::vector<unsigned char> output;
void writeBits(int size, unsigned long long x)
{
while (size > 0)
{
// sz = How many bit we're about to copy
int sz = size;
// max avail space in acc
if (sz > 8 - bitcount) sz = 8 - bitcount;
// get the bits
acc |= ((x >> (size - sz)) << (8 - bitcount - sz));
// zero them off in x
x &= (1 << (size - sz)) - 1;
// acc got bigger and x got smaller
bitcount += sz;
size -= sz;
if (bitcount == 8)
{
// got a full byte!
output.push_back(acc);
acc = bitcount = 0;
}
}
}
void writeNumber(unsigned long long x)
{
// How big is it?
int size = 0;
while (size < 64 && x >= (1ULL << size))
size++;
writeBits(size, x);
}
Note that at the end of the processing you should check if there is any bit still in the accumulator (bitcount > 0) and you should flush them in that case by doing a output.push_back(acc);.
Note also that if speed is an issue then probably using a bigger accumulator is a good idea (however the output will depend on machine endianness) and also that discovering how many bits are used in a number can be made much faster than a linear search in C++ (for example x86 has a special machine language instruction BSR dedicated to this).

How does one store a vector<bool> or a bitset into a file, but bit-wise?

How to write bitset data to a file?
The first answer doesn't answer the question correctly, since it takes 8 times more space than it should.
How would you do it ? I really need it to save a lot of true/false values.
Simplest approach : take consecutive 8 boolean values, represent them as a single byte, write that byte to your file. That would save lot of space.
In the beginning of file, you can write the number of boolean values you want to write to the file; that number will help while reading the bytes from file, and converting them back into boolean values!
If you want the bitset class that best supports converting to binary, and your bitset is more than the size of unsigned long, then the best option to use is boost::dynamic_bitset. (I presume it is more than 32 and even 64 bits if you are that concerned about saving space).
From dynamic_bitset you can use to_block_range to write the bits into the underlying integral type. You can construct the dynamic_bitset back from the blocks by using from_block_range or its constructor from BlockInputIterator or by making append() calls.
Now you have the bytes in their native format (Block) you still have the issue of writing it to a stream and reading it back.
You will need to store a bit of "header" information first: the number of blocks you have and potentially the endianness. Or you might use a macro to convert to a standard endianness (eg ntohl but you will ideally use a macro that is no-op for your most common platform so if that is little-endian you probably want to store that way and convert only for big-endian systems).
(Note: I am assuming that boost::dynamic_bitset standardly converts integral types the same way regardless of underlying endianness. Their documentation does not say).
To write numbers binary to a stream use os.write( &data[0], sizeof(Block) * nBlocks ) and to read use is.read( &data[0], sizeof(Block) * nBlocks ) where data is assumed to be vector<Block> and before read you must do data.resize(nBlocks) (not reserve()). (You can also do weird stuff with istream_iterator or istreambuf_iterator but resize() is probably better).
Here is a try with two functions that will use a minimal number of bytes, without compressing the bitset.
template<int I>
void bitset_dump(const std::bitset<I> &in, std::ostream &out)
{
// export a bitset consisting of I bits to an output stream.
// Eight bits are stored to a single stream byte.
unsigned int i = 0; // the current bit index
unsigned char c = 0; // the current byte
short bits = 0; // to process next byte
while(i < in.size())
{
c = c << 1; //
if(in.at(i)) ++c; // adding 1 if bit is true
++bits;
if(bits == 8)
{
out.put((char)c);
c = 0;
bits = 0;
}
++i;
}
// dump remaining
if(bits != 0) {
// pad the byte so that first bits are in the most significant positions.
while(bits != 8)
{
c = c << 1;
++bits;
}
out.put((char)c);
}
return;
}
template<int I>
void bitset_restore(std::istream &in, std::bitset<I> &out)
{
// read bytes from the input stream to a bitset of size I.
/* for debug */ //for(int n = 0; n < I; ++n) out.at(n) = false;
unsigned int i = 0; // current bit index
unsigned char mask = 0x80; // current byte mask
unsigned char c = 0; // current byte in stream
while(in.good() && (i < I))
{
if((i%8) == 0) // retrieve next character
{ c = in.get();
mask = 0x80;
}
else mask = mask >> 1; // shift mask
out.at(i) = (c & mask);
++i;
}
}
Note that probably using a reinterpret_cast of the portion of memory used by the bitset as an array of chars could also work, but it is maybe not portable accross systems because you don't know what the representation of the bitset is (endianness?)
