Why isn't C++ catching this exception? - c++

I have the following code for extracting a string out of a buffer array.
It works fine. However, the length variable is determined at runtime, so if it were to go out of bound, an exception would occur. Of course, the code can be easily adjusted to check if the length variable (in relation to the offset variable) falls within the boundaries. Though I'm curious why the following code does not work, as the exception seems to fly through the try-catch statement (and get caught by the debugger).
try
{
string value(&buffer[offset], length);
// ...
}
catch (exception& e)
{
// ...
}
catch (...)
{
// ...
}
Running on Windows 7 64bit, MSVCR compiled.

Accessing the buffer array beyond bounds is undefined behaviour. There is no requirement for a C++ exception to be thrown in this case. Try instantiating the string outside a try block and you'll see for sure whether an exception is thrown.

I think the term "exception" is confusing you. When we talk about an exception that catch can catch, we don't mean "exception" in the general computer science sense. We mean specifically a C++ exception that is thrown with the throw operation.
You have no code that throws an exception, why would you expect to catch one? If you want to throw an exception in this case, you have to write code to do it.
Sometimes I see programmers expecting to be able to catch, for example, a division by zero. While that's an exception in the general computer science sense, it's not a C++ exception unless you have some code that creates a C++ exception when there's a division by zero and throws it.

Your program might be causing a fault due to accessing a memory location that the system knows is not valid for your process, for example dereferencing a NULL pointer (always faults) or going outside the bounds of a variable in the heap (not always faults, depends on page boundaries). These faults are detected by the CPU, and are a different mechanism than the exceptions that you can catch with try/catch in C++, those are part of the language and implemented by the compiler and language runtime library.
In your case since you are using MSVC you have access to an extension to the language that allows you to catch both, the __try and __except facility, you can read more about the MSVC try-except Statement here.

Related

Can I use a try catch statement to catch any error instead of being specific?

try{
//some function
}catch(...){
//write information to a file including this line number
}
--
What's stopping me from doing this instead of specifying a null pointer exception for instance? The program is going to crash anyways so I might as well catch all errors if there is something I haven't thought about?
It's a myth that every program fault will be caught by catch(...). In particular the behaviour of a null pointer dereference is undefined so there's no guarantee at all that it would be caught there.
If you want a particularly generic catch site, then catching std::exception& is a good idea, as is const char*.
C++11 gives you the ability to inspect the exception in catch(...) to a degree via std::current_exception. See https://en.cppreference.com/w/cpp/error/current_exception.
In Microsoft C, an extension exists that allows you to try and catch exceptions:
void exceptionTest(void)
{
int *zz = NULL;
__try {
*zz += 1;
}
__except (EXCEPTION_EXECUTE_HANDLER) {
printf("gotcha! 0x%08x\n", GetExceptionCode() );
}
}
From the documentation (MSC2008):
The try-except statement is a Microsoft extension to the C language that enables applications to gain control of a program when events that normally terminate execution occur. Such events are called exceptions, and the mechanism that deals with exceptions is called structured exception handling.
Exceptions can be either hardware- or software-based. Even when applications cannot completely recover from hardware or software exceptions, structured exception handling makes it possible to display error information and trap the internal state of the application to help diagnose the problem. This is especially useful for intermittent problems that cannot be reproduced easily.
Being specific in exception handling facilitates the bug or probleme analysis by a human or programmatically.
You can build an excpetion handling strategy and eventually recover from an exception. Exception is not necessarily a design flaw resulting in some unexpected null pointer. You may throw exception based on data values or process results to stop the processing or take a decision.
You are confusing things. If you dereference a null pointer then there is no automatically created exception. Dereferencing a null pointer is undefined behaviour. Once it happened its too late for exceptions. They simply wont help a bit.
On the other hand if some code checks for null pointer and then throws an exception, then this only makes sense before the null pointer is dereferenced, ie before undefined behaviour can occur. The program will not "crash anyways" when an exception is thrown in such a case (given that someone catches the exception).
Having said this, nobody will stop you from catching all excpetions. It is just that prior to C++11 you had no way to tell what exception was thrown inside a catch(...) block. C++11 has std::current_exception, though I dont know much about it, so I refer you to documentation.

How to achieve, that bad-alloc aborts instead of throwing an exception

In our application, we log any crashes into a log file with stack trace included. We can use these reports to identify crash causes.
The problem is, that we tend to catch std::exception on several places (a lot actually), which makes the report effectively useless when bad_alloc is thrown, as the stack trace is lost.
How to change the behaviour, so instead of throwing bad_alloc, the program aborts? As we write in 3 different operating systems, so 3 different std implementations are used, changing the std itself is something we would like to avoid.
Besides a rethink or redesign to catch more tailored exceptions (which I really recommend) you have two solutions:
Use the "no-throw" variants of operator new and operator new[]. Check for a returned null pointer, and abort.
Set a new handler that calls std::terminate.
I checked the exception hierarchy (http://en.cppreference.com/w/cpp/error/exception) and it seems, that we never need to catch anything outside std::runtime_exception and all of our internal exception types are derived from std::runtime_exception.
So I just changed that the broadest catch we have in our program is std::runtime_error so std::bad_alloc is becomes exception, which we can properly manage.
Edit: This can only be used since C++11

Catching exceptions in destructors

Is it possible to make a destructor catch exceptions and then re-throw them?
If so, how would I do that, since there isn't a clear place for a try statement?
Basically, I want to ideally do:
CMyObject::~CMyObject()
{
catch(...) // Catch without a try. Possible?
{
LogSomeInfo();
throw; // re-throw the same exception
}
// Normal Destructor operations
}
Background
I have a large, complex application that is throwing an unhandled exception somewhere.
I don't have easy access to main or the top level message-pump or anything similar, so there's no easy place to catch all unhandled exceptions.
I figure any unhandled exception has to pass through a bunch of destructors as the stack is unwound. So, I'm contemplating scattering a bunch of catch statements in destructors. Then at least I'd know what objects are in play when the exception is thrown. But I have no idea if this is possible, or advisable.
EDIT: You can use std::uncaught_exception to check if an exception is currently being thrown (i.e. if stack unwinding is in progress due to an exception). It is not possible to catch that exception or otherwise get access to it from your destructor. So if your logging doesn't need access to the exception itself, you can use
CMyObject::~CMyObject()
{
if(std::uncaught_exception()) {
LogSomeInfo(); // No access to exception.
}
// Normal Destructor operations
}
Note that this question was asked in 2013, meanwhile std::uncaught_exception was replaced with std::uncaught_exceptions (notice the additional s at the end) which returns an int. For a rationale, see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4152.pdf, so if you are using C++17, you should prefer the new version. The above paper also explains why the old std::uncaught_exception will not work as expected in some situations.
Another option might be std::set_terminate. This is useful if you want to have a method called when an exception is not caught and about to terminate the program. In the terminate handler, I usually print some information about the exception and a (demangled) backtrace of where it originates from to my log file before finally terminating the program. This is compiler and system specific, but a real helper as it saves a lot of time if you write server processes and often the log file is all you get from ops.
You can use std::uncaught_exception() which returns true if and only if there is an exception being processed. It has been available since C++98, and is superseded by std::current_exception which returns a std::exception_ptr.
However you must be careful not to throw another exception in an unguarded context, otherwise std::terminate will be caught. Example:
X::~X() {
if (std::uncaught_exception()) {
try {
LogSomeInfo();
// and do something else...
} catch(...) {}
}
}
A destructor cannot catch the exception that is causing the destruction of the instance.
You can only know if there is any "active exception" (see uncaught_exception) during the destruction (or, in C++17, how many of them there are there with uncaught_exceptions) but it's possible that the exception(s) are indeed going to be handled after that.
Dealing with exceptions is very hard, much harder than someone may think at a first sight and the reason is that exception safety doesn't scale by composition. This in my opinion means that is basically impossible to have non trivial stateful subsystems with strong exception safety (in case of an exception being thrown nothing happened to the internal state). This was discovered long ago (see 1994 Tom Cargill's "Exception handling: A False Sense of Security") but apparently is still ignored by large part of the C++ community.
The only reasonable way to handle exceptions I can think to is to have subsystems with clear well defined interfaces with thick "walls" (no side effect happening inside may escape), and that can be re-initialized to a well known state from scratch if needed when something goes wrong. This not trivial but can be done correctly to a reasonable extent.
In all other cases the global state of the system when an exception is caught is indefinite at best at the point of catch and there are in my opinion few use cases in which you can do anything in such a condition except dying immediately as loudly as possible instead of taking further actions without indeed knowing what is going on (dead programs tell no lie). Even keeping on calling destructors is somewhat questionable in my opinion.
Or you may try to be as functional as possible, but that's not an easy path either (at least for my brain) and it's also moving far away from reality (most computers are mutable objects with many billions of bits of mutable state: you can pretend this is not the case and they're instead mathematical functions with no state and with predictable output dependent on input... but in my opinion you're just deluding yourself).