How about this
#include <sys/time.h>
#include <unistd.h>
#include <algorithm>
#include <fstream>
#include <vector>
...
{
std::srand(std::time(nullptr));
std::vector<bool> vct1, vct2;
vct1.resize(20000000, false);
vct2.resize(20000000, false);
// insert some data
for (size_t i = 0; i < 1000000; i++) {
vct1[std::rand() % 20000000] = true;
}
// serialize to file
std::ofstream ofs("bitset", std::ios::out | std::ios::trunc);
for (uint32_t i = 0; i < vct1.size(); i += std::_S_word_bit) {
auto vct1_iter = vct1.begin();
vct1_iter += i;
uint32_t block_num = i / std::_S_word_bit;
std::_Bit_type block_val = *(vct1_iter._M_p);
if (block_val != 0) {
// only write not-zero block
ofs.write(reinterpret_cast<char*>(&block_num), sizeof(uint32_t));
ofs.write(reinterpret_cast<char*>(&block_val), sizeof(std::_Bit_type));
}
}
ofs.close();
// deserialize
std::ifstream ifs("bitset", std::ios::in);
ifs.seekg(0, std::ios::end);
uint64_t file_size = ifs.tellg();
ifs.seekg(0);
uint64_t load_size = 0;
while (load_size < file_size) {
uint32_t block_num;
ifs.read(reinterpret_cast<char*>(&block_num), sizeof(uint32_t));
std::_Bit_type block_value;
ifs.read(reinterpret_cast<char*>(&block_value), sizeof(std::_Bit_type));
load_size += sizeof(uint32_t) + sizeof(std::_Bit_type);
auto offset = block_num * std::_S_word_bit;
if (offset >= vct2.size()) {
std::cout << "error! already touch end" << std::endl;
break;
}
auto iter = vct2.begin();
iter += offset;
*(iter._M_p) = block_value;
}
ifs.close();
// check result
int count_true1 = std::count(vct1.begin(), vct1.end(), true);
int count_true2 = std::count(vct2.begin(), vct2.end(), true);
std::cout << "count_true1: " << count_true1 << " count_true2: " << count_true2 << std::endl;
}
One way might be:
std::vector<bool> data = /* obtain bits somehow */
// Reserve an appropriate number of byte-sized buckets.
std::vector<char> bytes((int)std::ceil((float)data.size() / CHAR_BITS));
for(int byteIndex = 0; byteIndex < bytes.size(); ++byteIndex) {
for(int bitIndex = 0; bitIndex < CHAR_BITS; ++bitIndex) {
int bit = data[byteIndex * CHAR_BITS + bitIndex];
bytes[byteIndex] |= bit << bitIndex;
}
}
Note that this assumes you don't care what the bit layout ends up being in memory, because it makes no adjustments for anything. But as long as you also serialize out the number of bits that were actually stored (to cover cases where you have a bit count that isn't a multiple of CHAR_BITS) you can deserialize exactly the same bitset or vector as you had originally like this.
(I'm not happy with that bucket size computation but it's 1am and I'm having trouble thinking of something more elegant).
#include "stdio"
#include "bitset"
...
FILE* pFile;
pFile = fopen("output.dat", "wb");
...
const unsigned int size = 1024;
bitset<size> bitbuffer;
...
fwrite (&bitbuffer, 1, size/8, pFile);
fclose(pFile);
Two options:
Spend the extra pounds (or pence, more likely) for a bigger disk.
Write a routine to extract 8 bits from the bitset at a time, compose them into bytes, and write them to your output stream.

base32 conversion in C++

does anybody know any commonly used library for C++ that provides methods for encoding and decoding numbers from base 10 to base 32 and viceversa?
Thanks,
Stefano
[Updated] Apparently, the C++ std::setbase() IO manipulator and normal << and >> IO operators only handle bases 8, 10, and 16, and is therefore useless for handling base 32.