How to catch the null pointer exception? [duplicate]

This question already has answers here:
Catching access violation exceptions?
(8 answers)
Closed 6 years ago.
try {
int* p = 0;
*p = 1;
} catch (...) {
cout << "null pointer." << endl;
}
I tried to catch the exception like this but it doesn't work,any help?
There's no such thing as "null pointer exception" in C++. The only exceptions you can catch, is the exceptions explicitly thrown by throw expressions (plus, as Pavel noted, some standard C++ exceptions thrown intrinsically by standard operator new, dynamic_cast etc). There are no other exceptions in C++. Dereferencing null pointers, division by zero etc. does not generate exceptions in C++, it produces undefined behavior. If you want exceptions thrown in cases like that it is your own responsibility to manually detect these conditions and do throw explicitly. That's how it works in C++.
Whatever else you seem to be looking for has noting to do with C++ language, but rather a feature of particular implementation. In Visual C++, for example, system/hardware exceptions can be "converted" into C++ exceptions, but there's a price attached to this non-standard functionality, which is not normally worth paying.
You cannot. De-referencing a null-pointer is a system thing.
On Linux, the OS raises signals in your application. Take a look at csignal to see how to handle signals. To "catch" one, you'd hook a function in that will be called in the case of SIGSEGV. Here you could try to print some information before you gracefully terminate the program.
Windows uses structured-exception-handling. You could use the instristics __try/__except, as outlined in the previous link. The way I did it in a certain debug utility I wrote was with the function _set_se_translator (because it closely matches hooks). In Visual Studio, make sure you have SEH enabled. With that function, you can hook in a function to call when the system raises an exception in your application; in your case it would call it with EXCEPTION_ACCESS_VIOLATION. You can then throw an exception and have it propagate back out as if an exception was thrown in the first place.
There is a very easy way to catch any kind of exception (division by zero, access violation, etc.) in Visual Studio using try -> catch (...) blocks.
A minor project tweaking is enough. Just enable the /EHa option in project settings. See Project Properties -> C/C++ -> Code Generation -> Modify the Enable C++ Exceptions to "Yes With SEH Exceptions". That's it!
See details here:
http://msdn.microsoft.com/en-us/library/1deeycx5(v=vs.80).aspx
Dereferencing a null (or pointer that's past-the-end of array, or a random invalid pointer) results in undefined behavior. There's no portable way to "catch" that.
C++ doesn't do pointer checking (although I suppose some implementations could). If you try to write to a null pointer it is most likely going to crash hard. It will not throw an exception. If you want to catch this you need to check the value of the pointer yourself before you try to write to it.
Generally you can't. Even if you could it would be like trying to put a band aid on a submarine that has sprung a leak.
A crippled application can do far more damage than one that has crashed. My advice here would be to let it crash then fix why it crashed. Rinse. Repeat.
As others have said, you can't do this in C++.