So to solve your issue of converting
strings with base 10/32 representation of numbers read from some input to integers in the program
integers in the program to strings with base 10/32 representations to be output
you will need to resort to other functions.
For converting C style strings containing base 2..36 representations to integers, you can use #include <cstdlib> and use the strtol(3) & Co. set of functions.
As for converting integers to strings with arbitrary base... I cannot find an easy answer. printf(3) style format strings only handle bases 8,10,16 AFAICS, just like std::setbase. Anyone?
Did you mean "base 10 to base 32", rather than integer to base32? The latter seems more likely and more useful; by default standard formatted I/O functions generate base 10 string format when dealing with integers.
For the base 32 to integer conversion the standard library strtol() function will do that. For the reciprocal, you don't need a library for something you can easily implement yourself (not everything is a lego brick).
Here's an example, not necessarily the most efficient, but simple;
#include <cstring>
#include <string>
long b32tol( std::string b32 )
{
return strtol( b32.c_str(), 0, 32 ) ;
}
std::string itob32( long i )
{
unsigned long u = *(reinterpret_cast<unsigned long*>)( &i ) ;
std::string b32 ;
do
{
int d = u % 32 ;
if( d < 10 )
{
b32.insert( 0, 1, '0' + d ) ;
}
else
{
b32.insert( 0, 1, 'a' + d - 10 ) ;
}
u /= 32 ;
} while( u > 0 );
return b32 ;
}
#include <iostream>
int main()
{
long i = 32*32*11 + 32*20 + 5 ; // BK5 in base 32
std::string b32 = itob32( i ) ;
long ii = b32tol( b32 ) ;
std::cout << i << std::endl ; // Original
std::cout << b32 << std::endl ; // Converted to b32
std::cout << ii << std::endl ; // Converted back
return 0 ;
}
In direct answer to the original (and now old) question, I don't know of any common library for encoding byte arrays in base32, or for decoding them again afterward. However, I was presented last week with a need to decode SHA1 hash values represented in base32 into their original byte arrays. Here's some C++ code (with some notable Windows/little endian artifacts) that I wrote to do just that, and to verify the results.
Note that in contrast with Clifford's code above, which, if I'm not mistaken, assumes the "base32hex" alphabet mentioned on RFC 4648, my code assumes the "base32" alphabet ("A-Z" and "2-7").
// This program illustrates how SHA1 hash values in base32 encoded form can be decoded
// and then re-encoded in base16.
#include "stdafx.h"
#include <string>
#include <vector>
#include <iostream>
#include <cassert>
using namespace std;
unsigned char Base16EncodeNibble( unsigned char value )
{
if( value >= 0 && value <= 9 )
return value + 48;
else if( value >= 10 && value <= 15 )
return (value-10) + 65;
else //assert(false);
{
cout << "Error: trying to convert value: " << value << endl;
}
return 42; // sentinal for error condition
}
void Base32DecodeBase16Encode(const string & input, string & output)
{
// Here's the base32 decoding:
// The "Base 32 Encoding" section of http://tools.ietf.org/html/rfc4648#page-8
// shows that every 8 bytes of base32 encoded data must be translated back into 5 bytes
// of original data during a decoding process. The following code does this.
int input_len = input.length();
assert( input_len == 32 );
const char * input_str = input.c_str();
int output_len = (input_len*5)/8;
assert( output_len == 20 );
// Because input strings are assumed to be SHA1 hash values in base32, it is also assumed
// that they will be 32 characters (and bytes in this case) in length, and so the output
// string should be 20 bytes in length.
unsigned char *output_str = new unsigned char[output_len];
char curr_char, temp_char;
long long temp_buffer = 0; //formerly: __int64 temp_buffer = 0;
for( int i=0; i<input_len; i++ )
{
curr_char = input_str[i];
if( curr_char >= 'A' && curr_char <= 'Z' )
temp_char = curr_char - 'A';
if( curr_char >= '2' && curr_char <= '7' )
temp_char = curr_char - '2' + 26;
if( temp_buffer )
temp_buffer <<= 5; //temp_buffer = (temp_buffer << 5);
temp_buffer |= temp_char;
// if 8 encoded characters have been decoded into the temp location,
// then copy them to the appropriate section of the final decoded location
if( (i>0) && !((i+1) % 8) )
{
unsigned char * source = reinterpret_cast<unsigned char*>(&temp_buffer);
//strncpy(output_str+(5*(((i+1)/8)-1)), source, 5);
int start_index = 5*(((i+1)/8)-1);
int copy_index = 4;
for( int x=start_index; x<(start_index+5); x++, copy_index-- )
output_str[x] = source[copy_index];
temp_buffer = 0;
// I could be mistaken, but I'm guessing that the necessity of copying
// in "reverse" order results from temp_buffer's little endian byte order.
}
}
// Here's the base16 encoding (for human-readable output and the chosen validation tests):
// The "Base 16 Encoding" section of http://tools.ietf.org/html/rfc4648#page-10
// shows that every byte original data must be encoded as two characters from the
// base16 alphabet - one charactor for the original byte's high nibble, and one for
// its low nibble.
unsigned char out_temp, chr_temp;
for( int y=0; y<output_len; y++ )
{
out_temp = Base16EncodeNibble( output_str[y] >> 4 ); //encode the high nibble
output.append( 1, static_cast<char>(out_temp) );
out_temp = Base16EncodeNibble( output_str[y] & 0xF ); //encode the low nibble
output.append( 1, static_cast<char>(out_temp) );
}
delete [] output_str;
}
int _tmain(int argc, _TCHAR* argv[])
{
//string input = "J3WEDSJDRMJHE2FUHERUR6YWLGE3USRH";
vector<string> input_b32_strings, output_b16_strings, expected_b16_strings;
input_b32_strings.push_back("J3WEDSJDRMJHE2FUHERUR6YWLGE3USRH");
expected_b16_strings.push_back("4EEC41C9238B127268B4392348FB165989BA4A27");
input_b32_strings.push_back("2HPUCIVW2EVBANIWCXOIQZX6N5NDIUSX");
expected_b16_strings.push_back("D1DF4122B6D12A10351615DC8866FE6F5A345257");
input_b32_strings.push_back("U4BDNCBAQFCPVDBL4FBG3AANGWVESI5J");
expected_b16_strings.push_back("A7023688208144FA8C2BE1426D800D35AA4923A9");
// Use the base conversion tool at http://darkfader.net/toolbox/convert/
// to verify that the above base32/base16 pairs are equivalent.
int num_input_strs = input_b32_strings.size();
for(int i=0; i<num_input_strs; i++)
{
string temp;
Base32DecodeBase16Encode(input_b32_strings[i], temp);
output_b16_strings.push_back(temp);
}
for(int j=0; j<num_input_strs; j++)
{
cout << input_b32_strings[j] << endl;
cout << output_b16_strings[j] << endl;
cout << expected_b16_strings[j] << endl;
if( output_b16_strings[j] != expected_b16_strings[j] )
{
cout << "Error in conversion for string " << j << endl;
}
}
return 0;
}
I'm not aware of any commonly-used library devoted to base32 encoding but Crypto++ includes a public domain base32 encoder and decoder.
I don't use cpp, so correct me if I'm wrong. I wrote this code for the sake of translating it from C# to save my acquaintance the trouble. The original source, that which I used to create these methods, is on a different post, here, on stackoverflow:
https://stackoverflow.com/a/10981113/13766753
That being said, here's my solution:
#include <iostream>
#include <math.h>
class Base32 {
public:
static std::string dict;
static std::string encode(int number) {
std::string result = "";
bool negative = false;
if (number < 0) {
negative = true;
}
number = abs(number);
do {
result = Base32::dict[fmod(floor(number), 32)] + result;
number /= 32;
} while(number > 0);
if (negative) {
result = "-" + result;
}
return result;
}
static int decode(std::string str) {
int result = 0;
int negative = 1;
if (str.rfind("-", 0) == 0) {
negative = -1;
str = str.substr(1);
}
for(char& letter : str) {
result += Base32::dict.find(letter);
result *= 32;
}
return result / 32 * negative;
}
};
std::string Base32::dict = "0123456789abcdefghijklmnopqrstuvwxyz";
int main() {
std::cout << Base32::encode(0) + "\n" << Base32::decode(Base32::encode(0)) << "\n";
return 0;
}