If I can make a broader point: even in a language that allows you to catch it, the better action is to not touch null pointers. Catching an error when it's already blown up in your face, then deciding to just move on like it didn't happen, is not a good coding strategy. Things like null pointer dereference, stack overflow, etc., should be seen as catastrophic events and defensively avoided, even if your language allows you to react to it differently.
There is no platform independent way to do this. Under Windows/MSVC++ you can use __try/__except
But I wouldn't recommend doing it anyway. You almost certainly cannot recover correctly from a segmentation fault.
If you wanted to you could just do the pointer checking yourself and throw...
if (p == nullptr) throw std::exception("woot! a nullptr!")
p->foo();
so course this would only be to debug the problem, the nullptr should not occur in the first place :)
Short answer- you can't in a portable or standard way, because bugs like this are potentially corrupting the process itself.
Long answer- you can do more than you might think, and definitely more than the default of the program just crashing. However, you need to keep 3 things in mind:
1) These bugs are MORE severe than exceptions and often cannot present as exceptions to your logic.
2) Your detection and library handling of them WILL be platform-dependent on the back end, even though you can provide a clean abstract interface for public consumption.
3) There will always be some crashes that are so bad you cannot even detect them before the end.
Basically, faults like segfaults or heap corruption are not exceptions because they're corrupting the actual process running the program. Anything you coded into the program is part of the program, including exception handling, so anything beyond logging a nice error message before the process dies is inadvisable in the few cases it isn't impossible. In POSIX, the OS uses a signaling system to report faults like these, and you can register callback functions to log what the error was before you exit. In Windows, the OS can sometimes convert them into normal-looking exceptions which you can catch and recover from.
Ultimately, however, your best bet is to code defensively against such nightmares. On any given OS there will be some that are so bad that you cannot detect them, even in principle, before your process dies. For example, corrupting your own stack pointer is something that can crash you so badly that even your POSIX signal callbacks never see it.
In VC++ 2013 (and also earlier versions) you can put breakpoints on exceptions:
Press Ctrl + Alt + Delete (this will open the exception dialog).
Expand 'Win32 Exceptions'
Ensure that "0xC0000005 Access Violation" exception is checked.
Now debug again, a breakpoint will be hit exactly when the the null dereference happened.
There is no NULL pointer exception exist in c++ but still you want to catch the same then you need to provide your own class implementation for the same.
below is the example for the same.
class Exception {
public:
Exception(const string& msg,int val) : msg_(msg),e(val) {}
~Exception( ) {}
string getMessage( ) const {return(msg_);}
int what(){ return e;}
private:
string msg_;
int e;
};
Now based on NULL pointer check it can be threw like , throw(Exception("NullPointerException",NULL));
and below is the code for catching the same.
catch(Exception& e) {
cout << "Not a valid object: " << e.getMessage( )<< ": ";
cout<<"value="<<e.what()<< endl;
}

Is there an occasion where using catch all clause : catch (...) is justified?

Each time I have seen the catch all statement:
try
{
// some code
}
catch (...)
{
}
it has always been an abuse.
The arguments against using cache all clauses are obvious. It will catch anything including OS generated exceptions such as access violations.
Since the exception handler can't know what it's dealing with, in most cases the exceptions will manifest as obscure log messages or some incoherent message box.
So catch(...) seems inherently evil.
But it is still implemented in C++ and other languages (Java, C#) implements similar mechanisms. So is there some cases when its usage is justified?
(1) It's not true that the statement will catch OS exceptions. Your use of the term "Access Violation" betrays a Windows background; it was true for older MSVC++ versions.
(2) Regardsless, the catch-all behavior is useful for threads with specific purposes. Catching the failure allows the thread to report it failed. Without it, the other parts of the program need to deal with the possibility of a thread just disappearing. It also allows you to log which thread failed, and the arguments used to start the thread.
The case where it's justified in general is when you log the exception (or do something similar) or do some cleanup, and then immediately rethrow.
In C++ in particular, logging in a catch(...) block is pretty pointless since you don't have any way to obtain the exception, and cleanup is pointless because you should be using RAII for that. Using it in destructors seems to be about the only legitimate case.
the arguments against using cache all clauses are obvious , it will catch anything including OS generated exceptions such as access violation. since the exception handler can't know what its dealing with, in most cases the exceptions will manifest as obscure log message or some incoherent message box.
And if those same exceptions aren't caught you get... an incoherent message box.
catch(...) lets me at least present my own message box (and invoke custom logging, save a crash dump, etc.).
I think there are also reasonable uses of catch(...) in destructors. Destructors can't throw--well, I mean, they can throw, but if a destructor throws during stack unwinding due to an in-progress exception the program terminates, so they should not ever allow exceptions to escape. It is in general better to allow the first exception to continue to be unwound than to terminate the program.
Another situation is in a worker thread that can run arbitrary functions; generally you don't want an unceremonious crash if the task throws an exception. A catch(...) in the worker thread provides the opportunity for semi-orderly clean-up and shutdown.
In addition to what other posters have already said, I'd like to mention one nice point from the C++ Standard:
If no matching handler is found in a
program, the function std::terminate()
is called; whether or not the stack is
unwound before this call to
std::terminate() is
implementation-deļ¬ned.
(15.3/9)
This means that main() and every thread function must be wrapped in a catch-all handler; otherwise, one can't even be sure that destructors for automatic objects will be called if an uncaught exception is thrown.
try {...} catch (...) is needed around body of callback function which is called from code
that doesn't understand C++ exceptions (usually C library).
Otherwise, if some C++ library you use throws an exception that doesn't derive from
std::exception, it will probably cause calling code to crash or corrupt its internal state.
Instead you should catch this exception and either finish program immediately or
return some error code (meaning "we are doomed and I don't know why", but it's still better
then letting C++ exception to pass through).
Around thread procedure. Mostly because of the same reason as 1.
And because otherwise thread failure would pass unnoticed.
catch(...) has been useful for me in two circumstances, both of which are unjustified (I can't even remember the second)
The first is my overall application safety. While throwing exceptions that don't derive from std::exception is a No-No, I have one just in case in my main() function:
int execute(void); // real program lies here
int main(void)
{
try
{
return execute();
}
catch(const std::exception& e)
{
// or similar
std::cerr << "Unhandled exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
catch(...)
{
std::cerr << "Unknown exception!" << std::endl;
return EXIT_FAILURE;
}
}
Now, it's only there "just in case", and it's not really justified. There should be no reason to ever enter that catch clause, as that would mean somebody has done a Bad Thing. Observe how useless the statement really is; "Something bad happened, no clue what!" It's only a step above just crashing in the first place.
The second use might be in destructors or some other function that needs to do manual management before letting the exception propagate. That's not really a justification either, as things should clean themselves up safely with RAII. But I may have used it once or twice for some reason I can't recall, and I can't see a reason to ever do so again.
catch (...) allows you to write code in which you can legitimately claim a guarantee that your code will not crash even when you are not in long term complete control of the submodules your code depends on. Your claim is tantamount to claiming that this semantic cannot be used except as a means of abuse. Maybe so, but military specifications may differ from you on this issue.
catch(...) is necessary in the absence of the finally clause as found in other languages:
try {
...
} catch(...) {
cleanup...
throw;
}
The alternative - making stack objects to 'own' everything - is often much more code and less readable and maintainable. The platform API is often C, and does not come with it conveniently bundled.
It is also useful around plugin code that you do not control or simply do not trust from a stability perspective. It won't stop them crashing, but it might keep things a little saner.
Finally, there are times when you really do not care about the outcome of something.